Curvature spectra of simple Lie groups

Andrzej Derdzinski · Światosław R. Gal

Abstract The Killing form β of a real (or complex) semisimple Lie group G is a left-invariant pseudo-Riemannian (or, respectively, holomorphic) Einstein metric. Let Ω denote the multiple of its curvature operator, acting on symmetric 2-tensors, with the factor chosen so that $\Omega\beta=2\beta$. We observe that the result of Meyberg [8], describing the spectrum of Ω in complex simple Lie groups, easily leads to an analogous description for real simple Lie groups. In particular, 1 is not an eigenvalue of Ω in any real or complex simple Lie group G except those locally isomorphic to $SL(n,\mathbb{C})$ or one of its real forms. As shown in our recent paper [6], the last conclusion implies that, on such simple Lie groups G, nonzero multiples of the Killing form β are isolated among left-invariant Einstein metrics. Meyberg's theorem also allows us to understand the kernel of Λ , which is another natural operator. This in turn leads to a proof of a known, yet unpublished, fact: namely, that a semisimple real or complex Lie algebra with no simple ideals of dimension 3 is essentially determined by its Cartan three-form.

Keywords Simple Lie group \cdot indefinite Einstein metric \cdot left-invariant Einstein metric \cdot Cartan three-form

Mathematics Subject Classification 17B20 · 22E46 · 53C30

1 Introduction

Every real Lie group G carries a distinguished left-invariant torsionfree connection D, defined by $D_x y = [x, y]/2$ for all left-invariant vector fields x and y. In view of the Jacobi

A. Derdzinski

Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

Tel.: +1-614-292-4012 Fax: +1-614-292-1479

E-mail: and rzej@math.ohio-state.edu

Ś. R. Gal

Mathematical Institute, Wrocław University, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

E-mail: Swiatoslaw.Gal@math.uni.wroc.pl

identity, the curvature tensor of D is D-parallel, and hence so is the Ricci tensor of D, equal to a nonzero multiple of the Killing form β . Our convention about β reads

$$\beta(x,x) = \text{tr} [Adx]^2$$
 for any x in the Lie algebra \mathfrak{g} of G . (1.1)

Thus, if G is semisimple, β constitutes a bi-invariant, locally symmetric, non-Ricci-flat pseudo-Riemannian Einstein metric on G, with the Levi-Civita connection D. We denote by $\Omega: [\mathfrak{g}^*]^{\odot 2} \to [\mathfrak{g}^*]^{\odot 2}$ a specific multiple of the curvature operator of the metric β , acting on symmetric bilinear forms $\sigma: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$, so that, whenever $x, y \in \mathfrak{g}$,

a)
$$[\Omega \sigma](x,y) = 2 \operatorname{tr} [(\operatorname{Ad} x)(\operatorname{Ad} y)\Sigma],$$
 for $\Sigma : \mathfrak{g} \to \mathfrak{g}$ with b) $\sigma(x,y) = \beta(\Sigma x,y).$ (1.2)

See Remark 2.5. The same formula (1.2) defines the operator Ω in a *complex* semisimple Lie group G, acting on symmetric complex-bilinear forms σ . We then identify Ω with the analogous curvature operator for the (\mathbb{C} -bilinear) Killing form β , treating the latter as a holomorphic Einstein metric on the underlying complex manifold of G.

The structure of Ω in complex simple Lie groups is known from the work of Meyberg [8], who showed that Ω is diagonalizable and described its spectrum. For the reader's convenience, we reproduce Meyberg's theorem in an appendix. His result easily leads to a similar description of the spectrum of Ω in real simple Lie algebras \mathfrak{g} , which we state as Theorem 4.1 and derive in Section 4 from the fact that, given any such \mathfrak{g} ,

See [7, Lemma 4 on p. 173]. The Lie-algebra isomorphism types of real simple Lie algebras g thus form two disjoint classes, characterized by (1.3.a) and (1.3.b).

For both real and complex semisimple Lie groups G, studying Ω can be further motivated as follows. Let 'metrics' on G be, by definition, pseudo-Riemannian or, respectively, holomorphic, and $\mathscr E$ denote the set of Levi-Civita connections of left-invariant Einstein metrics on G. Then, as shown in [6, Theorem 12.3], whenever a semisimple Lie group G has the property that 1 is *not* an eigenvalue of Ω , the Levi-Civita connection D of its Killing form G is an isolated point of G. The converse implication holds except when G is locally isomorphic to G0, with G1 is G2. See [6, Theorems 22.2 and 22.3].

In a real/complex Lie algebra \mathfrak{g} , we define $\Lambda: [\mathfrak{g}^*]^{\odot 2} \to [\mathfrak{g}^*]^{\wedge 4}$ by

$$(\Lambda \sigma)(x, y, z, z') = \sigma([x, y], [z, z']) + \sigma([y, z], [x, z']) + \sigma([z, x], [y, z']). \tag{1.4}$$

Thus, Λ is a real/complex-linear operator, sending symmetric bilinear forms σ on $\mathfrak g$ to exterior 4-forms on $\mathfrak g$. The Killing form β has $\beta([x,y],[z,z']) = \beta([[x,y],z],z')$, as Ad z is β -skew-adjoint, and so, by the Jacobi identity and (1.1) - (1.2.a),

i)
$$\Lambda \beta = 0$$
, ii) if g is semisimple, $\Omega \beta = 2\beta$. (1.5)

For semisimple Lie algebras \mathfrak{g} there is also the operator $\Pi: [\mathfrak{g}^*]^{\otimes 4} \to [\mathfrak{g}^*]^{\otimes 2}$ such that

$$\Pi(\xi \otimes \xi' \otimes \eta \otimes \eta') = \beta([x, x'], \cdot) \otimes \beta([y, y'], \cdot), \tag{1.6}$$

whenever $\xi, \xi', \eta, \eta' \in \mathfrak{g}^*$, with $x, x', y, y' \in \mathfrak{g}$ characterized by $\xi = \beta(x, \cdot), \xi' = \beta(x', \cdot), \eta = \beta(y, \cdot), \eta' = \beta(y', \cdot)$. According to formula (3.1) below, $\Pi([\mathfrak{g}^*]^{\wedge 4}) \subset [\mathfrak{g}^*]^{\odot 2}$.

Our first main result, established in Section 3, relates Ω to $\Pi\Lambda: [\mathfrak{g}^*]^{\odot 2} \to [\mathfrak{g}^*]^{\odot 2}$, the composite of Λ and the restriction of Π to the subspace $[\mathfrak{g}^*]^{\wedge 4} \subset [\mathfrak{g}^*]^{\otimes 4}$.

Theorem A Let Ω , Λ and Π be the operators defined by (1.2), (1.4) and (1.6) for a given real/complex semisimple Lie algebra \mathfrak{g} . Then $2\Pi\Lambda = -(\Omega + \mathrm{Id})(\Omega - 2\mathrm{Id})$.

Next, in Section 5, we use Meyberg's result and Theorem A, both to show that

$$\operatorname{Ker} \Lambda = \operatorname{Ker} (\Omega - 2\operatorname{Id}) \oplus \operatorname{Ker} (\Omega + \operatorname{Id})$$
 in any real/complex simple Lie algebra, (1.7)

and to obtain the following explicit description of Ker Λ for semisimple Lie algebras, which also provides a crucial step in our proof of Theorem \mathbb{C} (see below).

Theorem B Given a real/complex semisimple Lie algebra \mathfrak{g} with a direct-sum decomposition $\mathfrak{g} = \mathfrak{g}_1 \oplus \ldots \oplus \mathfrak{g}_s$ into simple ideals, $s \geq 1$, let Λ and Λ_i denote the operator defined by (1.4) for \mathfrak{g} and, respectively, its analog for the ith summand \mathfrak{g}_i .

- (i) Ker $\Lambda = \text{Ker } \Lambda_1 \oplus ... \oplus \text{Ker } \Lambda_s$, where $[\mathfrak{g}_i^*]^{\odot 2} \subset [\mathfrak{g}^*]^{\odot 2}$ via trivial extensions.
- (ii) $\Lambda = 0$ if $\dim \mathfrak{g} = 3$.
- (iii) dim Ker $\Lambda=12$ if $\mathfrak g$ is simple and dim $\mathfrak g=6$, which happens only when $\mathfrak g$ is real and isomorphic to the underlying real Lie algebra of $\mathfrak h=\mathfrak{sl}(2,\mathbb C)$, while Ker Λ then consists of the real parts of all symmetric $\mathbb C$ -bilinear functions $\mathfrak h \times \mathfrak h \to \mathbb C$.
- (iv) dim Ker $\Lambda \in \{1,2\}$ whenever \mathfrak{g} is simple and dim $\mathfrak{g} \notin \{3,6\}$, while Ker Λ is then spanned either by the Killing form β , or by Re $\beta^{\mathfrak{h}}$ and Im $\beta^{\mathfrak{h}}$, with $\beta^{\mathfrak{h}}$ denoting the Killing form of the complex simple Lie algebra \mathfrak{h} in (1.3). The former case occurs if \mathfrak{g} is complex, or real of type (1.3.a), the latter if \mathfrak{g} is real of type (1.3.b).

Finally, one defines the *Cartan three-form* $C \in [\mathfrak{g}^*]^{\wedge 3}$ of a Lie algebra \mathfrak{g} by

$$C = \beta([\cdot, \cdot], \cdot),$$
 where β denotes the Killing form. (1.8)

The following result has been known for decades, although no published proof of it seems to exist [4]. By an *isomorphism of the Cartan three-forms* we mean here a vector-space isomorphism of the Lie algebras in question, sending one three-form onto the other.

Theorem C Let g be a real/complex semisimple Lie algebra with a fixed direct-sum decomposition into simple ideals, which we briefly refer to as the "summands" of g.

- (i) If \mathfrak{h} is a real/complex Lie algebra, the Cartan three-forms of \mathfrak{g} and \mathfrak{h} are isomorphic and, in the real case, \mathfrak{g} has no summands of dimension 3, then \mathfrak{h} is isomorphic to \mathfrak{g} .
- (ii) If g contains no summands of dimension 3 or 6, then every automorphism of the Cartan three-form of g is a Lie-algebra automorphism of g followed by an operator that acts on each summand as the multiplication by a cubic root of 1.
- (iii) If $\mathfrak g$ is the underlying real Lie algebra of a complex simple Lie algebra and $\dim \mathfrak g \neq 6$, then every automorphism of the Cartan three-form of $\mathfrak g$ is complex-linear or antilinear.

Conversely, if \mathfrak{g} has k summands of dimension 3 and l summands of dimension 6, then the Lie-algebra automorphisms of \mathfrak{g} form a subgroup of codimension 5k+10l in the automorphism group of the Cartan three-form.

We derive Theorem C from Theorem B, in Section 7.

2 Preliminaries

Suppose that $\mathfrak g$ is the underlying real Lie algebra of a complex Lie algebra $\mathfrak h$. We denote by β and C the Killing form and Cartan three-form of $\mathfrak g$, cf. (1.1) and (1.8), by Λ the operator in (1.4) associated with $\mathfrak g$, and use the symbols $\beta^{\mathfrak h}, C^{\mathfrak h}, \Lambda^{\mathfrak h}$ for their counterparts corresponding to $\mathfrak h$. Obviously, whenever $\sigma: \mathfrak g \times \mathfrak g \to \mathbb C$ is a symmetric $\mathbb C$ -bilinear form,

i)
$$\beta = 2\operatorname{Re}\beta^{\mathfrak{h}}$$
, ii) $C = 2\operatorname{Re}C^{\mathfrak{h}}$, iii) $\Lambda(\operatorname{Re}\sigma) = \operatorname{Re}(\Lambda^{\mathfrak{h}}\sigma)$. (2.1)

For (2.1.i), see also [6, formula (13.1)]. With $\mathfrak g$ and $\mathfrak h$ as above, it is clear from (2.1.i) that

Re $\beta^{\mathfrak{h}}$ and Im $\beta^{\mathfrak{h}}$ span the real space of symmetric bilinear forms σ on \mathfrak{g} arising via (1.2.b) from linear endomorphisms Σ which are complex multiples of Id. (2.2)

Furthermore, (2.1.i) also implies, for dimensional reasons, that

the real parts of symmetric
$$\mathbb{C}$$
-bilinear functions $\mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ form the image under (1.2.b) of the space of \mathbb{C} -linear $\beta^{\mathfrak{h}}$ -self-adjoint endomorphisms of \mathfrak{h} , (2.3)

as the former space obviously contains the latter.

i)
$$\beta_{ij} = C_{ip}{}^q C_{jq}{}^p$$
, ii) C_{ijk} is skew-symmetric in i, j, k , iii) $C_{ij}{}^q C_{qk}{}^l + C_{jk}{}^q C_{qi}{}^l + C_{ki}{}^q C_{qj}{}^l = 0$. (2.4)

In the remainder of this section $\mathfrak g$ is also assumed to be semisimple. We can thus lower and raise indices using the components β_{ij} of the Killing form β and β^{ij} of its reciprocal: $C^k_{\ p}{}^q = \beta^{kr}C_{rp}{}^q$, and $C_j^{\ sp} = \beta^{sk}C_{jk}{}^p$. For any $x,y,z \in \mathfrak g$ and the Cartan three-form C given by (1.8), one has $2\operatorname{tr}\left[(\operatorname{Ad} x)(\operatorname{Ad} y)(\operatorname{Ad} z)\right] = C(x,y,z)$, which in component notation reads

$$2C_{ir}{}^{p}C_{ia}{}^{r}C_{kp}{}^{q} = C_{iik}. (2.5)$$

To prove (2.5), we note that the equalities $C_p^k{}^q = C_p{}^{qk}$ and $C_i{}^{rp} = -C_i{}^{pr}$ (obvious from (2.4.ii)) along with (2.4.ii), (2.4.iii) and (2.4.i–ii) give $2C_{ir}{}^pC_{jq}{}^rC_p^k{}^q = 2C_i{}^{rp}C_{jqr}C_p{}^{qk} = C_i{}^{rp}(C_{jqr}C_p{}^{qk} - C_{jqp}C_r{}^{qk}) = C_i{}^{rp}(C_{jr}{}^qC_{qp}{}^k + C_{pj}{}^qC_{qr}{}^k) = -C_i{}^{rp}C_{rp}{}^qC_q{}^k = \delta_i{}^qC_{qj}{}^k = \delta_i{}^qC_{qj}{}^k = C_{ij}{}^k$. Now (2.5) follows if one lowers the index k. Next, we introduce the linear operator

$$T: [\mathfrak{g}^*]^{\otimes 2} \to [\mathfrak{g}^*]^{\otimes 2} \quad \text{with} \quad (T\sigma)_{ij} = T^{kl}_{ij} \sigma_{kl}, \text{ where } T^{kl}_{ij} = 2C_{ip}^{k} C^{lp}_{j}. \tag{2.6}$$

Lemma 2.1 For T and the operator $\Omega : [\mathfrak{g}^*]^{\odot 2} \to [\mathfrak{g}^*]^{\odot 2}$ given by (1.2),

- (a) T leaves the subspaces $[\mathfrak{g}^*]^{\odot 2}$ and $[\mathfrak{g}^*]^{\wedge 2}$ invariant,
- (b) Ω coincides with the restriction of T to $[\mathfrak{g}^*]^{\odot 2}$,
- (c) the restriction of T to $[\mathfrak{g}^*]^{\wedge 2}$ is diagonalizable, with the eigenvalues 0 and 1,
- (d) the eigenspace $[\mathfrak{g}^*]^{\wedge 2} \cap \operatorname{Ker}(\Omega \operatorname{Id})$ equals $\{C(x,\cdot,\cdot) : x \in \mathfrak{g}\}$, for C given by (1.8).

Proof Assertions (a) – (b) are obvious from (2.6) and the fact that, by (2.6), $T\sigma$ is the same as $\Omega\sigma$ in (1.2), except that now $\sigma: \mathfrak{g} \times \mathfrak{g} \to \mathbb{I} F$ need not be symmetric. Next, $(T\sigma)_{ij} = -C_{ij}{}^q C_q{}^{kl} \sigma_{kl}$ for $\sigma \in [\mathfrak{g}^*]^{\wedge 2}$, as one sees raising the index k in (2.4.iii), then transvecting with σ_{kl} , and using (2.4.ii). Hence, if $\sigma = C(x, \cdot, \cdot)$ lies in $C(\mathfrak{g}) = \{C(x, \cdot, \cdot) : x \in \mathfrak{g}\}$ (or, $\sigma \in [\mathfrak{g}^*]^{\wedge 2}$ is β-orthogonal to $C(\mathfrak{g})$), so that $\sigma_{kl} = x^p C_{pkl}$ (or, respectively, $C_p{}^{kl} \sigma_{kl} = 0$), then, by (2.4.i–ii), $T\sigma = \sigma$ (or, respectively, $T\sigma = 0$). As $C(\mathfrak{g})$ and its β-orthogonal complement must now span $[\mathfrak{g}^*]^{\wedge 2}$ for dimensional reasons, (c) and (d) follow. □

The next result is a direct consequence of Meyberg's theorem. See the Appendix, the last three lines of which justify assertions (c), (d) and (e).

Theorem 2.2 For any complex simple Lie algebra \mathfrak{g} and $\Omega: [\mathfrak{g}^*]^{\odot 2} \to [\mathfrak{g}^*]^{\odot 2}$ with (1.2),

- (a) Ω is diagonalizable,
- (b) 2 is an eigenvalue of Ω with multiplicity 1,
- (c) 0 is not an eigenvalue of Ω ,
- (d) Ω has the eigenvalue 1 if and only if \mathfrak{g} is isomorphic to $\mathfrak{sl}(n,\mathbb{C})$ for some $n \geq 3$,
- (e) dim Ker $(\Omega + Id)$ equals 5 when \mathfrak{g} is isomorphic to $\mathfrak{sl}(2,\mathbb{C})$, and 0 otherwise.

Remark 2.3 The isomorphism types of all complex simple Lie algebras are: \mathfrak{sl}_n , for $n \ge 2$, \mathfrak{sp}_n (even $n \ge 4$), \mathfrak{so}_n with $n \ge 7$, as well as \mathfrak{g}_2 , \mathfrak{f}_4 , \mathfrak{e}_6 , \mathfrak{e}_7 and \mathfrak{e}_8 . See [9, pp. 8 and 77].

Remark 2.4 One has $\operatorname{Ker} [\Theta(\Theta + a\operatorname{Id})] \subset \operatorname{Ker} \Theta \oplus \operatorname{Ker} (\Theta + a\operatorname{Id})$ for any scalar $a \neq 0$ and linear endomorphism Θ of a vector space. In fact, the required decomposition of any $\sigma \in \operatorname{Ker} [\Theta(\Theta + a\operatorname{Id})]$ is given by $a\sigma = (\Theta + a\operatorname{Id})\sigma - \Theta\sigma$.

Remark 2.5 The curvature operator of a (pseudo)Riemannian metric γ on a manifold, acting on symmetric 2-tensors, has been studied by various authors [5], [3], [2, pp. 51–52]. It is given by $\sigma \mapsto \tau$, where $2\tau_{ij} = \gamma^{pq}R_{ipj}{}^k\sigma_{qk}$ in terms of components relative to a basis of the tangent space at any point, the sign convention about the curvature tensor R being that a Euclidean tangent plane with an orthonormal basis x,y has the sectional curvature $\gamma_{pq}R_{ijk}{}^px^iy^jx^ky^q$. When γ is the Killing form β of a semisimple Lie group G, treated as a left-invariant metric (see the lines following (1.1)), this operator equals $-\Omega/16$, for Ω with (1.2). In fact, the description of the Levi-Civita connection D of β in the Introduction gives 4R(x,y)z = [[x,y],z] for left-invariant vector fields x,y,z, that is, $4R_{ijk}{}^l = C_{ij}{}^pC_{pk}{}^l$. Lemma 2.1(b) now implies our claim, as $T_{ij}^{kl} = -8\beta^{kp}R_{jpi}{}^l$ due to (2.4.ii) and (2.6).

3 Proof of Theorem A

We use the notation of Section 2. For $C_{ij}^{\ k}$ as in (2.4), relations (1.4) and (1.6) give

$$\begin{split} &(\Lambda\sigma)_{ijkl} = \Lambda_{ijkl}{}^{rs}\sigma_{rs} \quad \text{where} \quad \Lambda_{ijkl}{}^{rs} = C_{ij}{}^{r}C_{kl}{}^{s} + C_{jk}{}^{r}C_{il}{}^{s} + C_{ki}{}^{r}C_{jl}{}^{s}, \\ &(\Pi\zeta)_{pq} = C^{ij}{}_{p}C^{kl}{}_{q}\zeta_{ijkl}, \quad \text{whenever} \quad \sigma \in [\mathfrak{g}^{*}]^{\odot 2} \quad \text{and} \quad \zeta \in [\mathfrak{g}^{*}]^{\wedge 4}, \end{split}$$

in any real/complex semisimple Lie algebra \mathfrak{g} . Next, with T_{ij}^{kl} defined by (2.6),

$$2C_{p}^{ij}C_{q}^{kl}(C_{ij}{}^{r}C_{kl}{}^{s} + C_{jk}{}^{r}C_{il}{}^{s} + C_{ki}{}^{r}C_{jl}{}^{s}) = 2\delta_{p}^{r}\delta_{q}^{s} + T_{pq}^{rs} - T_{pq}^{ik}T_{ik}^{rs}.$$
(3.2)

In fact, the first of the three terms naturally arising on the left-hand side of (3.2) equals $2\delta_p^r\delta_q^s$ since, by (2.4.i–ii), $C_p^{ij}C_{ij}^{\ r}=-\delta_p^r$ and $C_q^{kl}C_{kl}^{\ s}=-\delta_q^s$. The other two terms coincide (as skew-symmetry of C_p^{ij} in i,j gives $C_p^{ij}C_p^{\ r}C_{il}^{\ s}=-C_p^{ij}C_p^{\ r}C_{jl}^{\ s}=C_p^{ij}C_{kl}^{\ r}C_{jl}^{\ s}$), and so they add up to $4C_p^{ij}C_p^{kl}C_p^{\ r}C_{jl}^{\ s}$, that is, $4C_q^{kl}C_p^{\ j}C_p^{\ j}C_{ik}^{\ r}=4C_q^{kl}C_p^{\ j}C_p^{\ j}C_{ik}^{\ r}=-4C_p^{kl}C_p^{\ j}C_p^{\ j}C_{ik}^{\ r}$; the rightmost equality is due to the Jacobi identity (2.4.iii). The last expression consists of the first term, $-4C_q^{kl}C_p^{\ j}C_{ip}^{\ j}C_{ip}^{\ r}=-4C_{ip}^{\ r}(C_p^{\ i}C_{ql}^{\ k}C_p^{\ j})=-2C_{ip}^{\ r}C_q^{\ q}$, cf. (2.5), equal, by (2.4.ii) and (2.6), to $2C_{pi}^{\ r}C_q^{\ si}=T_{pq}^{\ rs}$, and the second term, $-(2C_{kp}^{\ i}C_q^{kl})(2C_{ij}^{\ r}C_l^{\ j})$, the two parenthesized factors of which are, for the same reasons, nothing else than $T_{pq}^{\ il}$ and $T_{il}^{\ rs}$. This proves (3.2).

Theorem A is now an obvious consequence of (3.1) - (3.2) and Lemma 2.1(b).

4 The spectrum of Ω in real simple Lie algebras

Theorem 4.1 Let Ω denote the operator with (1.2) corresponding to a fixed real simple Lie algebra \mathfrak{g} , and $\Omega^{\mathfrak{h}}$ its analog for \mathfrak{h} , chosen so that \mathfrak{g} and \mathfrak{h} satisfy (1.3).

- (i) Ω is always diagonalizable.
- (ii) In case (1.3.a), Ω has the same spectrum as $\Omega^{\mathfrak{h}}$, including the multiplicities.
- (iii) In case (1.3.b), the spectrum of Ω arises from that of $\Omega^{\mathfrak{h}}$ by doubling the original multiplicities and then including 0 as an additional eigenvalue with the required complementary multiplicity. Note that, by Theorem 2.2(c), 0 is not an eigenvalue of $\Omega^{\mathfrak{h}}$.
- (iv) The eigenspace $\text{Ker}(\Omega 2\text{Id})$ is spanned in case (1.3.a) by β , and in case (1.3.b) by $\text{Re }\beta^{\mathfrak{h}}$ and $\text{Im }\beta^{\mathfrak{h}}$, for the Killing forms β of \mathfrak{g} and $\beta^{\mathfrak{h}}$ of \mathfrak{h} .

Proof By [6, Lemma 14.3(ii) and formulae (14.5) – (14.7)], if \mathfrak{g} is of type (1.3.a), the complexification of $[\mathfrak{g}^*]^{\odot 2}$ may be naturally identified with its (complex) counterpart $[\mathfrak{h}^*]^{\odot 2}$ for \mathfrak{h} , in such a way that $\Omega^{\mathfrak{h}}$ and the Killing form $\beta^{\mathfrak{h}}$ become the unique \mathbb{C} -linear extensions of Ω and β . Now Theorem 2.2(a)–(b) and (1.5.ii) yield (i), (ii) and (iv) in case (1.3.a).

For g of type (1.3.b), Lemma 13.1 of [6] states the following. First, $[\mathfrak{g}^*]^{\odot 2}$ is the direct sum of two Ω -invariant subspaces: one formed by the real parts of \mathbb{C} -bilinear symmetric functions $\sigma:\mathfrak{h}\times\mathfrak{h}\to\mathbb{C}$, the other by the real parts of functions $\sigma:\mathfrak{h}\times\mathfrak{h}\to\mathbb{C}$ which are antilinear and Hermitian. Secondly, Ω vanishes on the "Hermitian" summand, and its action on the "symmetric" summand is equivalent, via the isomorphism $\sigma\mapsto\mathrm{Re}\,\sigma$, to the action of $\Omega^{\mathfrak{h}}$ on \mathbb{C} -bilinear symmetric functions σ . With diagonalizability of $\Omega^{\mathfrak{h}}$ again provided by Theorem 2.2(a), this proves our remaining claims. (The multiplicities are doubled since the original complex eigenspaces are viewed as real, while the eigenspace $\Omega^{\mathfrak{h}}$ for the eigenvalue 2 consists, by Theorem 2.2(b) and (1.5.ii), of complex multiples of $\beta^{\mathfrak{h}}$, the real parts of which are precisely the real linear combinations of $\mathrm{Re}\,\beta^{\mathfrak{h}}$ and $\mathrm{Im}\,\beta^{\mathfrak{h}}$.)

Remark 4.2 It is well known [9, p. 30] that, up to isomorphisms, $\mathfrak{sl}(n,\mathbb{R})$ as well as $\mathfrak{su}(p,q)$ with p+q=n and, if n is even, $\mathfrak{sl}(n/2,\mathbb{H})$, are the only real forms of $\mathfrak{sl}(n,\mathbb{C})$.

Lemma 4.3 The only complex, or real, simple Lie algebras of dimensions less than 7 are, up to isomorphisms, $\mathfrak{sl}(2,\mathbb{C})$ or, respectively, $\mathfrak{sl}(2,\mathbb{R})$, $\mathfrak{su}(2)$, $\mathfrak{su}(1,1)$ and $\mathfrak{sl}(2,\mathbb{C})$, the last one being both complex three-dimensional and real six-dimensional. Consequently,

(i) a complex simple Lie algebra cannot be six-dimensional,

- (ii) there is just one isomorphism type of a complex or, respectively, real simple Lie algebra of dimension 3 or, respectively, 6, both represented by $\mathfrak{sl}(2,\mathbb{C})$,
- (iii) $\dim \mathfrak{g} \notin \{1,2,4,5\}$ for every real or complex simple Lie algebra \mathfrak{g} .

Proof According to Remark 2.3, in the complex case, only $\mathfrak{sl}(2,\mathbb{C})$ is possible. For real Lie algebras, one can use Remark 4.2 and (1.3).

Remark 4.4 We can now justify the claim, made in [6, Theorem 12.3], that 1 is not an eigenvalue of Ω in any real or complex simple Lie algebra except the ones isomorphic to $\mathfrak{sl}(n,\mathbb{R}),\mathfrak{sl}(n,\mathbb{C}),\mathfrak{su}(p,q)$ or, for even n only, $\mathfrak{sl}(n/2,\mathbb{H})$, where $n=p+q\geq 3$.

In fact, by Theorem 2.2 and parts (ii) – (iii) of Theorem 4.1, the only real or complex simple Lie algebras in which Ω has the eigenvalue 1 are, up to isomorphisms, $\mathfrak{sl}(n,\mathbb{C})$ for $n \geq 3$ and their real forms. According to Remark 4.2, these are all listed in the last paragraph.

Remark 4.5 For any real/complex simple Lie algebra \mathfrak{g} , Theorems 2.2 and 4.1(ii)-(iii) give $3 \dim \operatorname{Ker}(\Omega + \operatorname{Id}) = 5 \dim \mathfrak{g}$ if $\dim \mathfrak{g} \in \{3, 6\}$, and $\operatorname{Ker}(\Omega + \operatorname{Id}) = \{0\}$ otherwise.

5 Proofs of (1.7) and Theorem B

Let $\sigma \in [\mathfrak{g}^*]^{\odot 2}$ and $\Lambda \sigma = 0$. Consequently, by (1.4), $\sigma([x,y],[z,z']) + \sigma([y,z],[x,z']) + \sigma([z,x],[y,z']) = 0$ for all x,y,z,z' in \mathfrak{g} . Thus, $\sigma([x,y],[z,z']) = 0$ whenever $x,y \in \mathfrak{h}_i$ and $z,z' \in \mathfrak{h}_j$ with $j \neq i$. The summands \mathfrak{h}_i and \mathfrak{h}_j , being simple, are spanned by such brackets [x,y] and [z,z'], and so \mathfrak{h}_i is σ -orthogonal to \mathfrak{h}_j . As this is the case for any two summands, we obtain Theorem $\mathbf{B}(\mathbf{i})$, the right-to-left inclusion being obvious. Theorem $\mathbf{B}(\mathbf{i})$ is also immediate, since $[\mathfrak{g}^*]^{\wedge 4} = \{0\}$ when $\dim \mathfrak{g} = 3$.

From now on, \mathfrak{g} is assumed to be simple. The first of the following two inclusions is then clear from Theorem 4.1(iv), (1.5.i) and (2.1.iii) (applied to $\sigma = a\beta^{\mathfrak{h}}$, with $a \in \mathbb{C}$), the second one – from Theorem A and Remark 2.4 (for $\Theta = \Omega - 2$ Id and a = 3):

$$\operatorname{Ker}(\Omega - 2\operatorname{Id}) \subset \operatorname{Ker}\Lambda \subset \operatorname{Ker}(\Omega - 2\operatorname{Id}) \oplus \operatorname{Ker}(\Omega + \operatorname{Id}).$$
 (5.1)

If dim $\mathfrak{g} \notin \{3,6\}$, Remark 4.5 gives $\operatorname{Ker}(\Omega + \operatorname{Id}) = \{0\}$. The inclusions in (5.1) thus are equalities, which both proves (1.7) in this case and, combined with Theorem 4.1(iv), implies Theorem B(iv). When dim $\mathfrak{g} = 3$, (1.7) follows as the second inclusion in (5.1) is an equality: both spaces are 6-dimensional by Theorems B(ii), 4.1(iv) and Remark 4.5.

Finally, suppose that $\dim \mathfrak{g}=6$. According to Lemma 4.3(i)-(ii), \mathfrak{g} is then real and isomorphic to the underlying real algebra of $\mathfrak{h}=\mathfrak{sl}(2,\mathbb{C})$. From (2.1.iii), with $\Lambda^{\mathfrak{h}}\sigma=0$ by Theorem B(ii), we thus get $\mathscr{F}\subset \operatorname{Ker}\Lambda$ for $\mathscr{F}=\{\operatorname{Re}\sigma:\sigma\in [\mathfrak{h}^*]^{\odot 2}\}$, where $[\mathfrak{h}^*]^{\odot 2}$ denotes the space of all symmetric \mathbb{C} -bilinear forms $\sigma:\mathfrak{h}\times\mathfrak{h}\to\mathbb{C}$. As the operator $\sigma\mapsto\operatorname{Re}\sigma$ is injective, that is, any such σ is uniquely determined by $\operatorname{Re}\sigma$, one must have $\dim_{\mathbb{R}}\mathscr{F}=12$. The second inclusion in (5.1) is therefore an equality, and $\mathscr{F}=\operatorname{Ker}\Lambda$, for dimensional reasons: $\operatorname{Ker}\Lambda$ contains the subspace \mathscr{F} of real dimension 12, equal, in view of Theorem 4.1(iv) and Remark 4.5, to the real dimension of $\operatorname{Ker}(\Omega-2\operatorname{Id})\oplus\operatorname{Ker}(\Omega+\operatorname{Id})$. This yields (1.7) in the remaining case $\dim\mathfrak{g}=6$ while, due to the definition of \mathscr{F} , the relations $\dim_{\mathbb{R}}\mathscr{F}=12$ and $\mathscr{F}=\operatorname{Ker}\Lambda$ prove assertion (iii) of Theorem B.

6 Some facts needed from linear algebra

8

In this section $\mathfrak g$ is the underlying real space of a finite-dimensional complex vector space $\mathfrak h$ and $J:\mathfrak g\to\mathfrak g$ is the operator of multiplication by i, also referred to as the *complex structure*. We denote by $\beta^{\mathfrak h}$ a fixed nondegenerate $\mathbb C$ -bilinear symmetric form on $\mathfrak h$, so that the IR-bilinear symmetric form $\beta=2\operatorname{Re}\beta^{\mathfrak h}$ on $\mathfrak g$ is nondegenerate as well. The same applies to any nonzero complex multiple of $\beta^{\mathfrak h}$. Thus, β and $\gamma=2\operatorname{Im}\beta^{\mathfrak h}$ constitute a basis of a real vector space $\mathscr P$ of IR-bilinear symmetric forms on $\mathfrak g$. All nonzero elements of $\mathscr P$ are nondegenerate. As $\beta^{\mathfrak h}$ is $\mathbb C$ -bilinear, $\gamma(x,y)=-\beta(x,Jy)$ for all $x,y\in\mathfrak g$. We use components relative to a basis of $\mathfrak g$, as in Section 2.

Lemma 6.1 The real spaces \mathfrak{g} and \mathscr{P} uniquely determine the pair $(J, \beta^{\mathfrak{h}})$ up to its replacement by $(J, a\beta^{\mathfrak{h}})$ or $(-J, a\overline{\beta^{\mathfrak{h}}})$, with any $a \in \mathbb{C} \setminus \{0\}$.

Proof For any basis κ, λ of \mathscr{P} , replacing $\beta^{\mathfrak{h}}$ by a complex multiple, which leaves \mathscr{P} unchanged, we assume that $\kappa = \beta$. Thus, $\lambda = u\beta + v\gamma$, where $u, v \in \mathbb{R}$ and $v \neq 0$. Writing the equality $\gamma = -\beta(\cdot, J\cdot)$ as $\gamma_{rq} = -\beta_{rs}J_q^s$, and then using the reciprocal components $\kappa^{pr} = \beta^{pr}$, we obtain $\kappa^{pr}\lambda_{rq} = \beta^{pr}(u\beta_{rq} - v\beta_{rs}J_q^s) = u\delta_q^p - vJ_q^p$. Now $\pm J$ may be defined by declaring the matrix J_q^p to be the traceless part of $\kappa^{pr}\lambda_{rq}$, normalized so that $J^2 = -\mathrm{Id}$.

At the same time, fixing any $\kappa \in \mathscr{P} \setminus \{0\}$ we may assume, as before, that $\kappa = \beta$. Then κ and $\gamma = -\kappa(\cdot, J \cdot)$, determine $2\beta^{\mathfrak{h}}$, being its real and imaginary parts. Combined with the last sentence of the preceding paragraph, this completes the proof.

The next fact concerns two mappings, rec : $\mathscr{P} \setminus \{0\} \to \mathfrak{g}^{\odot 2}$ and $\mathfrak{g}^{\odot 2} \ni \mu \mapsto \mu_{\flat} \in \operatorname{End}\mathfrak{g}$. The former sends every nonzero element of \mathscr{P} (which, as we know, is nondegenerate) to its reciprocal. The latter is the operator of index-lowering via β , and takes values in the space of IR-linear endomorphisms of \mathfrak{g} , which include complex multiples of Id. We then have

$$\{[\operatorname{rec}(\sigma)]_b : \sigma \in \mathscr{P} \setminus \{0\}\} = \{a\operatorname{Id} : a \in \mathbb{C} \setminus \{0\}\}. \tag{6.1}$$

Namely, under index raising with the aid of β , the operators $A=a\mathrm{Id}$, for $a\in\mathbb{C}\setminus\{0\}$, correspond to elements μ of $\mathfrak{g}^{\odot 2}$ characterized by $\mu^{pq}=\beta^{pr}A_r^q$. Every such μ is in turn the reciprocal of $\sigma\in[\mathfrak{g}^*]^{\odot 2}$ defined by $\sigma_{pq}=H_p^k\beta_{kq}$, where $H=A^{-1}$ (as $\sigma_{pq}\mu^{sq}=H_p^k\beta_{ks}\beta^{sr}A_r^q=H_p^k\beta_{kq}$). Symmetry of μ , and hence σ , is obvious from β -self-adjointness of A. The inverses A of our operators $A=a\mathrm{Id}$ range over nonzero complex multiples of A as well, and so the resulting symmetric forms A act on A and A by A by A by A where A is a symmetric form A and A by A are quired.

Remark 6.2 The relation $\gamma = -\beta(\cdot, J \cdot)$ for $\beta = 2 \operatorname{Re} \beta^{\mathfrak{h}}$ and $\gamma = 2 \operatorname{Im} \beta^{\mathfrak{h}}$ shows that, once J is fixed, $\operatorname{Re} \beta^{\mathfrak{h}}$ uniquely determines $\beta^{\mathfrak{h}}$. Similarly, $\operatorname{Re} C^{\mathfrak{h}}$ and J determine the Cartan three-form $C^{\mathfrak{h}}$ of a complex Lie algebra \mathfrak{h} , cf. (1.8). In fact, $\operatorname{Im} C^{\mathfrak{h}} = -\operatorname{Re} C^{\mathfrak{h}}(\cdot, \cdot, J \cdot)$.

Remark 6.3 The bracket [,] of a real/complex semisimple Lie algebra is uniquely determined by C and β via (1.8). Knowing C and the set of nonzero scalar multiples of β , rather than β itself, makes [,] unique up to multiplications by cubic roots of 1. Such factors must be allowed as multiplying [,] by a scalar r replaces β and C with $r^2\beta$ and r^3C .

Remark 6.4 In the first sentence of Remark 6.3, treating C and β formally, we see that in the complex case \overline{C} and $\overline{\beta}$ determine, via (1.8), the same bracket [,] as C and β .

Lemma 6.5 The Lie algebra \mathfrak{a} of infinitesimal automorphisms of the Cartan three-form C of a simple real/complex Lie algebra \mathfrak{g} has the vector-space decomposition $\mathfrak{a} = \mathfrak{a}_+ \oplus \mathfrak{a}_-$, where \mathfrak{a}_+ is the space of all Σ related as in (1.2.b) to elements σ of $\mathrm{Ker}(\Omega + \mathrm{Id})$, and \mathfrak{a}_- consists of all derivations of \mathfrak{g} . The operators forming \mathfrak{a}_+ are all β -self-adjoint, those in \mathfrak{a}_- are β -skew-adjoint, and \mathfrak{a}_- coincides with $\mathrm{Ad}(\mathfrak{g}) = \{\mathrm{Ad}\, x : x \in \mathfrak{g}\}$.

Proof We have the obvious inclusions $\operatorname{Ad}(\mathfrak{g}) \subset \mathfrak{a}_- \subset \mathfrak{a}$. For any fixed $\Sigma \in \mathfrak{a}$, define σ by (1.2.b). Transvecting the equality $\sigma_{iq} C_{jk}{}^q + \sigma_{jq} C_{ki}{}^q + \sigma_{kq} C_{ij}{}^q = 0$ with $C^{jk}{}_p$, we see that, by (2.4.i–ii), $\sigma_{ip} = 2C^{jk}{}_p C_{ki}{}^q \sigma_{jq}$. Hence (2.6) and (2.4.ii) give $T\tau = -\sigma$, where $\tau = \sigma^*$ is the 2-tensor with $\tau_{ij} = \sigma_{ji}$. As $(T\tau)^* = T\tau^*$, cf. (2.6), $\sigma \pm \sigma^*$ is an eigenvector of T for the eigenvalue ∓ 1 . Lemma 2.1(b),(d) thus shows that the self-adjoint and skew-adjoint parts of any $\Sigma \in \mathfrak{a}$ lie in \mathfrak{a}_+ and, respectively, in $\operatorname{Ad}(\mathfrak{g}) \subset \mathfrak{a}_- \subset \mathfrak{a}$. Consequently, noting that Lie-algebra automorphisms of \mathfrak{g} leave β invariant, and so all derivations of \mathfrak{g} must be β -skew-adjoint, one obtains $\mathfrak{a}_- = \operatorname{Ad}(\mathfrak{g})$ and $\mathfrak{a} = \mathfrak{b} \oplus \mathfrak{a}_-$ for the space \mathfrak{b} of all $\Sigma \in \mathfrak{a}_+$ which are at the same time infinitesimal automorphisms of C.

It now suffices to show that $\mathfrak{b} = \mathfrak{a}_{\perp}$. If dim $\mathfrak{g} \notin \{3,6\}$, this is clear from Remark 4.5, which gives $\mathfrak{b} = \mathfrak{a}_+ = \{0\}$. When $\dim \mathfrak{g} = 3$, the inclusion $\mathfrak{a} = \mathfrak{b} \oplus \mathfrak{a}_- \subset \mathfrak{a}_+ \oplus \mathfrak{a}_-$ is an equality, as $8 = \dim \mathfrak{a} \le \dim \mathfrak{a}_+ + \dim \mathfrak{a}_- = 5 + \dim \operatorname{Ad}(\mathfrak{g}) \le 5 + \dim \mathfrak{g} = 8$. (Here $\dim \mathfrak{a}_+ = 6 + \dim \mathfrak{g} = 8$) 5 by Remark 4.5, and dim a = 8, since C is a volume form in the 3-space a.) Finally, let $\dim \mathfrak{g} = 6$ and $\Sigma \in \mathfrak{a}_+$. Thus, \mathfrak{g} is real and isomorphic to the underlying real algebra of $\mathfrak{h} = \mathfrak{sl}(2,\mathbb{C})$ (see Lemma 4.3(i)-(ii)). As σ with (1.2.b) lies in $\operatorname{Ker}(\Omega + \operatorname{Id})$, and so, by (1.7), in Ker Λ , Theorem B(iii) gives $\sigma = 2 \operatorname{Re} \sigma^{\mathfrak{h}}$, where $\sigma^{\mathfrak{h}} : \mathfrak{h} \times \mathfrak{h} \to \mathbb{C}$ is \mathbb{C} -bilinear and symmetric. Clearly, $\sigma^{\mathfrak{h}}(x,y) = \beta^{\mathfrak{h}}(\Sigma^{\mathfrak{h}}x,y)$ for all $x,y \in \mathfrak{h}$, the Killing form $\beta^{\mathfrak{h}}$ of \mathfrak{h} , and some complex-linear operator $\Sigma^{\mathfrak{h}}: \mathfrak{h} \to \mathfrak{h}$. Taking 2 Re of both sides, we see that (2.1.i) yields (1.2.b) with Σ replaced by $\Sigma^{\mathfrak{h}}$. Consequently, $\Sigma^{\mathfrak{h}} = \Sigma$, and $\Sigma : \mathfrak{h} \to \mathfrak{h}$ is complex-linear. At the same time, (2.6) and Lemma 2.1(b) easily imply that Ω is self-adjoint. The two summands in (1.7) are therefore β -orthogonal, and so, by Theorem 4.1(iv), σ is orthogonal to $\beta = 2 \operatorname{Re} \beta^{\mathfrak{h}}$ and $\gamma = 2 \operatorname{Im} \beta^{\mathfrak{h}}$. Since σ, β and γ correspond as in (1.2.b) to Σ , Id and -J, cf. Remark 6.2, these orthogonality relations read $\operatorname{tr}_{\mathbb{R}} \Sigma = \operatorname{tr}_{\mathbb{R}} J \Sigma = 0$, that is, $\operatorname{tr}_{\mathbb{C}} \Sigma = 0$. On the other hand, the Cartan three-form $C^{\mathfrak{h}}$ of \mathfrak{h} is a volume form in its underlying complex 3space. Being traceless, Σ is thus an infinitesimal automorphism of both $C^{\mathfrak{h}}$ and $C = 2 \operatorname{Re} C^{\mathfrak{h}}$ (see (2.1.ii)), as required.

The first paragraph of the above proof obviously remains valid if $\mathfrak g$ is only assumed to be semisimple, and so it constitutes a direct argument showing that, for any semisimple real or complex Lie algebra $\mathfrak g$, all derivations of $\mathfrak g$ lie in Ad($\mathfrak g$).

7 Proof of Theorem C

For a real/complex Lie algebra \mathfrak{g} , let the mapping $\Phi: [\mathfrak{g}^*]^{\wedge 3} \times \mathfrak{g}^{\odot 2} \to [\mathfrak{g}^*]^{\wedge 4}$ be defined by $[\Phi(C,\mu)](x,y,z,z') = \mu(C(x,y),C(z,z')) + \mu(C(y,z),C(x,z')) + \mu(C(z,x),C(y,z'))$, where $\mu \in \mathfrak{g}^{\odot 2}$ is treated as a symmetric real/complex-bilinear form on \mathfrak{g}^* , and C(x,y) stands for the element $C(x,y,\cdot)$ of \mathfrak{g}^* . If \mathfrak{g} is also semisimple, the isomorphic identification $\mathfrak{g} \approx \mathfrak{g}^*$ provided by the Killing form β induces an isomorphism $[\mathfrak{g}^*]^{\odot 2} \to \mathfrak{g}^{\odot 2}$, which we write as $\sigma \mapsto \sigma^{\sharp}$. Then, in view of (1.4) and (1.8),

$$\Phi(C, \sigma^{\sharp}) = \Lambda \sigma$$
 for any $\sigma \in \mathfrak{g}^{\odot 2}$ and the Cartan three-form C . (7.1)

Theorem C is a trivial consequence of the following result combined with Lemma 4.3(ii) and the fact that, by multiplying a Lie-algebra bracket operation [,] by a nonzero scalar, one obtains a Lie-algebra structure isomorphic to the original one. Note that the final clause of Theorem C is immediate from Lemma 7.1(a) along with Lemma 6.5 and Remark 4.5.

Lemma 7.1 In a real or complex semisimple Lie algebra \mathfrak{g} , the Cartan three-form and the vector-space structure of \mathfrak{g} uniquely determine each of the following objects.

- (a) The vector subspaces constituting the simple direct summand ideals of \mathfrak{g} .
- (b) Up to a sign, in the real case, the complex structure, defined as in Section 6, of every summand ideal \mathfrak{g}' with $\dim_{\mathbb{R}} \mathfrak{g}' \neq 6$ which is a complex Lie algebra, treated as real.
- (c) Up to multiplications by cubic roots of 1, the restrictions of the Lie-algebra bracket of g to all such summands of dimensions other than 3 or 6.
- (d) The Lie algebra isomorphism types of all summand ideals \mathfrak{g}' with $\dim_{\mathbb{R}} \mathfrak{g}' \neq 3$.

Proof Let C be the Cartan three-form of \mathfrak{g} . By (7.1), $\operatorname{Ker} \Delta = \{\sigma^{\sharp} : \sigma \in \operatorname{Ker} \Lambda\}$ for the real/complex-linear operator $\Delta : \mathfrak{g}^{\odot 2} \to [\mathfrak{g}^*]^{\wedge 4}$ given by $\Delta \mu = \Phi(C, \mu)$. Then, if one views all $\mu \in \operatorname{Ker} \Delta \subset \mathfrak{g}^{\odot 2}$ as linear operators $\mu : \mathfrak{g}^* \to \mathfrak{g}$,

(e) the simple direct summands of \mathfrak{g} are precisely the minimal elements, in the sense of inclusion, of the set $\mathbf{S} = \{\mu(\mathfrak{g}^*) : \mu \in \text{Ker } \Delta, \text{ and } \dim \mu(\mathfrak{g}^*) = 3 \text{ or } \dim \mu(\mathfrak{g}^*) \geq 6\}.$

In fact, **S** consists of the images of those linear endomorphisms $\Sigma: \mathfrak{g} \to \mathfrak{g}$ which correspond via (1.2.b) to elements σ of Ker Λ , and have rank $\Sigma \notin \{0,1,2,4,5\}$. To describe all such Σ , we use the four parts of Theorem **B**, referring to them as (i) – (iv). Specifically, by (i), our endomorphisms Σ are direct sums of linear endomorphisms Σ_i of the simple direct summands \mathfrak{g}_i of \mathfrak{g} , while the endomorphisms Σ_i are themselves subject to just two restrictions: one due to the exclusion of ranks 0,1,2,4 and 5, the other depending, in view of (ii) – (iv), on $d_i = \dim \mathfrak{g}_i$, as follows. If $d_i = 3$, (ii) states that Σ_i is only required to be β -self-adjoint (to reflect symmetry of σ_i related to Σ_i as in (1.2.b)). Similarly, it is clear from (iv) and (2.2) that, with a specific the scalar field IF,

 Σ_i is a nonzero IF-multiple of Id when $d_i \notin \{3,6\}$, where IF = \mathbb{C} if \mathfrak{g}_i is either complex or real of type (1.3.b), and IF = IR for real \mathfrak{g}_i of type (1.3.a). (7.2)

In the remaining case, $d_i = 6$. Then, by (iii), Σ_i is complex-linear and β -self-adjoint, cf. (2.3) and (2.1.i), but otherwise arbitrary.

The image $\Sigma(\mathfrak{g})$ of any Σ as above is the direct sum of the images of its summands Σ_i , and so it can be minimal only if there exists just one i with $\Sigma_i \neq 0$. For this i, minimality of $\Sigma(\mathfrak{g}) = \Sigma_i(\mathfrak{g}_i)$ implies that $\Sigma(\mathfrak{g}) = \mathfrak{g}_i$. In fact, in view of the last paragraph, the cases $d_i = 3$ and $d_i \notin \{3,6\}$ are obvious (the former since rank $\Sigma_i \geq 3$) while, if $d_i = 6$, complex-linearity of Σ_i precludes not just 0,1,2,4 and 5, but also 3 from being its real rank.

We thus obtain one of the inclusions claimed in (e): every minimal element of ${\bf S}$ equals some summand ${\mathfrak g}_i$. Conversely, any fixed summand ${\mathfrak g}_i$ is an element of ${\bf S}$, realized by ${\boldsymbol \Sigma}$ with ${\boldsymbol \Sigma}_i={\rm Id}$ and ${\boldsymbol \Sigma}_j=0$ for all $j\neq i$, cf. Lemma 4.3(iii). Minimality of ${\mathfrak g}_i$ is in turn obvious from (7.2) if $d_i\notin\{3,6\}$, while for $d_i=3$ or $d_i=6$ it follows from the restriction on rank ${\boldsymbol \Sigma}$ combined, in the latter case, with complex-linearity of ${\boldsymbol \Sigma}_i$. This yields (e).

Now (a) is obvious from (e), as Δ and S depend only on C and the vector-space structure of \mathfrak{g} . To prove (b) – (c), we fix i with $d_i \notin \{3,6\}$. Elements μ of Ker Δ having

 $\mu(\mathfrak{g}^*) = \mathfrak{g}_i$ correspond, via (1.2.b) followed by the assignment $\sigma \mapsto \mu = \sigma^{\sharp}$, to endomorphisms Σ of \mathfrak{g} which satisfy (7.2) and vanish on \mathfrak{g}_j for $j \neq i$. Any such μ , now viewed as a bilinear form on \mathfrak{g}^* , is therefore obtained from a bilinear form μ_i on \mathfrak{g}_i^* by the trivial extension to \mathfrak{g}^* , that is, pullback under the obvious restriction operator $\mathfrak{g}^* \to \mathfrak{g}_i^*$.

If $\mathbb{F}=\mathbb{R}$, it is immediate from (7.2) that the resulting forms μ_i are nonzero multiples of the reciprocal of the Killing form of \mathfrak{g}_i , and Remark 6.3 implies (c). Next, let $\mathbb{F}=\mathbb{C}$. We denote \mathfrak{g}_i treated as a complex Lie algebra by \mathfrak{h} , and the Cartan three-form of \mathfrak{h} by $C^{\mathfrak{h}}$. Formula (6.1) states that, in view of (7.2), the reciprocals of our μ_i are precisely the nonzero elements of the space \mathscr{P} defined in Section 6. Thus, Lemma 6.1, (2.1.ii) and Remark 6.2 imply that C determines the triple $(J,\beta^{\mathfrak{h}},C^{\mathfrak{h}})$ uniquely up to replacements by $(J,a\beta^{\mathfrak{h}},aC^{\mathfrak{h}})$ or $(-J,a\overline{\beta^{\mathfrak{h}}},a\overline{C^{\mathfrak{h}}})$, with $a\in\mathbb{C}\setminus\{0\}$. This proves (b), while using Remarks 6.3 – 6.4 we obtain (c) for $\mathbb{F}=\mathbb{C}$ as well. Finally, (c) and Lemma 4.3(i)–(iii) easily yield (d).

Acknowledgements We thank Robert Bryant and Nigel Hitchin for helpful comments about Theorem C. Additional improvements of the presentation have resulted from suggestions made by the referee.

Appendix: Meyberg's theorem

For any complex simple Lie algebra \mathfrak{g} , the operator Ω with (1.2) is diagonalizable. Its systems Spec[\mathfrak{g}] of eigenvalues and Mult[\mathfrak{g}] of the corresponding multiplicities are

```
\begin{split} & \operatorname{Spec}\left[\mathfrak{sl}_n\right] = (2,1,2/n,-2/n) \ \text{ and } \\ & \operatorname{Mult}\left[\mathfrak{sl}_n\right] = (1,n^2-1,n^2(n-3)(n+1)/4,n^2(n+3)(n-1)/4), \ \text{ if } n \geq 4. \\ & \operatorname{Spec}\left[\mathfrak{sp}_n\right] = (2,(n+4)/(n+2),-4/(n+2),2/(n+2)) \ \text{ for even } n \geq 4, \ \text{ and } \\ & \operatorname{Mult}\left[\mathfrak{sp}_n\right] = (1,(n-2)(n+1)/2,n(n+1)(n+2)(n+3)/24,n(n-1)(n-2)(n+3)/12). \\ & \operatorname{Spec}\left[\mathfrak{so}_n\right] = (2,(n-4)/(n-2),4/(n-2),-2/(n-2)) \ \text{ if } n=7 \ \text{ or } n \geq 9, \ \text{ while } \\ & \operatorname{Mult}\left[\mathfrak{so}_n\right] = (1,(n+2)(n-1)/2,n(n-1)(n-2)(n-3)/24,n(n+1)(n+2)(n-3)/12). \end{split}
```

and, if \mathfrak{g} is one of the exceptional complex Lie algebras $\mathfrak{sl}_2, \mathfrak{sl}_3, \mathfrak{g}_2, \mathfrak{so}_8, \mathfrak{f}_4, \mathfrak{e}_6, \mathfrak{e}_7, \mathfrak{e}_8, \mathfrak{g}_8$

Spec
$$[\mathfrak{g}] = (2, (1+w)/6, (1-w)/6)$$
, with Mult $[\mathfrak{g}]$ equal to $(1, 3d[(d+2)w - (d+32)]/[w(11-w)], 3d[(d+2)w + (d+32)]/[w(11+w)])$, (7.3)

with $d = \dim \mathfrak{g}$ and $w = [(d+242)/(d+2)]^{1/2}$. This is a result of Meyberg [8] who, rather than our Ω , studied the operator $T = \Omega/2$. (The formula for w in [8] misses the exponent 1/2.) For \mathfrak{sl}_2 , the resulting "eigenvalue" 4/3 of multiplicity 0 should be disregarded. All isomorphism types of complex simple Lie algebras are listed above, cf. Remark 2.3.

The dimensions d of \mathfrak{sl}_2 , \mathfrak{sl}_3 , \mathfrak{g}_2 , \mathfrak{so}_8 , \mathfrak{f}_4 , \mathfrak{e}_6 , \mathfrak{e}_7 , \mathfrak{e}_8 are 3, 8, 14, 28, 52, 78, 133, 248 [1, pp. 32, 37]. The eigenvalues 0, -1, 1 in (7.3) would correspond to w = 1, 7, 5, of which only the latter two occur, for d = 3, 8 and $\mathfrak{g} = \mathfrak{sl}_2$, \mathfrak{sl}_3 , in agreement with Theorem 2.2.

References

- Adams, J.F.: Lectures on Exceptional Lie Groups. Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL (1996)
- 2. Besse, A.L.: Einstein Manifolds. Ergeb. Math. Grenzgeb. (3), vol. 10. Springer, Berlin (1987)

3. Bourguignon, J.P., Karcher, H.: Curvature operators: pinching estimates and geometric examples. Ann. Sci. École Norm. Sup. (4) 11, 71–92 (1978)

- 4. Bryant, R., private communication (2009)
- Calabi, E., Vesentini, E.: On compact, locally symmetric Kähler manifolds. Ann. of Math. (2) 71, 472– 507 (1960)
- 6. Derdzinski, A., Gal, Ś.R.: Indefinite Einstein metrics on simple Lie groups. Indiana Univ. Math. J. (to appear). arXiv:1209.6084v2
- 7. Hausner, M., Schwartz, J.T.: Lie Groups, Lie Algebras. Gordon and Breach, New York (1968)
- Meyberg, K.: Spurformeln in einfachen Lie-Algebren. Abh. Math. Sem. Univ. Hamburg 54, 177–189 (1984)
- 9. Onishchik, A.L.: Lectures on Real Semisimple Lie Algebras and their Representations. ESI Lectures in Mathematics and Physics, EMS, Zürich (2004)