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GEOMETRY OF ELEMENTARY PARTICLES
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Introduction. This is a presentation of the standard model of elementary par-
ticles, i.e., their generally accepted theory, discussed here on the classical level
(without field quantization). Our basic reference is the book [5], for which the
present paper forms a self-contained summary. The author also intends to pro-
vide in [6] and [7] a more detailed treatment of particle geometry, along with its
quantized version.

Although this material is covered in numerous physics textbooks (such as [2] –
[4], [9], [14], [15], [18], [20] – [23]), the approach adopted here may be particularly
suitable for a mathematician reader due to its consistently geometric language. Pre-
sentations of more general topics are also available in the mathematical literature;
see, for instance, [1], [8], [10], [12], [13], [16], [17], [19].

The theory outlined below does not , by itself, provide a usable model of the real
world, even though it accounts well for many qualitative effects. Its inadequacy as a
source of quantitative predictions is mainly due to its classical (macroscopic) char-
acter, as opposed to the predominantly quantum (small-scale) properties displayed
by elementary particles in nature. However, instead of discarding the classical
model for this reason, one uses field quantization to transform it into a quantum
theory, which supplies the required “microscopic” corrections.

Cross-references in the text are indicated by arrows (→).

1. Particles and interactions in nature

1.0. Experimental data show that there are over 200 species (kinds) of sub-
atomic particles, such as the electron e, proton p, neutron n, photon γ, electronic

1991 Mathematics Subject Classification. Primary 53C80; Secondary 81T13, 53B50, 81V05,

81V10, 81V15, 81V22.
Key words and phrases. Standard model, electroweak model, quark model, gauge theory.

Supported in part by NSF Grant DMS-8601282.

Typeset by AMS-TEX

1



2 GEOMETRY OF ELEMENTARY PARTICLES

neutrino νe, neutral pion π0, etc. (→ 1.5, 1.6). Particles interact in four basic
ways, known as the strong, electromagnetic, weak and gravitational interactions
(forces), ordered here by decreasing strength of the interaction, i.e., probability of
its occurrence in the given circumstances. We will not discuss gravitational forces,
negligibly weak on the microscopic level; see, however, 2.0.

1.1. Particle invariants assign to particle species elements of various Abelian
semigroups. Here belong, for instance, the mass m ∈ R+ = [0,∞), electric charge
Q ∈ Z (→ 1.2), average lifetime τ ∈ (0,∞], as well as spin s ∈ 1

2Z+ = {0, 1
2 , 1, . . . }

and parity ε ∈ Z2 = {1,−1}. The spin measures the capacity of the particle
to carry internal angular momentum (as if it were rotating about its axis), while
the parity of the particle describes symmetry properties of its configurations with
respect to space reflections (→ 3.3, 3.5). Particles with s ∈ Z (resp., s 6∈ Z) are
known as bosons (resp., fermions).

1.2. Quantization of the electric charge. According to experimental ev-
idence (Millikan, 1909) and theoretical arguments (→ 5.1.iv), the electric charge
always comes in integral multiples of the electron charge q (by convention, q < 0).
Charges of individual particle species may be indicated by superscripts such as
−,0 ,+ ,++ , so that e = e−, p = p+, n = n0, γ = γ0, νe = ν0

e , etc. (→ 1.0).

1.3. Interaction carriers are the few particle species that serve as agents
mediating interactions. These are: the photon γ (→ 5.1.ii) for electromagnetism,
the weak bosons W+,W−,Z0 for the weak interaction (→ 5.3.ii.b,c), eight kinds of
gluons (→ 5.2.ii) for the strong force and, probably, gravitons for gravity. Except
for gravitons with s = 2, their spins (→ 1.1) all equal 1.

1.4. Matter particles, i.e., those particle species which are not interaction
carriers, may in turn be classified into hadrons and leptons, depending on whether
they can or cannot participate in the strong interaction.

1.5. Leptons consist of 12 known species, all of spin 1
2 (→ 1.1): the electron

e, muon µ and tauon τ (with positive masses and electric charge −1), the electri-
cally neutral, massless neutrinos νe, νµ, ντ , as well as their antiparticles (→ 3.2.i):
e+, µ+, τ+, νe, νµ, ντ .

1.6. Hadrons which are fermions (resp., bosons, → 1.1) are called baryons
(resp., mesons), with about 100 known species of either. For instance, π0 is a
meson. Baryons can further be divided into the disjoint classes of baryons proper
(such as p,n), and their antiparticles (→ 3.2.i), the antibaryons.

1.7. Classification of elementary particles, as outlined above:

all particles ···



interaction carriers

matter particles ···


leptons

hadrons ···


mesons

baryons ···
{

baryons proper

antibaryons
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2. Bundles over the spacetime

2.0. Spacetime. We work with a fixed spacetime (M, g), which is a 4-manifold
M endowed with a pseudo-Riemannian metric g of signature − + + + and with
a time orientation, i.e., a continuous choice x 7→ C+

x of one (“future”) component
of the timelike cone Cx = {v ∈ TxM : g(v, v) < 0} at each x ∈ M. Although
one often assumes that M is an affine space and g is translation invariant (the
Minkowski spacetime), nonflat spacetimes are also used, as models of gravity (in
general relativity).

2.1. Vector bundles over the spacetime (M, g), used below, include the
product line bundle 1 = M× C , the tangent bundle T = TM, its dual T ∗, the
bundle Λ4T ∗ of volume forms (pseudoscalars) on M and, for each k ∈ Z+, the
bundle Sk0T

∗ whose fibre over x ∈ M consists of all real k-linear symmetric forms
on TxM with g-contraction zero (i.e., of all pseudo-spherical harmonics in TxM).

2.2. Weyl spinors. Whenever necessary, the spacetime (M, g) will be assumed
to be an orientable spin manifold. Denoting L, R the orientations of M, we may
then choose fixed Weyl spinor bundles σL , σR over (M, g), with σR = σL (→ 3.2).
They are complex vector bundles of fibre dimension 2, obtained from a common
spin structure over (M, g) via two mutually conjugate nontrivial representations of
Spin(3, 1) = SL(2,C) in C2. The (Levi-Civita) spinor connection ∇

◦
in σL and σR

then gives rise to the Dirac operator D sending sections of σL to those of σR and
vice versa.

2.3. Dirac spinors. If (M, g) is orientable and spin, we choose a fixed Dirac
spinor bundle over (M, g) to be the direct sum σ = σL + σR of the Weyl spinor
bundles selected as in 2.2, with unordered summands, so that no orientation of M
is distinguished. The operators ∇

◦
and D now are also defined in σ.

3. Models of free matter particles

3.0. Particle models. Each particle species is represented by (”lives in”) a
specific fibre bundle η, endowed with some additional geometric structure, over
the spacetime manifold M (→ 2.0). The sections ψ of η are to be thought of as
“semiclassical states” of the particle, evolving with time in a manner described by
suitable field equations (which form a part of the geometry of η).

3.1. Models of matter particles (→ 1.4) are vector bundles and their field
equations are linear. For those matter particles which are free, i.e., not subject to
interactions, the choices of bundles and equations are quite specific (→ 3.3 – 3.5).
On the other hand, interaction carriers are represented by a special type of affine
bundles (→ 4.0) which, for many ”practical” purposes, may also be regarded as
vector bundles (→ 4.4, 5.3.ii,iii).

3.2. Physical meaning of vector bundle operations. Equalities between
vector or affine bundles, such as (η∗)∗ = η, stand for natural (functorial) isomor-
phisms, the category in question being usually clear from the context. For a complex
vector bundle η over M, let η be its conjugate bundle, with each fibre ηx, x ∈ M,



4 GEOMETRY OF ELEMENTARY PARTICLES

consisting of all antilinear maps η∗x → C . Thus, we have η = η∗ whenever the ge-
ometry of η involves a fixed Hermitian fibre metric (which may even be indefinite),
as is the case for all models of free matter particles except neutrinos (→ 3.4).

i. For a particle species represented by a complex vector bundle η (→ 3.0,
3.1), the conjugate η, along with the corresponding “conjugate geometry”,
may be expected to host another, related particle species, called the an-
tiparticle of the original one. The resulting antiparticle formation (denoted

), leaves most of the relevant particle invariants (→ 1.1) either completely
unchanged (e.g., ε for bosons, m, τ, s), or just changes their signs (as in
the case of ε for fermions and Q ; → 3.5, 5.1.iii). Antiparticles also make
sense for interaction carriers (→ 4.4, 5.3.ii.b,c), and, in fact, turn out to
exist for all particles known in nature. However, some species (referred to
as strictly neutral) coincide with their antiparticles and then it is natu-
ral to represent them by real rather than complex bundles. For instance,
π0 = π0, γ = γ, Z0 = Z0, while (W+) = W−, e = e+ 6= e, νe 6= νe, p 6=
p, n 6= n (notation of 1.0, 1.2, 1.3).

ii. Given k particle species living in vector bundles ηj , the direct sum η =
η1 +. . .+ ηk stands for their common generalization, which is not a particle
species in the usual sense. (For instance, the nucleon, generalizing protons
and neutrons, does not have a well-defined electric charge.) Conversely,
if a bundle η describing some particles happens to be naturally reducible,
i.e., admit a direct sum decomposition that is natural (functorial), these
particles should be regarded as forming several distinct species represented
by the summands, for which η provides a common generalization.

iii. Putting together k particles of (not necessarily different) species that live
in vector bundles ηj , one obtains a composite object whose evolving states
(→ 3.0) are sections of the tensor-product bundle η1 . . . ηk . Such objects
include subatomic particles (hadrons, → 5.2), as well as nuclei, atoms, or
even molecules. However, η1 . . . ηk is often naturally reducible (→ ii), and
then it stands for several particle species, represented by its summands.
Using the projection onto any summand η, one may thus characterize the
formation of such a composite particle living in η as a natural (functorial)
surjective bundle morphism η1 . . . ηk → η.

3.3. Matter bosons of spin k ∈ Z+ and parity (−1)k (resp., (−1)k−1, → 1.1)
live in the bundle η = Sk0T

∗ (resp., in the tensor product η = (Sk0T
∗)Λ4T ∗), if they

are strictly neutral, and in its complexification ηC otherwise (→ 2.1, 3.2.i). Their
field equations (→ 3.0) consist of the Klein-Gordon equation

(1) �ψ = (mc/})2ψ

and, if k ≥ 1, also of the divergence condition

(2) divψ = 0

imposed on sections ψ of η or ηC. Here � = Traceg ◦∇
◦

2 is the d’Alembertian (wave
operator) of the Levi-Civita connection ∇

◦
in η and divψ stands for the obvious
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g-contraction of ∇
◦
ψ, while }, m and c are, respectively, Planck’s constant divided

by 2π, the mass of the particle in question, and the speed of light. In particular,
states of a particle with mass m, spin 0 and parity +1 are real or complex valued
functions ψ on the spacetime (M, g) satisfying (1) with the pseudo-Riemannian
Laplacian � of (M, g). As another example, sections ψ of T ∗ = T ∗M , with (1)
and (2), describe the states of a strictly neutral particle with mass m, spin 1 and
parity −1.

3.4. Neutrinos of all species νe, νµ, ντ (→ 1.5) are represented by a fixed Weyl
spinor bundle σL (→ 2.2), while the corresponding antineutrinos νe, νµ, ντ live in
σR = σL . In all cases, the field equations consist of Weyl’s equation

(3) Dψ = 0

for sections ψ of σL or σR , D being the Dirac operator. As the choice of bundles
indicates, each (anti)neutrino species distinguishes an orientation of space. This is
manifested through the phenomenon known as parity violation, predicted by Lee
and Yang and discovered by Wu in 1956.

3.5. Fermions other than neutrinos, with spin k + 1
2 , k ∈ Z+ and parity

(−1)k (resp., (−1)k−1,→ 1.1) live in the subbundle η of the tensor product (Sk0T
∗)σ

obtained by requiring that the Clifford product involving T ∗ and σ be zero (resp.,
in its conjugate η), where σ is a fixed Dirac spinor bundle over (M, g) (→ 2.3, 2.1).
The field equations consist of Dirac’s equation

(4) (D +mc/})ψ = 0

and, if k ≥ 1, also of the divergence condition (2), imposed on sections ψ of η or
η, with m, c, } as in 3.3. In particular, particles of spin 1

2 such as the electron e,
proton p, neutron n live in σ, while their antiparticles (the positron e+, antiproton
p, antineutron n) are represented by σ, and each is governed by the Dirac equation
(4) with the appropriate mass m. (It is convenient here to distinguish σ from σ,
even though they are naturally isomorphic. Also, in contrast with hadrons, lepton
parities are not well-defined, i.e., cannot be determined by experiment, and so the
choice of σ rather than σ for e is just a matter of convention.)

4. The Yang-Mills description of interactions

4.0. Interaction bundles. In the formalism of Yang and Mills (1954), a given
interaction is described by an interaction bundle δ, which is a real or complex
vector bundle, of some fibre dimension N , over the spacetime manifoldM (→ 2.0).
Moreover, δ is endowed with a fixed geometry, consisting mainly of a G-structure,
i.e., a reduction P of the full principal frame bundle of δ to a (usually compact)
subgroup G of GL(N,F), where F is R or C . (In most cases we will replace
P by an equivalent tensorial object in δ, such as a Hermitian fibre metric when
G = U(N) ⊂ GL(N,C).) Suppressing P from the notation, we denote C(δ) the
affine bundle over M, the C∞ sections of which coincide with the connections ∇
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in δ, compatible with P . The translation-space bundle (i.e., the associated vector
bundle) of C(δ) then is the tensor product g(δ)T ∗, where T ∗ = T ∗M and g(δ) stands
for the G-adjoint bundle of Lie algebras, corresponding to P . The interaction-
carrier particles now live in C(δ), that is, their states are just G-connections ∇ in
δ, evolving so as to obey the Yang-Mills equation

(5) divR∇ = 0,

where the curvature R∇ of ∇ is regarded as a g(δ)-valued 2-form on M.
A natural question to ask now is what interaction bundles and in particular

which structure groups G correspond in this way to the known physical interac-
tions (→ 1.0). The answer (→ 5.1 – 5.3) is currently believed to be G = U(1)
for electromagnetism, G = U(2) for the unified electroweak (electromagnetic plus
weak) interaction, and G = SU(3) for the strong force. On the other hand, the
weak interaction, on its own, is not of the Yang-Mills type (→ 5.3.iii).

4.1. Interactions involving matter. Let η be the free-particle bundle (or,
generic-particle bundle, → 4.4) of the given matter-particle species, i.e., the vector
bundle overM where the particle lives when it is considered free (→ 3.1). Subject
to an interaction described by the interaction bundle δ, this particle is represented
by the interacting-particle bundle α obtained from δ and η via a specific natural
(functorial) construction, a basic example of which is the tensor product α = δη.
(As δη = δη, the role of δ for the corresponding antiparticle species must be played
by δ, → 3.2.i.) To account for the interaction, the field equations now are to be
imposed on pairs (ψ,∇) consisting of sections ψ of α, and ∇ of C(δ), so that they
govern simultaneous evolution of matter particles and interaction carriers, and have
the “coupled” form

F(ψ,∇
◦
⊗∇) = 0, divR∇ = J (ψ),

where
i. ∇
◦

stands for the canonical (Levi-Civita) connection in η, and ∇
◦
⊗ ∇ for

the connection in α naturally induced by ∇
◦

and ∇,
ii. F is such that the free field equations ((1) and (2), or (3), or (4) and (2))

can be written as F(ψ,∇
◦

) = 0 for sections ψ of η, and so F must be
sufficiently general to also make sense in α,

iii. J is a differential operator (to be determined in each case from natural
considerations), sending sections of α onto g(δ)-valued 1-forms on M.

4.2. Lack of naturality. Genuine (observable) physical objects can move in
space and “age” with time. The bundles η representing particles should therefore
be natural in the sense that isometries between open subsets of (M, g) have (single
or multiple-valued) functorial lifts to bundle maps in η. It is so, in fact, for the
models of free matter particles (→ 3.3 – 3.5), but not, in general, for interaction
bundles δ, or the bundles C(δ) and α as in 4.0, 4.1, where interaction carriers and
interacting matter particles live. To achieve some sort of naturality in the latter
cases, one uses additional procedures (formation of bound states or breaking of
symmetry), as described below.



PROC. SYMPOSIA IN PURE MATH., 54 (1993), 157-171 7

4.3. Bound states. The interacting-particle bundles α1, . . . , αk obtained as
in 4.1 using some η1, . . . , ηk and a fixed δ, may sometimes admit natural surjec-
tive morphisms of their tensor product α1 . . . αk onto a natural bundle η which is
the free-particle bundle of a matter particle. The resulting composite particle (→
3.2.iii), living in η, then may be called a bound state of the original k particles, as
it is held together by the given interaction (force), yet, being free, does not exert
comparably strong forces of this type on its environment. To obtain such bound
states, one only needs to eliminate δ-related factors present in the αj using natural
multilinear bundle maps (examples: → 5.1.i, 5.2.i).

4.4. Symmetry breaking means enriching the original geometry of a given
interaction bundle δ (→ 4.0), mainly by choosing a reduction of its G-structure
to some proper subgroup H of G. Very often this procedure is just formal and
lacks direct physical meaning. When that is the case, H is usually assumed trivial,
and the resulting choice of a trivialization for δ and the G-structure leads to the
identification C(δ) = T ∗+ . . . + T ∗. Thus, the interaction carriers, living in C(δ)
(→ 4.0) may to some extent be regarded as forming dimG separate species of
“matter-like”, strictly neutral particles with spin 1 and parity −1 (→ 3.2.ii, 3.3).
Similarly, under such a trivialization, interacting-particle bundles α (→ 4.1) become
direct sums of natural bundles (e.g., if α = δη, one obtains α = η + . . .+ η with N
summands, N being the fibre dimension of δ). Consequently, for N > 1, a single
free-particle bundle η may lead to several “observed” matter-particle species, which
justifies referring to η as the generic-particle bundle. However, the decompositions
in question depend on the trivialization used and so have no “absolute” physical
significance. For instance, a state of a single species for one trivialization will
usually correspond to a mixture of species for another.

4.5. Spontaneous symmetry breaking takes place when the reduction from
G to H in 4.4 is actually present in nature. This may only happen if the interaction
is sufficiently weak. (Solidifying of fluids at low temperatures is a useful analogy.)
The reason why it is then worthwhile to keep G (instead of just H) in the picture is
the purely accidental manner in which the specific reduction is selected, so that the
possible ways the symmetry could have become broken still enjoy full G-symmetry
(example: → 5.3.i).

5. The standard model

5.0. The standard model of elementary particles is a system of theories
that, in view of experimental evidence, as well as its internal coherence, is generally
accepted as a correct description of the microworld. Besides the field quantization
and renormalization procedures, not discussed here, its principal ingredients are
the electroweak and quark-gluon models (both based on the Yang-Mills formalism,
→ 4.0, 4.1), the main ideas of which are outlined below.

5.1. Electromagnetism (Weyl, 1929). The electromagnetism bundle (i.e., the
electromagnetic interaction bundle, → 4.0), corresponding to the electron charge
q, is a complex line bundle λ with a Hermitian fibre metric 〈 , 〉 (a U(1)-structure)
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over the spacetime (M, g). For a matter-particle species of charge kq, k ∈ Z (→
1.2), represented by the free-particle bundle η, the interacting-particle bundle (→
4.1) is the tensor product α = λkη (where λ−1 = λ, → 3.2).

i. Since λk1 . . . λkn = λk1+...+kn due to the natural isomorphism induced by
〈 , 〉 : λλ → λ0 = 1 = M× C , electromagnetic bound states, arising from
mutual “cancellation” of the λ factors (→ 4.3), can only be obtained when
the charges of the consitituent particles add up to zero (so that the system
they form is electrically neutral). This is, e.g., the case for non-ionized
atoms, but not for nuclei (which would fly apart due to electric repulsion,
were it not for the strong force).

ii. Electromagnetic forces are strong enough for their U(1) symmetry not to
be broken spontaneously (→ 4.5). From formal symmetry breaking (→
4.4) we obtain C(λ) = T ∗ and α = λkη = η (with η, α as above), so that
there is a single interaction-carrier particle species (the photon γ, living in
C(λ)), which is strictly neutral, with spin 1 and parity −1 (→ 3.3), while
matter particles subject to the electromagnetic interaction lead to the same
picture as the free ones.

iii. As λkη = λ−kη, the electric charge becomes reversed under antiparticle
formation (→ 3.2.i).

iv. It is the electric charge quantization (→ 1.2) that enables a single bundle λ
to account for electromagnetic properties of all matter particles (which in
turn is the first step toward a unified description of particle interactions).

5.2. The quark model (Gell-Mann, Zweig, 1964) presumes that all hadrons
are bound states (composites) of peculiar particles called quarks, which come in 6
flavors (species) u, d, s, c, b, t, and of their antiparticles, the antiquarks u, . . . , t .
The complicated strong forces involving hadrons then may be viewed as residual
effects of the much stronger (and simpler) interactions of (anti)quarks, just as some
interatomic forces (of electromagnetic origin) are caused by uneven distribution of
electric charge in each (neutral) atom.

All quarks (resp., antiquarks) have spin 1
2 and parity +1 (resp., −1), so that, by

3.5, the free-particle bundle (→ 4.1) for each flavor is a fixed Dirac spinor bundle
σ over the spacetime (M, g) (resp., its conjugate σ). The strong-interaction bundle
(→ 4.0) is a complex vector bundle ρ of fibre dimension 3 with a Hermitian fibre
metric 〈 , 〉 and a fixed section Ω of Λ3ρ∗ which are compatible in the sense that
|Ω| = 1, i.e., Ω(ξ1, ξ2, ξ3) = 1 for some orthonormal basis ξ1, ξ2, ξ3 of each fibre
ρx, x ∈ M. Obviously, the pair consisting of 〈 , 〉 and Ω is nothing else than an
SU(3)-structure in ρ (→ 4.0). The interacting-particle bundle (→ 4.1) of each quark
(resp., antiquark) flavor is the tensor product ρσ (resp., ρσ).

i. Bound states of quarks are obtained as in 4.3 by “naturally cancelling”
ρ and ρ in the ρσ, ρσ factors, which, essentially, can only be done using
one of the bundle morphisms 〈 , 〉,Ω,Ω of the tensor products ρρ, ρ3, ρ3

onto 1 = M× C . The resulting composite particles are quark-antiquark
pairs, three-quark systems, or three-antiquark systems, and may be easily
identified with mesons, baryons, and, respectively, antibaryons (→ 1.6).
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ii. The interquark forces are far too strong to allow spontaneous breaking of
symmetry (→ 4.5). Under formal symmetry breaking (→ 4.4), one may
regard gluons, i.e., the strong-interaction carriers, living in C(ρ), as form-
ing dim SU(3) = 8 species, while each (anti)quark flavor, when subject
to the strong interaction, appears to come in 3 versions (colors), with all
reservations stated in 4.4.

iii. Quarks do not seem to exist freely (outside of hadrons) in nature, which is
probably due to the extreme strength of their mutual interaction.

iv. Another strange property of quarks is that their electric charges are frac-
tional multiples of the electron charge q (−2q/3 for u, c, t and q/3 for
d, s, b). This does not contradict the charge quantization (→ 1.2), both
in view of iii and since q may be replaced by q/3. In fact, values of the
electric charge (and, similarly, of all other particle invariants additive un-
der the composite-particle formation), thus assigned to (anti)quarks, lead
to remarkable agreement with the observed spectrum of hadrons.

5.3. The electroweak model (Glashow, Salam, Weinberg, 1961-1967) treats
electromagnetism and the weak force as manifestations of a single interaction, as-
cribing the observed differences between them to spontaneous symmetry breaking.

The electroweak-interaction bundle (→ 4.0) is a complex vector bundle ι of fibre
dimension 2 with a Hermitian fibre metric (a U(2)-structure; see, however, iv),
inducing a fibre norm denoted | |, over the spacetime (M, g). The geometry of ι
also involves a natural fibre metric (, ) in the affine bundle C(ι), i.e., a fibre metric in
its translation-space bundle g(ι)T ∗ (→ 4.0), obtained by combining g in T ∗ = T ∗M
with a fibre metric in g(ι) (also denoted (, )) that comes from an Ad-invariant inner
product in the Lie algebra g = u(2). Since (X,Y ) = (a− b)( TraceX)( TraceY )−
2aTrace (XY ) for X,Y ∈ g(ιx) ⊂ End ιx, x ∈M, and some constants a, b > 0, (, )
is determined up to a factor by its Weinberg angle θ ∈ (0, π/2) with tan2θ = a/b.

The generic (free) particle bundle (→ 4.1) is a fixed Dirac spinor bundle σ =
σL + σR (→ 2.3), and it represents the electron generation (e, νe), i.e., the electron
and its neutrino (with their antiparticles e+, νe accounted for implicitly). The
same approach applies to either of the remaining lepton generations (µ, νµ), (τ, ντ )
(→ 1.5). For the interacting-particle bundle (→ 4.1), we choose α = ισL + (Λ2ι)σR .

i. Spontaneous symmetry breaking (→ 4.5) in the electroweak model consists
in selecting a section φ of ι with a constant length |φ| > 0, which amounts
to a structure-group reduction from U(2) to U(1). The line subbundle
λ = φ⊥ of ι, with the corresponding fibre metric, then is interpreted as
the electromagnetism bundle (→ 5.1). Thus, ι = 1 + λ with 1 =M×C =
Spanφ, while Λ2ι = λ under the isometric bundle isomorphism λx 3 ξ 7→
ξ ∧ φ/|φ| ∈ Λ2ιx. Hence α = (1 + λ)σL + λσR , i.e., the interacting-particle
bundle α = σL + λσ now stands for two particle species represented by σL

and λσ, which are obviously identified with νe and e, carrying their correct
electric charges (→ 3.2.ii, 5.1, 3.4, 3.5, 1.5).

ii. Extending connections from λ = φ⊥ to ι so as to make φ parallel, we ob-
tain an injective morphism C(λ) → C(ι) of affine bundles. Also, isometric
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embeddings of the real vector bundles λ,M×R into g(ι) with the fibre met-
ric (, ) can be defined by ξ 7→ 1

2a
−1/2|φ|−1X and (x, r) 7→ 1

2 ira
−1/2(sec θ)Y ,

where, at each x ∈ M, X,Y ∈ End ιx satisfy Xφ = |φ|2ξ, X(zξ) =
−z|ξ|2φ, z ∈ C (thus, X depends on ξ ∈ λx), and Y = Id on Spanφ,
Y = −(cos 2θ) Id on φ⊥, with a and the Weinberg angle θ selected be-
fore. Orthogonality of the images of these morphisms now establishes a
(, )-orthogonal direct-sum decomposition C(ι) = C(λ) +λT ∗+T ∗, which is
unique and natural in a suitable category. Thus, by 3.2.ii, the electroweak-
interaction carriers, living in C(ι), form the following particle species, cor-
responding to the summands C(λ), λT ∗, T ∗ :

a. The photon γ, represented by C(λ) (→ 5.1.ii).
b. The charged weak boson W−, living in λT ∗ (and hence carrying the

electron charge, → 5.1). Its antiparticle W+ (→ 3.2.i) is another
weak-interaction carrier, implicit in our discussion. Since λT ∗ =
λ⊗

R
T ∗ = λ⊗

C
(T ∗)C, the free-particle bundle of W± (cf. 5.1) is the

complexification (T ∗)C of T ∗ = T ∗M, which makes either of W± a
matter particle of spin 1 (→ 3.3).

c. The neutral weak boson Z0, living in T ∗ and hence strictly neutral,
of spin 1 (→ 3.3).

iii. The masses m of most particle species are positive. Exceptions, with
m = 0, are only possible when the field equations cannot, for formal rea-
sons, contain a nonzero mass term (as in (1), (4)), which in fact is the case
for neutrinos, satisfying (3), and interaction carriers (with unbroken sym-
metry), governed by (5). Thus, whether the given particle is massive or
massless depends only on its free-particle bundle. (Specifically, m = 0 for
affine bundles and σL , σR , while m > 0 for the remaining vector bundles in
3.3, 3.5.) Since spontaneous symmetry breaking establishes the “massive”
bundles (T ∗)C, T ∗ as models of the W and Z bosons, their masses must
be positive, in contrast with the photon living in C(λ). This is consistent
with experimental evidence such as the short range for the weak force, as
opposed to the electromagnetic and (interquark) strong interactions, which
are long-range. Without the electroweak unification, a description of the
weak interaction based on the Yang-Mills formalism (→ 4.0) would not be
possible precisely because of its short-range character, i.e., massiveness of
its carriers.

iv. Physicists usually choose the structure group of the electroweak theory to
be the (twofold) covering group U(1) × SU(2) of U(2) rather than U(2)
itself. However, taken at the face value, this would amount to impos-
ing unnecessary additional conditions on the geometry and physics of the
model.

v. A dynamical approach to the electroweak model (not presented here) also
involves a device known as the Higgs boson, which may be just a formal
mechanism, but could as well turn out to be a (still undiscovered) matter
particle with some unusual properties.
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6. Grand unifications

6.0. Grand unified theories are attempts to go beyond the standard model
by describing both strong and electroweak forces in terms of a single interaction
subject to spontaneous symmetry breaking, just as the electroweak model does for
the weak force and electromagnetism (→ 5.3). Examples: → 6.3, 6.5.

6.1. The physical status of grand unifications is unclear, since they all
use large structure groups G (→ 6.2), and hence predict the existence of additional
interaction carriers (note that dim G is, basically, the number of carrier species,
→ 4.4). The new kind of extremely weak interactions mediated by such particles
would, in particular, cause the protons to decay spontaneously (at a very slow
rate). However, a decade of intensive searches brought no evidence of proton-decay
processes in nature.

6.2. The most obvious direct-sum unification of all microworld forces,
using the interaction bundle ρ+ι with ρ, ι as in 5.2, 5.3, and with the corresponding
SU(3)×U(2)-structure, is not acceptable precisely because of its reducibility, which
violates physical and geometric simplicity requirements.

6.3. The SU(5) grand unified theory (Georgi and Glashow, 1974) uses an
interaction bundle (→ 4.0) which is a complex vector bundle β of fibre dimension
5 over the spacetime manifold M, while its geometry is an SU(5)-structure, i.e.,
consists of a Hermitian fibre metric 〈 , 〉 in β and a section Ω of Λ5β∗ compatible
with 〈 , 〉 as in 5.2.

We restrict our consideration to just one, e.g., the first, of the basic-fermion gen-
erations (e, νe,u,d), (µ, νµ, c, s), (τ, ντ , t,b), which the model describes separately.
(These generations, ordered by increasing masses, are naturally distinguished by
their common pattern (−1, 0, 2/3,−1/3) of electric charges, → 1.5, 5.2.iv.)

The generic (free) particle bundle (→ 4.1) of the whole generation is a fixed
Dirac spinor bundle σ = σL + σR (→ 2.3). As in 5.3, we let α = βσL + (Λ2β)σR

be the interacting-particle bundle. The spontaneous symmetry breaking (→ 4.5)
in the SU(5) model involves 3 steps:

a. Choosing a subbundle ι ⊂ β of complex fibre dimension 2 which, with the
Hermitian fibre metric inherited from 〈 , 〉, is interpreted as the electroweak-
interaction bundle, while the natural fibre metric (, ) in C(ι) (→ 5.3) is
induced by one in C(β). Since the latter is unique, up to a factor, in view
of simplicity of SU(5), the SU(5) theory predicts a specific value of the
Weinberg angle θ, such that tan2θ = 3/5, in some contrast with the exper-
imental bounds 0.29 ≤ tan2θ ≤ 0.32. (There are plausible explanations of
this discrepancy.)

b. Selecting a complex line bundle χ with a Hermitian fibre metric and a
fixed isometric isomorphism χ3 = Λ2ι (which amounts to a structure-group
reduction in a suitable larger bundle). As Ω provides the identification
1 = Λ5β = (Λ2ι)Λ3ι⊥ = χ3Λ3ι⊥, the complex vector bundle ρ = χι⊥ of
fibre dimension 3 over M then satisfies Λ3ρ = 1, i.e., carries a natural
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SU(3)-structure. Thus, ρ may be regarded as the strong-interaction bundle
(→ 5.2).

c. Breaking the symmetry in ι exactly as in 5.3.i, i.e., by choosing a section φ of
constant positive length and thinking of λ = φ⊥ ⊂ ι as the electromagnetism
bundle.

Since λ = Λ2ι (→ 5.3.i), we may write χ = λ1/3 and β = λ−1/3ρ + ι. This
leads to the decomposition α = σL + λσ + λ−1/3ρσ +

[
λ−2/3ρσL + λ−2/3ρσR

]
, the

four summands of which represent, as in 3.2.ii, the first-generation fermions along
with their correct electric charges and strong-interaction properties (→ 5.1, 5.2). In
fact, σL , λσ and λ−1/3ρσ clearly correspond to ν e, e and the d antiquark (→ 3.4,
3.5, 5.2), while the fourth summand only differs from the correct model λ−2/3ρσ =
λ−2/3ρσL + λ−2/3ρσR of the interacting u quark (→ 5.2.iv) by having one of its
own summands replaced by the conjugate (such complications cannot be avoided,
for dimensional reasons).

One also has (see [5], formula (7.18)) the natural orthogonal decomposition
C(β) = C(ρ)+C(λ)+λT ∗+T ∗+λ4/3ρT ∗+λ1/3ρT ∗, which leads, besides the known
interaction carriers (gluons in C(ρ), the photon in C(λ), W+, W− in λT ∗, Z0 in
T ∗, → 5.2.ii, 5.3.ii), also to new ones, represented by the last two summands. The
latter, hypothetical particles, denoted X−4/3, Y−1/3 (and called, along with their
antiparticles X4/3, Y1/3, the X and Y bosons), carry fractional electric charges
(→ 1.2, 5.1) and, if they really exist, should cause proton decay (→ 6.1).

6.4. Some spinor bundles. For each positive integer k, a Spin(4k + 2)-
structure in a complex vector bundle ζ of fibre dimension 4k over M can be de-
scribed as a Hermitian fibre metric 〈 , 〉 in ζ along with a real vector subbundle κ ⊂
End

R
ζ of fibre dimension 4k+ 2 such that, for each x ∈M, X ∈ κx and ξ, ξ′ ∈ ζx,

X : ζx → ζx is antilinear, while X2 is a multiple of Id and 〈ξ,Xξ′〉 = 〈ξ′, Xξ〉.
A natural construction of an example is based on using a complex vector bundle
β of fibre dimension 2k + 1 with an SU(2k + 1)-structure, i.e., a Hermitian fibre
metric (also denoted 〈 , 〉) and a compatible Ω ∈ Λ2k+1β∗ (→ 5.2). The induced
Hermitian fibre metric 〈 , 〉 in the exterior-algebra bundle Λβ∗ = Λevenβ∗ + Λoddβ∗

then is also sesquilinear in the bundle Λevenβ∗ + Λoddβ∗ = Λevenβ + Λoddβ, i.e.,
in Λβ∗ endowed with the new complex structure for which the multiplication by
i equals the old (−1)ji · Id on Λjβ∗. The Hodge star ∗ determined by 〈 , 〉 and
Ω, although antilinear in Λβ∗, is a linear endomorphism of Λevenβ + Λoddβ. We
now define a complex vector bundle ζ = ζ[β] with a Spin(4k + 2)-structure by
ζ[β] = Ker (∗ − Id) ⊂ Λevenβ + Λoddβ, with the Hermitian fibre metric obtained
by restricting 〈 , 〉 and with κ ⊂ End

R
(ζ[β]) given as the image of the real bun-

dle morphism β∗ → End
R
(Λβ∗) sending ψ to eψ + iψ, where eψ(ω) = ψ ∧ ω and

iψ(ψ1∧ . . .∧ψk) =
∑k
j=1(−1)j−1〈ψj , ψ〉ψ1∧ . . .∧ ψ̂j∧ . . .∧ψk. Under the projection

1
2 (∗+ Id) : Λevenβ+ Λoddβ → ζ, ζ becomes isomorphic to 1 + β+ Λ2β+ Λ3β+ . . .

(summation up to Λkβ or Λkβ). In particular, β is isometrically embedded in ζ[β].

6.5. The Spin(10) grand unification (Fritzsch and Minkowski, 1975), usually
called the SO(10) theory, uses an interaction bundle (→ 4.0) which is a complex
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vector bundle ζ of fibre dimension 16 with a Spin(10)-structure, as in 6.4 with
k = 2. The generic-particle bundle for a whole basic-fermion generation (e, νe,u,d)
(→ 6.3) is, this time, a fixed Weyl spinor bundle σL (→ 2.2), and one chooses the
interacting-particle bundle (→ 4.1) to be α = ζσL .

The first step of spontaneous symmetry breaking consists in selecting a bundle
β with an SU(5)-structure along with a structure-preserving isomorphism ζ = ζ[β]
(→ 6.4, with k = 2), so that β ⊂ ζ and ζ = 1+β+Λ2β, where 1 =M×C . Regarding
β as the interaction bundle of the SU(5) theory, one then proceeds with the further
steps of symmetry breaking (→ 6.3.a,b,c). Since now α = (1 + β + Λ2β)σL =
σL + βσL + (Λ2β)σR , with the last two summands resembling the choice of α in
the SU(5) model (→ 6.3), we obtain, after 6.3.a,b,c, α = (σL + σL) + λσL + λσL +
λ−1/3ρσL + λ1/3ρσL + λ−2/3ρσL + λ2/3ρσL . Because σ = σL + σR with σR = σL , this
decomposition differs from the expression σ+λσ+λ1/3ρσ+λ−2/3ρσ by containing,
instead of some summands, their conjugates. Ignoring such discrepancies (as in
6.3), we interpret the latter four summands (→ 3.2.ii) as models of a “modified”
neutrino νe (→ 6.6), the electron e, and the u, d quarks, along with their correct
electromagnetic and strong-interaction properties (→ 3.5, 5.1, 5.2).

As dim Spin(10) = 45, the Spin(10) theory predicts even more interaction-
carrier species than the SU(5) model (cf. 6.1). See [11] for details.

6.6. Massive neutrinos. Neutrinos might conceivably have very small, pos-
itive masses (the experimental evidence makes this appear rather unlikely, but is
still inconclusive). Then they would be described by Dirac’s equation (4) in the
“chiral” Dirac spinor bundle σ = σL + σR the summands of which are ordered, in
contrast with 2.3, to account for parity violation (→ 3.4).
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