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SPECIAL KÄHLER-RICCI POTENTIALS

ON COMPACT KÄHLER MANIFOLDS

A. Derdzinski and G. Maschler

Abstract. By a special Kähler-Ricci potential on a Kähler manifold we mean a

nonconstant real-valued C∞ function τι such that J(∇τι) is a Killing vector field

and, at every point with dτι 6= 0, all nonzero tangent vectors orthogonal to ∇τι

and J(∇τι) are eigenvectors of both ∇dτι and the Ricci tensor. For instance, this

is always the case if τι is a nonconstant C∞ function on a Kähler manifold (M, g)

of complex dimension m > 2 and the metric g̃ = g/τι2, defined wherever τι 6= 0, is

Einstein. (When such τι exists, (M, g) may be called almost-everywhere conformally

Einstein.) We provide a complete classification of compact Kähler manifolds (M, g)

with special Kähler-Ricci potentials, showing, in particular, that in any complex

dimension m ≥ 2 they form two separate classes: in one, M is the total space of a

holomorphic CP1 bundle; in the other, M is biholomorphic to CPm. We then use

this classification to prove a structure theorem for compact Kähler manifolds of any

complex dimension m > 2 which are almost-everywhere conformally Einstein.

§1. Introduction

The present paper, although of independent interest, is the second in a series of
three papers that also includes [7] and [8].

We call τι a special Kähler-Ricci potential [7] on a Kähler manifold (M, g) if

τι is a nonconstant Killing potential on (M, g) and, at every point
(1.1) with dτι 6= 0, all nonzero tangent vectors orthogonal to v = ∇τι and

to u = Jv are eigenvectors of both ∇dτι and the Ricci tensor r.

Of our two main results, one (Theorem 16.3) provides a complete classification of
compact Kähler manifolds (M, g) with special Kähler-Ricci potentials.

The other main result is a structure theorem for, and a partial classification of,
those compact Kähler manifolds (M, g) in complex dimensions m ≥ 3 which are
almost-everywhere conformally Einstein in the sense of (1.2) below; for m = 2 the
same argument is valid under the stronger assumption (1.3). As outlined later in
this section, the second main result is used in [8] to obtain a complete classification
of compact Kähler manifolds satisfying (1.2) in complex dimensions m ≥ 3, or (1.3)
for m = 2.

Our interest in (1.1) was in fact sparked by its being related to the almost-eve-
rywhere conformally Einstein case. Specifically, we consider two conditions.
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(M, g) is a Kähler manifold of complex dimension m and τι is
(1.2) a nonconstant C∞ function on M such that the conformally

related metric g̃ = g/τι 2, defined wherever τι 6= 0, is Einstein.

(1.3) M, g,m, τι satisfy (1.2) and dτι ∧ d∆τι = 0 everywhere in M.

The additional clause in (1.3) states that locally, at points with dτι 6= 0, the Lapla-
cian of τι is a function of τι. In [7], Corollary 9.3, we found that

(1.4) condition (1.2) with m ≥ 3, or (1.3) with m = 2, implies (1.1).

As shown in [7], Proposition 6.4, (1.3) follows from (1.2) when m > 2. In other
words, (1.3) is really stronger than (1.2) only for Kähler surfaces (m = 2).

Furthermore, (1.1) is closely related, although not equivalent, to the requirement
(see [7], §7) that ∇dτι +χ r = σg for some C∞ functions χ and σ, reminiscent of
Kähler-Ricci solitons (cf. Remark 5.3 below). Functions τι appearing in (1.2) also
arise from Hamiltonian 2-forms [2], which, on compact Kähler manifolds, were
recently classified by Apostolov et al. [3].

We now proceed to describe in more detail our two main results. The first of
them deals with triples (M, g, τι ) formed by a compact Kähler manifold (M, g) of
complex dimension m ≥ 1 and a special Kähler-Ricci potential τι : M → R. In §5
and §6 we construct two classes of such triples, labelled 1 and 2:

• In Class 1, M is the total space of a suitable holomorphic CP1 bundle over
a compact Kähler manifold (N,h) which is also Einstein unless m = 2.

• In Class 2, M is biholomorphic to CPm.
In both classes, M is obtained from the total space of a holomorphic line bundle
by a compactification, projective (in Class 1), or one-point (in Class 2, for the dual
tautological bundle over CPm−1). The metric g is chosen so that, in particular,
the line-bundle projection is a horizontally homothetic submersion [9] with totally
geodesic fibres. A direct characterization of Classes 1 and 2 is described below.

A prominent ingredient of the constructions just mentioned is a C∞ function
τι 7→ Q on an interval [τιmin, τιmax], subject to specific positivity and boundary con-
ditions (listed in (5.1)), but otherwise arbitrary. Substituting for the independent
variable τι the special Kähler-Ricci potential τι on the resulting Kähler manifold
(M, g), one turns Q into a function M → R, which then equals |∇τι|2. This major
role of |∇τι|2 as a function of τι is common in constructions of Killing potentials;
see, for instance, [11] and [18].

Theorem 16.3, in turn, classifies all compact Kähler manifolds (M, g) with spe-
cial Kähler-Ricci potentials τι. It states that, up to biholomorphic identifications,
every such triple (M, g, τι ) must belong to one of the two classes constructed in
§5 and §6. Note that, due to arbitrariness of the function τι 7→ Q, if pairs (g, τι )
satisfying (1.1) on a given compact complex manifold M exist at all, they must
form an infinite-dimensional moduli space. In this regard, (1.1) differs from (1.2)
(in complex dimensions m ≥ 3) or (1.3); see [7].

Classes 1 and 2 also have an intrinsic characterization. Namely, any special
Kähler-Ricci potential τι on a compact Kähler manifold (M, g) has exactly two
critical manifolds; one of them is of complex codimension one, the other may have
complex codimension one (in Class 1) or consist of a single point (in Class 2). The
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fact just stated, established in Proposition 11.5, constitutes a major step in the
classification argument that we use to prove Theorem 16.3.

To provide at least a partial explanation of “why” Theorem 16.3 is true, we now
briefly summarize the steps leading to its proof. (A more detailed description is
given eight paragraphs below.) We start with a special Kähler-Ricci potential τι
on a compact Kähler manifold (M, g) of complex dimension m ≥ 2. First, we
show that, as mentioned above, τι has two critical manifolds, N and N∗, with
dimCN

∗ = m − 1 and either dimCN = m − 1, or dimCN = 0. We then select
a specific punctured-disk subbundle L′ of the normal bundle L of N and prove
that the normal exponential mapping Exp sends L′ diffeomorphically onto M ′ =
M r (N ∪N∗). Next, we exhibit a fibre-preserving diffeomorphism Φ : LrN → L′
that multiplies each nonzero normal vector z by a factor depending only on |z|,
and show that Exp ◦Φ is a biholomorphism LrN →M ′, admitting an extension
to a biholomorphism between a suitable compactification of L and M . Finally, the
pullbacks of g and τι under that extension are verified to coincide with the objects
constructed as in §5 or §6 from data which our M, g and τι naturally distinguish
on L.

Theorem 16.3 leads, via (1.4), to our second main result, consisting of Theo-
rems 17.4, 18.1, 19.3 and Corollary 19.4. They form a structure theorem for, and
a partial classification of, quadruples (M, g,m, τι) with compact M that satisfy
(1.2) for m ≥ 3, or (1.3) for m = 2. Specifically, in §17 all such quadruples, with
compact M , are divided into six disjoint “types” (a1), (a2), (b1), (b2), (c1), (c2),
the digit 1 or 2 indicating in which of our Classes 1 and 2 the type is contained.
We then prove that types (a2), (b1), (b2) are empty (Theorem 17.4), and type (c2)
leads to a conclusion (Corollary 19.4) which, as shown in [8], cannot be satisfied;
therefore, type (c2) eventually turns out to be empty as well.

Thus, all compact Kähler manifolds of complex dimensions m ≥ 2 which are
almost-everywhere conformally Einstein (and, if m = 2, also satisfy the additional
clause in (1.3)) belong to type (a1) or (c1), and hence to Class 1. We emphasize
that the proof of this fact uses not only results of the present paper, but also those
of [8].

The remaining two parts of our structure and partial-classification result for
quadruples (M, g,m, τι) as above are Theorems 18.1 and 19.3. The former classifies
type (a1); every M occurring there is a flat holomorphic CP1 bundle. The latter
reduces the classification of type (c1) (in which M always is a nonflat holomorphic
CP1 bundle) to the question of finding all rational functions of one real variable
that lie in a specific three-dimensional vector space depending on m and satisfy
positivity and boundary conditions closely related to those in (5.1).

An answer to this last question is given in [8], where we classify type (c1) by
dividing it into three disjoint families: one, discovered by Page [17] for m = 2
and, for m ≥ 3, by Bérard Bergery [4]; another, that includes some known Kähler
surface metrics [10], [20] along with some new metrics in all higher dimensions; and
a new, third family, present only in odd complex dimensions m ≥ 9. Type (a1)
appears in [8] as a fourth family, characterized by local reducibility of the Kähler
metrics g.

In the last three families, τι with (1.2) vanishes somewhere in M , giving rise to
examples of conformally compact Einstein manifolds, cf. [1].
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To describe how the paper is organized, it is convenient to divide the text into
three parts. The first (Sections 3 – 6) contains descriptions of examples, leading
up to the constructions of our Classes 1 and 2. In the second part (Sections 7
– 16) we prove Theorem 16.3. The third part is devoted to results about com-
pact Kähler manifolds which are almost-everywhere conformally Einstein. Further
details concerning the three parts are provided in the following three paragraphs.

In the first part we use a local construction developed in [7], along with a stan-
dard compactification argument.

The second part, that is, our proof of Theorem 16.3, involves four major steps,
appearing in Sections 7, 11, 13 and 15. The first step is Proposition 7.3, stating that,
for a special Kähler-Ricci potential τι on a Kähler manifold of complex dimension
m, any critical manifold of τι must be of complex dimension m − 1 or 0, while
the Hessian of τι at any critical point has only one nonzero eigenvalue (and hence
is semidefinite). Note that this is a local result; we prove it by analyzing the
structure of ∇dτι near a critical point. In the next step, Proposition 11.5, we show
that, if M is also assumed compact, τι must have exactly two critical manifolds,
and |∇τι|2 is a C∞ function of τι satisfying the positivity and boundary conditions
(5.1). That there are just two critical manifolds follows since, due to the semidef-
initeness of its Hessian, τι is a Morse-Bott function having a local extremum at
every critical point. Proposition 11.5 allows us to introduce the intrinsic definition
of Classes 1 and 2, mentioned earlier in this section, as the case of two isolated
critical points is easily excluded when m > 1. Step three, Lemma 13.2, describes
a “large” tubular neighborhood of a critical manifold N of τι, still assuming that
M is compact; namely, the normal exponential mapping Exp of N is shown to
be a diffeomorphism between a specific open-disk subbundle of the normal bundle
of N and the complement, in M , of the other critical manifold. In the last step,
Lemma 15.1, we prove several properties of the differential of Exp needed for the
final conclusion in the proof of Theorem 16.3. The conclusion in question states
that a specific mapping between our (M, g) and the underlying Kähler manifold of
a Class 1 or Class 2 triple, constructed (as in §5 or §6) from ingredients naturally
provided by (M, g) and τι is, in fact, a biholomorphic isometry. More precisely, we
select N so that the other critical manifold is of complex dimension m− 1, where
m = dimCM , and the choice between Class 1 and Class 2 depends on whether
dimCN is m− 1 or 0.

The third part begins with §17. Its starting point, Proposition 17.1, is a local
result proved in [7], and states that the assertion about Q = |∇τι|2 being a C∞

function of τι (mentioned above as a consequence of (1.1) when M is compact),
remains true even without compactness of M , as long as, instead of (1.1), one uses
the stronger assumption (1.2) with m ≥ 3, or (1.3) with m = 2. In addition, the
function τι 7→ Q = |∇τι|2 then is rational and must lie in one of three specific sets
of rational functions. It is by pairing up each of the three sets with Classes 1 and
2, for compact M , that we arrive at the six types (a1) – (c2) discussed earlier.

The authors wish to thank the referee for suggesting extensive changes* that
have made the presentation much easier to follow.

*For instance, what [7] refers to as §36 of this paper has now become Remark 16.4.
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§2. Preliminaries

Our notational conventions include the following:

(2.1)

i) R(u, v)w = ∇v∇uw − ∇u∇vw + ∇[u,v]w ,

ii) ∇v : TM → TM with (∇v)w = ∇wv for w ∈ TxM and x ∈M,

iii) (∇dτι)(u,w) = g(∇uv, w) for v = ∇τι , and ∆τι = Traceg(∇dτι),
iv) ω(u, v) = g(Ju, v) , for u, v ∈ TxM and x ∈M,

v) L = {(y, z) : y ∈ N, z ∈ Ly} and N ⊂ L ,
vi) R(u, v)w = iΩ(u, v)w ,

vii) Ω = idΓ for Γ with ∇vw = Γ (v)w.

Specifically, in (i), R is the curvature tensor of a (linear) connection ∇ in any
real/complex vector bundle over a manifold, u, v are C2 vector fields tangent to
the base and w is a C2 section of the bundle; in (ii), ∇ is a connection in the
tangent bundle TM of a manifold M , while v is a C1 vector field on M and ∇v
is its covariant derivative, treated as a vector-bundle morphism; in (iii), ∇dτι is the
second covariant derivative of a C2 function τι on a Riemannian manifold, g is
the metric, u,w are any tangent vector fields, and the symbol ∇ stands both for
the Levi-Civita connection and the gradient, while ∆ is the Laplacian; in (iv), ω
is the Kähler form of a Kähler manifold (M, g) and J denotes the complex-struc-
ture tensor of its underlying complex manifold; in (v), L denotes both a vector
bundle over a manifold N and its total space, while N is identified with the zero
section; finally, in (vi) and (vii), the complex-valued 2-form Ω and 1-form Γ are
the curvature form and connection form of any C∞ connection ∇ in a complex
line bundle L over a manifold N, while in (vi) u, v, w,R are as in (i), and in (vii)
v, w are local C∞ sections of TN and L, the latter without zeros.

Remark 2.1. As usual, a real-valued C∞ function τι on a Kähler manifold (M, g)
is said to be a Killing potential if u = J(∇τι) is a Killing field on (M, g). One has
the well-known equality dY = −2r(∇τι, · ), where Y = ∆τι, cf. (2.1.iii), and r is
the Ricci tensor. (See, for instance, [7], formula (5.4).)

We call a (real) C∞ vector field v on a complex manifold holomorphic if LvJ =
0, where L is the Lie derivative. For a C∞ vector field v on a Kähler manifold
(M, g), this is the case if and only if J and ∇v commute (cf. [7], formula (5.1)).

The following lemma is also well known; see, for instance, [7], Lemma 5.3.

Lemma 2.2. Let (M, g) be a Kähler manifold. For every Killing potential τι on
(M, g), the Killing field J(∇τι) is holomorphic. Conversely, if H1(M,R) = {0},
then every holomorphic Killing vector field on (M, g) has the form J(∇τι) for a
Killing potential τι, which is unique up to an additive constant. �

Let τι : M → R be a C∞ function on a manifold M . If all connected components
N of the set Crit(τι) of its critical points happen to satisfy conditions (a), (b) in
Remark 2.3(iii) below, we will refer to them as the critical manifolds of τι.

Remark 2.3. Given a nonconstant Killing potential τι on a Kähler manifold
(M, g), let M ′ ⊂M be the open set on which dτι 6= 0. Then

(i) ∇dτι 6= 0 wherever dτι = 0,
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(ii) M ′ is connected and dense in M ,
(iii) for every connected component N of the set of critical points of τι,

(a) N is contained in an open set that intersects no other component,
(b) N ⊂M is a closed set and a submanifold with the subset topology,
(c) N is totally geodesic in (M, g) and dimM − dimN ≥ 2,
(d) TyN = Ker [(∇v)(y)] = {w ∈ TyM : ∇wv = 0} whenever y ∈ N,

with v = ∇τι. Thus, N is a complex submanifold of M.

Namely, (d) in (iii) follows since TyN = Ker [(∇u)(y)] for the Killing field u = Jv
(see [7], Lemma 12.2(d)), while ∇u = J ◦ (∇v) = (∇v) ◦ J as ∇J = 0 and v is
holomorphic, cf. Lemma 2.2. Finally, (ii) is obvious from (a) – (c) in (iii), which,
along with (i), are in turn justified in [7], Remark 5.4 and Lemma 12.2.

Any Riemannian/Hermitian fibre metric 〈 , 〉 in a real/complex vector bundle L
over a manifold N is determined by its norm function L → [0,∞), later denoted
by r (or, sometimes, s), which assigns |z| = 〈z, z〉1/2 to each (y, z) ∈ L. We also
treat 〈 , 〉 as a fibre metric in the vertical subbundle V of TL (by identifying V(y,z)

with Ly). If L is a complex vector bundle, any fixed real number a 6= 0 gives rise
to vertical vector fields v, u on L given by v(y, z) = az and u(y, z) = iaz, and,
clearly, 〈v, v〉 = 〈u, u〉 = a2r2 and Re〈v, u〉 = 0.

Remark 2.4. Let L be a C∞ complex line bundle over a complex manifold N,
and let H be the horizontal distribution of a fixed C∞ linear connection in L
whose curvature form Ω is real-valued and skew-Hermitian, that is, Ω(Jv, v′) =
−Ω(v, Jv′) for all y ∈ N and v, v′ ∈ TyN . Then L admits a unique structure
of a holomorphic line bundle over N such that H is invariant under the complex
structure tensor J : TL → TL.

In fact, let Γ be as in (2.1.vii) for a fixed C∞ local trivializing section w of L,
defined on a contractible open set N ′ ⊂ N. Using w to identify the portion L′ of
L lying over N ′ with N ′ × C, and writing down the parallel-transport equation
in terms of Γ , we see that, for any (y, z) ∈ L′ and (w, ζ) ∈ T(y,z)L′, the H
component of (w, ζ) is (w,−Γ (w)z). Thus, w is holomorphic for a holomorphic-
bundle structure in L′ for which H is J-invariant if and only if Γ is of type (1, 0),
that is, the bundle morphism Γ : TN ′ → N ′×C is complex-linear. While Γ need
not be of type (1, 0), a (1, 0) form Γ̃ on N ′ with dΓ̃ = −iΩ exists: namely,
Γ̃ = ∂ϕ with ϕ : N ′ → R such that iΩ = ∂∂ϕ. Now Γ̃ = Γ + dΦ for some
C∞ function Φ : N ′ → C, and so H is J-invariant for the holomorphic-bundle
structure in L′ that makes the section w̃ = eΦw holomorphic (since the connection
form corresponding to w̃ is Γ̃ ). Any other C∞ section of L′ without zeros having
a (1, 0) connection form must equal eΨ w̃, with Ψ : N ′ → C holomorphic as dΨ is
of type (1, 0), so that the structure in question is unique.

Remark 2.5. Given a holomorphic line bundle L over a complex manifold N,
let N∗ stand for N treated as the zero section N∗ ⊂ L∗ in the dual bundle L∗,
cf. (2.1.v). We define the inversion biholomorphism L r N → L∗ r N∗ to be the
assignment (y, z) 7→ (y, z−1), where z−1 ∈ L∗y is the unique C-linear functional
Ly → C sending z to 1. The inversion biholomorphism clearly sends the horizontal
distribution H of any C∞ linear connection in L onto the horizontal distribution
H∗ of the corresponding dual connection in L∗. It also sends any Hermitian fibre
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metric 〈 , 〉 in L onto the multiplicative inverse of its dual metric 〈 , 〉∗ in L∗, that
is, 〈z−1, z−1〉∗ = 〈z, z〉−1 whenever y ∈ N and z ∈ Ly r {0}.

§3. Basic properties and simplest examples

This section begin with some basic results on special Kähler-Ricci potentials,
established in [7], and gathered here for easy reference. They are followed by four
numbered examples of cases where a function on a Kähler manifold satisfying con-
ditions seemingly weaker than (1.1) must in fact be a special Kähler-Ricci potential
due to additional circumstances such as one-dimensionality, reducibility with factors
of a special type, or a large symmetry group. Example 3.6 is of particular impor-
tance, since what it describes is precisely our Class 2, introduced, more explicitly,
later in §6.

First, we have some basic facts. Given a special Kähler-Ricci potential τι on a
Kähler manifold (M, g), let M ′ ⊂M be the open set on which dτι 6= 0, and let the
vector fields v, u on M , distributions H,V on M ′, and a function Q : M → R be
defined by v = ∇τι, u = Jv, V = Span {v, u}, H = V⊥, and Q = |∇τι|2. Due to
the eigenvector clause of (1.1) and Hermitian symmetry of both r and ∇dτι (cf.
[7], Lemma 5.2), there exist C∞ functions φ, ψ, λ, µ : M ′ → R with

(3.1)

r = λg and ∇dτι = φg on H,
r = µg and ∇dτι = ψg on V ,
r(H,V) = (∇dτι)(H,V) = {0} for H,V as above.

The last line states that H is both r-orthogonal and ∇dτι-orthogonal to V. If
dimCM = 1, we set φ = λ = 0. By (3.1) and [7], Lemmas 7.5, 11.1(b), on M ′,

(3.2)

a) ∇wv equals φw (or, ψw) whenever w is a section of H (or, of V),

b) dQ = 2ψ dτι , that is, ∇Q = 2ψv , and ∇φ = 2(ψ − φ)φv/Q ,

c) Y = 2ψ + 2(m− 1)φ for Y = ∆τι ,

d) dY = −2µdτι , where Y = ∆τι .

Lemma 3.1. For a special Kähler-Ricci potential τι on a Kähler manifold (M, g),
let Q,φ and M ′ be as above. Then

(i) either φ = 0 identically on M ′, or φ 6= 0 everywhere in M ′,
(ii) if φ 6= 0 on M ′, there exists a constant c with Q/φ = 2(τι − c) and

τι 6= c everywhere in M ′,
(iii) a number ε ∈ {−1, 0, 1} is uniquely defined by requiring that ε = 0 when

φ = 0 on M ′ and ε = sgn (τι − c) on M ′ if φ 6= 0 everywhere in M ′.

(Thus, ε = 0 when dimCM = 1.) In fact, (i) and (ii) are proved in [7],
Lemma 12.5; relation τι 6= c on M ′ (obvious since Q/φ = 2(τι − c) and Q 6= 0 on
M ′ by the definition of M ′) yields (iii) as M ′ is connected, cf. Remark 2.3(ii). �

Example 3.2. In complex dimension m = 1 special Kähler-Ricci potentials are
nothing else than nonconstant Killing potentials τι (the rest of (1.1) being vacuously
true). When defined only up to an additive constant, they thus are, locally, in a
one-to-one correspondence τι 7→ u = J(∇τι) with nontrivial Killing fields u. This
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is clear from Lemma 2.2: if m = 1, every Killing field u is holomorphic, as skew-
adjointness of ∇u gives ∇u = ψJ for some function ψ, so that J and ∇u
commute.

Example 3.3. Special Kähler-Ricci potentials τι on suitable product Kähler man-
ifolds (M, g) = (N,h) × (S, γ) of complex dimensions m ≥ 2 are obtained when
(N,h) is a Kähler manifold with dimC = m−1, Einstein unless m = 2, and (S, γ)
is an oriented Riemannian surface with a nonconstant Killing potential τι : S → R,
which we then treat as a function on M = N × S, constant along the N factor.
(The existence of such τι amounts, locally, to the existence of a nontrivial Killing
field on (S, γ), cf. Lemma 2.2 and Example 3.2.) In fact, conditions (3.1) are sat-
isfied by the N and S factor distributions H and V on M , along with φ = 0,
the Laplacian ψ = ∆τι/2 of τι/2 in (S, γ), the function λ such that λh is the
Ricci tensor of h, and the Gaussian curvature µ of γ. Namely, as ∇u = ψJ
(Example 3.2), we get ∇dτι = ψγ from (2.1.iii) with g replaced by γ.

For the next example, we need a lemma.

Lemma 3.4. Let two vector fields v, u on a Riemannian manifold (M, g) be
linearly independent at every point, and let H be a distribution on M with TM =
H⊕V, where V = Span {v, u}. If G is a group of isometries of (M, g) such that
at every x ∈ M the action on TxM , via differentials, of the isotropy subgroup
of G at x leaves v(x), u(x) and Hx invariant and acts transitively on the unit
sphere in Hx, then H = V⊥ and all nonzero vectors in H are eigenvectors of
every G-invariant symmetric twice-covariant tensor field b on M .

In fact, for such b and x the functions b(v(x), w), b(u(x), w) and b(w,w) of
w ∈ Hx are constant on the unit sphere; the first two are also linear, so they must
be zero. This yields the last claim and, applied to b = g, gives H = V⊥. �

Example 3.5. Special Kähler-Ricci potentials τι can also be constructed on the
Kähler manifold (U, g), where U is a G-invariant nonempty connected open subset
of a Hermitian vector space V with dimCV = m ≥ 1 and g is a G-invariant Kähler
metric on U, while G ≈ U(m) is the group of automorphisms of V preserving the
Hermitian inner product 〈 , 〉. Namely, we may choose τι : M → R to be a Killing
potential with u = Jv for v = ∇τι, where ∇ is the g-gradient and u is the vector
field on U with u(x) = aix for any fixed a ∈ R r {0}.

Namely, u is an infinitesimal generator of the center subgroup of G, and hence
a G-invariant holomorphic Killing field on (U, g). Thus, τι exists and is unique up
to an additive constant (cf. Lemma 2.2). Applying Lemma 3.4 to the distribution
V on V r {0}, with Vx = Cx and its 〈 , 〉-orthogonal complement H, we now see
that V and H are g-orthogonal to each other and (1.1) holds.

Example 3.6. For an integer m ≥ 1 and a fixed point y ∈ CPm, let g be any
G-invariant Kähler metric on CPm, where G is the group of all biholomorphisms
CPm → CPm that keep y fixed and preserve the Fubini-Study metric gFS. A
special Kähler-Ricci potential τι on (CPm, g) is obtained as follows: G ≈ U(m)
in view of the usual identification of Cm with an open dense set in CPm, under
which 0 = y. The center of G, isomorphic to U(1), is thus generated by a nontrivial
holomorphic Killing field u on (CPm, g), unique up to a factor; we choose a Killing
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potential τι : CPm → R with u = J(∇τι), where ∇ is the g-gradient. Such τι
exists and is unique up to an additive constant (Lemma 2.2). That τι is a special
Kähler-Ricci potential on (CPm, g) is immediate in view of Example 3.5.

§4. A local model

In this section we describe a local model for special Kähler-Ricci potentials:
a construction that yields, locally, up to local biholomorphic isometries, all special
Kähler-Ricci potentials τι on Kähler manifolds at points with dτι 6= 0. The italicized
statement is a classification result, proved in [7], Theorem 18.1.

Let there be given data I, τι,Q, r, a, ε, c,m,N, h,L,H, 〈 , 〉 consisting of an open
interval I ⊂ R, a real variable τι ∈ I, a real constant a 6= 0, positive C∞ functions
Q, r of the variable τι ∈ I with dr/dτι = ar/Q, constants ε, c such that either
ε = 0 (and c is left undefined), or c /∈ I and ε = sgn (τι − c) = ±1 for all τι ∈ I,
an integer m ≥ 1, a Kähler manifold (N,h) of complex dimension m − 1, also
assumed to be Einstein unless m = 2, a C∞ complex line bundle L over N, and
the horizontal distribution H of a connection in L making a fixed Hermitian fibre
metric 〈 , 〉 parallel and having the curvature form Ω = −2εaω(h), where ω(h) is
the Kähler form of (N,h). We also set r− = inf r and r+ = sup r on I.

We allow here the possibility that m = 1, so that N consists of a single point
y, and the total space L = {y}×Ly may be identified with the fibre Ly. Then, by
definition: ε = 0, the “zero metric” h is Einstein, and Ω = 0.

Let U be the open subset of L r N given by r− < r < r+, where, this time,
r : L → [0,∞) is the norm function of 〈 , 〉. We define a metric g on U by

(4.1)
i) g = f π∗h on H, g = (ar)−2QRe〈 , 〉 on V , g(H,V) = {0}, where

ii) f = 1 (when ε = 0), or f = 2|τι − c| (when ε = ±1).

The symbols π,V,H and 〈 , 〉 stand here for the bundle projection L → N, the
vertical and horizontal distributions, and the fixed Hermitian fibre metric in L,
while Re〈 , 〉 is the standard Euclidean metric on each fibre of L, and the inverse
diffeomorphism r 7→ τι of τι 7→ r is used to treat functions of τι ∈ I as functions
of r ∈ (r−, r+), so that r, τι,Q, f now become C∞ functions U → R. The last
relation in (4.1.i) means that H is g-orthogonal to V.

According to Remark 2.4, L has a unique structure of a holomorphic line bundle
over N such that H is J-invariant. This turns U ⊂ L into a complex manifold
with dimC U = m. As shown in [7], §16 (especially Remark 16.1),

(a) g is a Kähler metric on U, for which τι is a special Kähler-Ricci potential,
(b) Q treated as a function U → R is given by Q = |∇τι|2.

Remark 4.1. Whenever I, τι,Q, r, a, ε, c,m,N, h,L,H, 〈 , 〉 satisfy the above as-
sumptions, the same assumptions hold for the new set of data obtained by leaving
I, τι,Q, ε, c,m,N, h unchanged, and replacing the function r of the variable τι by
r∗ = 1/r, the constant a by the constant a∗ = −a, and L, 〈 , 〉,H by the dual
complex line bundle L∗ with the corresponding dual objects 〈 , 〉∗,H∗.

In fact, the curvature forms Ω,Ω∗ of a given connection and its dual differ only
by sign, since so do their connection forms Γ, Γ ∗ (see (2.1.vii)) relative to two local
sections, without zeros, that have the form w and w−1 (cf. Remark 2.5).
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Remark 4.2. Let ϕ be a Ck+1 function, 0 ≤ k ≤ ∞, of a real variable s, defined
on an interval containing 0 (possibly as an endpoint), and such that ϕ(0) = 0.
Then ϕ(s)/s can be extended to a Ck function of s defined on the same interval,
including s = 0. In fact, integrating d[ϕ(sσ)]/dσ we obtain the Taylor formula
ϕ(s) = sH(s), where H(s) =

∫ 1

0
ϕ̇(sσ)dσ with ϕ̇ = dϕ/ds.

Remark 4.3. If Q is a C∞ function of the real variable τι, defined on a half-open
interval I ′, positive on its interior I, and such that Q = 0 and dQ/dτι = 2a 6= 0
at the only endpoint τι0 of I ′, then, for any positive C∞ function r of τι ∈ I with
dr/dτι = ar/Q, setting r+ = sup r on I, we have

(i) r → 0 as τι → τι0, while Q/r2 has a positive limit as τι → τι0,
(ii) τι and Q/r2 are C∞ functions of r2 ∈ [0, r2+) with Q/r2 > 0 at r = 0.

In fact, Q/(τι − τι0) is a C∞ function of τι ∈ I ′ equal to 2a at τι = τι0 (Remark
4.2), and so 2d[log r]/dτι = 2a/Q equals 1/(τι − τι0) plus a C∞ function of τι, that
is, log r2 equals log |τι − τι0| plus a C∞ function of τι ∈ I ′. Hence r2/(τι − τι0)
is a C∞ function of τι ∈ I ′ with a nonzero value at τι0. Now Q/|τι − τι0| and
|τι − τι0|/r2 both have positive limits as τι → τι0 (the former limit being 2|a|), and
so the same follows for Q/r2, which proves (i). In view of the statement italicized
above, the assignment τι 7→ r2 is a C∞ diffeomorphism of I ′ onto [0, r2+), sending
the endpoint τι0 to 0, and so (i) implies (ii).

Part (ii) of the following lemma shows how the construction described above can
be modified, so as to yield a special Kähler-Ricci potential τι on a Kähler manifold
(Uo, g) with a critical manifold of complex codimension one (namely, the zero
section N). The examples thus obtained constitute local models for one of the two
possible cases of a local classification, similar to that mentioned at the beginning
of this section, but this time valid at critical points of τι. See Remark 16.4.

Lemma 4.4. For any data I, τι,Q, r, a, ε, c,m,N, h,L,H, 〈 , 〉 satisfying the as-
sumptions listed above, and the corresponding objects U, g and τι : U → R,

(i) the inversion biholomorphism LrN → L∗rN∗, described in Remark 2.5,
sends U, g, τι onto the analogous objects U∗, g∗, τι∗ obtained by applying
the above construction to the new data introduced in Remark 4.1;

(ii) if, in addition, I has a finite endpoint τι0 such that Q admits a C∞

extension to I ′ = I ∪ {τι0} with Q = 0 and dQ/dτι = 2a at τι = τι0,
while either ε = ±1 and τι0 6= c, or ε = 0 and c is undefined, then g
and τι have C∞ extensions to a metric and a function on the open set
Uo ⊂ L given by 0 ≤ r < r+, that is, on the bundle of radius r+ open
disks in L.

Proof. Let r, r∗ also stand for the norm functions L → R and L∗ → R of 〈 , 〉
and 〈 , 〉∗. That the inversion biholomorphism sends U onto U∗ is clear as U, U∗

are given by r− < r < r+ and r∗− < r∗ < r∗+, with r∗± = 1/r∓. Next, using the
multiplicative notation ζz ∈ C for evaluating a functional ζ ∈ L∗y on z ∈ Ly,
we see that the differential at any (y, z) ∈ U of the inversion biholomorphism
acts on vertical vectors ż ∈ T(y,z)Ly = Vy via ż 7→ −(ζż)ζ, where ζ = z−1,
and so it pulls back the Euclidean metric Re〈 , 〉∗ on T(y,ζ)L∗y onto 1/r4 times the
Euclidean metric on T(y,z)Ly. Hence it sends the restriction of g to the vertical
distribution V in U onto the analogous restriction of g∗, and (i) follows from (4.1)
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and Remark 2.5. Next, under the assumptions of (ii), the real fibre metric g on
TU = H⊕V is the direct sum of f π∗h in H and θRe〈 , 〉 in V, with θ = Q/(ar)2

and f as in (4.1.ii). The required extensions exist since the distributions H,V and
the fibre metrics π∗h and Re〈 , 〉 on them are defined and of class C∞ everywhere
in L, while, by Remark 4.3(ii), the functions τι, θ, f have C∞ extensions to Uo,
which are positive in the case of θ and f (the latter due to our assumption that
τι0 6= c unless ε = 0). This completes the proof. �

§5. Class 1: special Kähler-Ricci potentials on CP1 bundles

In this section we construct examples of special Kähler-Ricci potentials τι on
compact Kähler manifolds (M, g), in any complex dimension m ≥ 1. The resulting
class of triples (M, g, τι ) will be called Class 1. First, let us suppose that

(5.1)

[τιmin, τιmax] is a nontrivial closed interval of the variable τι with a C∞

function [τιmin, τιmax] 3 τι 7→ Q ∈ R, which is positive on the open inter-
val (τιmin, τιmax) and vanishes at the endpoints τιmin, τιmax, while the
values of dQ/dτι at the endpoints are mutually opposite and nonzero.

We then select an endpoint τι0 of the interval [τιmin, τιmax], a C∞ diffeomorphism
(τιmin, τιmax) 3 τι 7→ r ∈ (0,∞) with dr/dτι = ar/Q, where a ∈ R is characterized
by dQ/dτι = 2a at τι = τι0, and real numbers ε, c such that either ε = 0 (and c is
undefined), or ε = sgn (τι − c) = ±1 for all τι ∈ [τιmin, τιmax]. (Cf. Remark 5.1.)

We also fix an integer m ≥ 1, a compact Kähler manifold (N,h) with dimCN =
m− 1 which is Einstein unless m = 2, and a C∞ complex line bundle L over N
with a U(1)-connection having the curvature form Ω = −2εaω(h), where ω(h) is
the Kähler form of (N,h). About the case m = 1, see the third paragraph of §4.

Formula (4.1) now defines a Kähler metric g on U = LrN, while τι becomes a
special Kähler-Ricci potential on (U, g), when treated, with the aid of the inverse
diffeomorphism r 7→ τι, as a function of the norm function r : U → (0,∞). This is
immediate from (a) in §4.

Let M denote the projective compactification of L, that is, the holomorphic
CP1 bundle over N obtained from the disjoint union L ∪ L∗ by identifying the
complements of the zero sections N ⊂ L and N∗ ⊂ L∗ via the inversion biholo-
morphism LrN → L∗ rN∗ described in Remark 2.5.

Our Class 1 triple (M, g, τι ) arises since both g and τι have C∞ extensions to
a Kähler metric and a special Kähler-Ricci potential on M , again denoted by g, τι.

In fact, by (5.1), the additional assumptions in Lemma 4.4(ii) hold both for the
original data and for the “dual” ones, obtained when r∗ = 1/r, a∗ = −a, L∗ and
the other endpoint are used instead of r, a,L and τι0, while the connection and
fibre metric in L are replaced by their duals in L∗, and the other ingredients are
left unchanged. Now, in view of Lemma 4.4(i), the inversion biholomorphism sends
our pair g, τι on L r N onto analogous objects on L∗ r N∗, obtained as above
from the dual data, while, by Lemma 4.4(ii), both pairs admit extensions to L
and, respectively, L∗.

Remark 5.1. That τι 7→ r maps (τιmin, τιmax) onto (0,∞) is clear as Q = 0 6=
dQ/dτι at τιmin and τιmax, and so the limits of log r at both endpoints are infinite.
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Remark 5.2. For (M, g) and τι obtained above, τι has two critical manifolds:
the zero sections N ⊂ L and N∗ ⊂ L∗. This is clear from (b) in §4, since Q = 0
only at the endpoints of [τιmin, τιmax], which correspond to r = 0 and r = ∞.

Remark 5.3. Some of the Class 1 triples (M, g, τι ) constructed above turn out
to be (gradient) Kähler-Ricci solitons, namely, special cases of examples found by
Koiso [14] (for a brief exposition, see [19], §4).

§6. Class 2: special Kähler-Ricci potentials on CPm

We will now describe examples of special Kähler-Ricci potentials τι on compact
Kähler manifolds (M, g), in any complex dimension m ≥ 1, such that M is bi-
holomorphic to CPm. The triples (M, g, τι ) constructed here form what we refer
to as Class 2. A different description of Class 2 was given earlier, in Example 3.6
(see Remark 6.2); the presentation in this section is, however, much more explicit,
thus providing not only a clear picture of the corresponding moduli space, but also
a convenient reference for the classification argument in §16.

A part of the construction described below works under assumptions weaker
than those made here; the resulting examples of special Kähler-Ricci potentials
with isolated critical points on noncompact Kähler manifolds play a crucial role in
a local classification result which generalizes the one mentioned at the beginning of
§4. See Remark 16.4.

As in the construction of §5 that led to Class 1, we fix τιmin, τιmax and Q satisfying
the positivity-and-boundary conditions (5.1). Then we choose an endpoint c of
[τιmin, τιmax], a C∞ diffeomorphism (τιmin, τιmax) 3 τι 7→ r ∈ (0,∞) with dr/dτι =
ar/Q for a ∈ R r {0} such that 2a = dQ/dτι at τι = c, a complex vector space V
with dimCV = m ≥ 1, and a Hermitian inner product 〈 , 〉 in V . (The image of
τι 7→ r is (0,∞), cf. Remark 5.1; also, r → 0 as τι → c, due to the choice of a.)
As for the case m = 1, see the paragraph preceding (4.1).

We now define a Riemannian metric g on V r {0} by |a|r2g = 2|τι − c|Re〈 , 〉
on H, a2r2g = QRe〈 , 〉 on V and g(H,V) = {0}, where V is the distribution
on V r {0} with Vx = Cx and H is its orthogonal complement relative to the
Euclidean metric Re〈 , 〉, while r also stands for the norm function V → [0,∞),
and the inverse diffeomorphism r 7→ τι of τι 7→ r is used to treat τι and Q as
functions V → R.

Finally, let M be the projective space, biholomorphic to CPm, of all complex
lines through 0 in V ×C. We treat V as an open subset of M using the standard
holomorphic embedding V 3 x 7→ SpanC{(x, 1)} ∈ M . Both g and τι then have
C∞ extensions to M , again denoted by g, τι, such that g is a Kähler metric on M
and τι is a special Kähler-Ricci potential on (M, g).

We prove the claim made in the last sentence using three steps. First, we will
verify that g is a Kähler metric on V r{0} and τι is a special Kähler-Ricci potential
on (V r {0}, g). In the second (or, third) step we will show the existence of the
required extensions of g and τι from V r{0} to M r{0} (or, respectively, to V ).

The first step is immediate from conclusions (a), (b) in §4, since our definition
of g is a special case of (4.1) for the data I, τι,Q, r, a, ε, c,m,N, h,L,H, 〈 , 〉 formed
by I = (τιmin, τιmax) with τι 7→ r and Q, a, c,m chosen above, ε = ±1 with εa > 0
(so that ε(τι− c) > 0 for all τι ∈ I, due to our choice of a), N ≈ CPm−1 defined to
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be the projective space of V , the metric h on N equal to 1/|a| times the Fubini-
Study metric gFS, the tautological line bundle L over N, as well as H = V⊥ and
〈 , 〉 appearing earlier in this section. More precisely, H and 〈 , 〉 make sense as
objects in L due to the standard biholomorphic identification L r N = V r {0}
given, in the notation of (2.1.v), by (y, z) 7→ z. The restriction to the fibres of L
of the inner product 〈 , 〉 in V then is a fibre metric in L, while H = V⊥ is the
horizontal distribution of the connection in L obtained by projecting the standard
flat connection in the product bundle E = N × V onto the L summand in the
decomposition E = L ⊕ L⊥. Finally, Ω = −2εaω(h), as required in §4, that is,
Ω = −2ωFS for the Kähler form ωFS of gFS. Namely, Ω and ωFS are invariant
under the action of the unitary group of V on N ≈ CPm−1, and so Ω equals a
constant times ωFS, while integrating over a fixed complex projective line S ⊂ N
we get

∫
S
Ω = −2π = −2

∫
S
ωFS. (That the complex-manifold structure of V r{0}

agrees with the holomorphic-bundle structure of L provided by Remark 2.4 is clear
from uniqueness of the latter.)

In the second step, let L∗ be the dual of the tautological bundle L over N.
Using the notation of (2.1.v), we define a mapping L∗ →M r {0} by assigning to
(y, ζ) the graph of the linear functional ζ ∈ y∗. (The graph is an element of M , as it
is a line in y×C ⊂ V ×C.) This mapping is obviously a biholomorphism; restricted
to the complement of the zero section in L∗, it becomes, under our identification
LrN = V r {0}, the inverse of the inversion biholomorphism of Remark 2.5, and
the required conclusion is immediate from Lemma 4.4(ii).

For the third step, let the vector fields v, u and 1-forms ξ, ξ′ on V be given
by v(x) = ax, u(x) = iax, for our a, and ξ = Re〈v, · 〉, ξ′ = Re〈u, · 〉. Then g
on V r {0} is the combination of ξ ⊗ ξ + ξ′ ⊗ ξ′ and Re〈 , 〉 with the coefficients
[Q − 2a(τι − c)]/(ar)4 and 2(τι − c)/(ar2), where (ξ⊗ ξ′)(w,w′) = ξ(w)ξ′(w′) for
tangent vectors w,w′. In fact, as (τι− c)/a > 0, both g and this combination yield
the same value when evaluated on two vectors, of which one is in H and the other
in H or V and, similarly, the same value when evaluated on v, v, or v, u, or u, u
(cf. the line preceding Remark 2.4). Next, both coefficients are C∞ functions of
the variable r2 ∈ [0,∞). Namely, for 2(τι− c)/(ar2) this is clear from Remarks 4.2
(with s = r2) and 4.3(ii) (with τι0 = c). Next, Q/r2 and 2a(τι − c)/r2, treated
as C∞ functions of r2 ∈ [0, r2+) (see Remark 4.3), have the same positive value
at r2 = 0, since dr/dτι = ar/Q and so Q/r2 = 2adτι/d(r2). Thus, their difference
divided by r2 is a C∞ function of r2 ∈ [0, r2+) (from Remark 4.2 for s = r2).
Positivity of 2a(τι − c)/r2 at r2 = 0 also shows that the limit of g at 0 ∈ V is
positive definite, completing the third step of our argument.

Remark 6.1. For (M, g) and τι constructed as above, τι has two critical mani-
folds: the one-point set {0} ⊂ V ⊂ M , and M r V (the hyperplane at infinity),
due to (b) in §4 and the fact that Q > 0 on (τιmin, τιmax), while Q = 0 at the
endpoints of [τιmin, τιmax], which correspond to r = 0 and r = ∞ (cf. Remark 5.1).

Remark 6.2. All triples (M, g, τι ) constructed here obviously have the properties
listed in Example 3.6. Conversely, every triple (CPm, g, τι ) of Example 3.6 can also
be obtained as described in this section. This fact, which will not be used, is an
immediate consequence of Theorem 16.3.



14 A. DERDZINSKI AND G. MASCHLER

§7. Dimensions of critical manifolds

Now that we have described two classes of examples, we proceed to the second
part of our presentation; it will culminate in Theorem 16.3, classifying all special
Kähler-Ricci potentials τι on compact Kähler manifolds. This section is a first
major step towards the proof of Theorem 16.3. (The next such step is §11.) Specif-
ically, Proposition 7.3 states that the complex dimension of a critical manifold N
of τι must be 0 or dimCM − 1, and describes the structure of the Hessian of τι
along N.

Remark 7.1. Given a special Kähler-Ricci potential τι on a Kähler manifold
(M, g), let Q = g(v, v) for v = ∇τι, and let φ, ψ be as in (3.1).

(i) Writing ḟ = d[f(x(s))]/ds for a fixed C1 curve s 7→ x(s) ∈M and a C1

function f defined in M, we have ḟ = d ẋf = g(∇f, ẋ), where ẋ = dx/ds.
Consequently, g(v, ẋ) = τ̇ι and, by (3.2.b), Q̇ = 2ψτ̇ι.

(ii) Given y ∈M with v(y) = 0, let s 7→ x(s) ∈M be a C2 curve such that
x(0) = y and ẋ(0) is an eigenvector of (∇dτι)(y) for an eigenvalue a 6= 0
(which exists since ∇dτι 6= 0 at y by Remark 2.3(i).) Then τ̇ι = 0 and
τ̈ι = a|ẋ|2 6= 0 at s = 0 (notation of (i)), so that τ̇ι 6= 0 for all s 6= 0 near
0. In fact, τ̇ι = g(v, ẋ) (see (i)), and so τ̈ι = g(∇ẋv, ẋ) + g(v,∇ẋẋ), which
at s = 0 equals (∇dτι)(ẋ, ẋ) (by (2.1.iii), as v(y) = 0).

In the next lemma, critical manifolds are defined as in §2, and we use the notation
of §3, for a special Kähler-Ricci potential τι on a Kähler manifold: M ′ is the set of
non-critical points for τι, and φ, ψ : M ′ → R are characterized by (3.1). Thus, by
Lemma 3.1(i), either φ = 0 identically or φ 6= 0 everywhere in M ′. Next, c is the
constant defined (only when φ 6= 0 on M ′) in Lemma 3.1(ii). Finally, a 2m-tuple
such as φ(y), . . . , φ(y), ψ(y), ψ(y) stands for ψ(y), ψ(y) when m = 1.

Lemma 7.2. Let τι be a special Kähler-Ricci potential on a Kähler manifold
(M, g). The functions φ and ψ then have unique continuous extensions to M ,
which we also denote by φ and ψ. Next, the eigenvalues of ∇dτι at any critical
point y of τι, listed with their multiplicities, are φ(y), . . . , φ(y), ψ(y), ψ(y), and
the eigenspace of ∇dτι for the eigenvalue ψ(y) is the normal space, at y, of the
critical manifold of τι containing y. Finally, for any critical point y of τι,

(I) φ(y) = 0 6= ψ(y) if either φ = 0 on M ′, or φ 6= 0 on M ′ and τι(y) 6= c,
(II) ψ(y) = φ(y) 6= 0, if φ 6= 0 on M ′ and τι(y) = c.

Proof. Let y be a critical point of τι. Since M ′ is dense in M (Remark 2.3(ii)),
we may choose a sequence of points in M ′ converging to y, but otherwise arbi-
trary, and select, at each point x of the sequence, an orthonormal basis of TxM
formed by eigenvectors of (∇dτι)(x) ordered so that the corresponding eigenvalues
are φ(x), . . . , φ(x), ψ(x), ψ(x) (cf. (3.1)). A subsequence of the sequence of bases
converges, in a suitable frame bundle, to an orthonormal basis of TyM consisting
of eigenvectors of (∇dτι)(y) for some eigenvalues φ0, . . . , φ0, ψ0, ψ0 such that φ0

and ψ0 are the limits of the sequences φ(x) and ψ(x).
Considering two separate cases (ψ0 = φ0 and ψ0 6= φ0) we easily see that the

limits φ0 and ψ0 do not depend on the choice of a sequence in M ′ converging to
y. Hence φ(x) → φ0 and ψ(x) → ψ0 as x→ y, where x is a variable point of M ′.
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We thus obtain the required continuous extensions, with φ(y) = φ0 and ψ(y) = ψ0.
The assertion about the eigenvalues is now obvious as well.

Relation ψ(y) 6= 0 in (I), (II) will clearly follow from the remainder of (I) and
(II), since, as we saw, φ(y), . . . , φ(y), ψ(y), ψ(y) form the spectrum of (∇dτι)(y),
while (∇dτι)(y) 6= 0 (Remark 2.3(i)). To prove (I), we may now assume that
φ 6= 0 on M ′ and τι(y) 6= c, and then let x → y, for x ∈ M ′, in the equality
|∇τι|2 = Q = 2(τι−c)φ (Lemma 3.1(ii)). For (II), let us choose a curve s 7→ x(s) as
in Remark 7.1(ii), so that τ̇ι 6= 0 for all s 6= 0 close to 0. Hence, by l’Hospital’s rule,
Q/(τι − c) evaluated at x(s) tends, as s → 0, to the limit of Q̇/(τι − c)˙ = 2ψτ̇ι/τ̇ι
(see Remark 7.1(i)), that is, to 2ψ(y), while, by Lemma 3.1(ii), Q/(τι−c) → 2φ(y).

The conclusion about the eigenspace is also immediate, as the tangent space at
y of the critical manifold containing y is the nullspace of (∇dτι)(y) (cf. (d) in
Remark 2.3(iii) and (2.1.iii)). This completes the proof. �

Continuity of the extensions in Lemma 7.2 can actually be replaced by their C∞

differentiability, which we will not use; cf. Lemma 9.1 and (3.2.c).
The following proposition establishes a crucial dichotomy involving the dimen-

sions of critical manifolds of special Kähler-Ricci potentials. Namely, there are just
two possible cases, corresponding to (I) and (II) in Lemma 7.2.

Proposition 7.3. Every critical manifold N of a special Kähler-Ricci potential
τι on a Kähler manifold (M, g) is a complex submanifold of complex codimension
one, or consists of a single point.

Furthermore, there exists a real constant a depending on N which, at any
y ∈ N, is the unique nonzero eigenvalue of ∇dτι.

Proof. If y ∈ N, the spectrum of (∇dτι)(y) is {0, . . . , 0, a, a} in case (I) (of
Lemma 7.2), or {a, . . . , a} in case (II), with a = ψ(y), while, by Lemma 7.2,
(TyN)⊥ is its eigenspace for the unique nonzero eigenvalue a. Thus, the first asser-
tion follows. To obtain constancy of a on N (that is, its independence of y ∈ N),
we may assume that dimCM = m ≥ 2. One of conditions (I), (II) in Lemma 7.2
now must hold for all y ∈ N, as the choice between (I) and (II) is determined by
dimCN . It now follows that a is constant on N. Namely, by the above description
of the spectrum of (∇dτι)(y), the value of Y = ∆τι at y is 2a in case (I) and 2ma
in case (II). However, dY = −2r(∇τι, · ) (Remark 2.1), so that dY = 0 wherever
dτι = 0, and hence Y is constant on N. This completes the proof. �

The final clause of Proposition 7.3 provides a detailed description of the structure
of the Hessian ∇dτι at any point y ∈ N. Namely, if a is the only eigenvalue,
∇dτι equals ag at y, while, if it is not, the other eigenvalue must be 0, with the
eigenspace TyN (see (d) in Remark 2.3(iii)). In both cases, the a-eigenspace of
∇dτι at y is the normal space (TyN)⊥. Thus, with v = ∇τι and u = Jv, we have,

(7.1)
∇wv = ∇wu = 0 if w ∈ TyN, and

∇wv = aw, ∇wu = aJw if w ∈ (TyN)⊥.

For v this is now clear since ∇v has the same eigenvalues and eigenvectors at y
as ∇dτι (cf. (2.1.iii)); for u, it in turn follows since ∇J = 0.
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Remark 7.4. Suppose that τι is a special Kähler-Ricci potential on a Kähler
manifold (M, g). The continuous extensions φ, ψ : M → R of Lemma 7.2 then
are constant along any critical manifold N of τι. More precisely, in terms of the
constant a 6= 0 associated with N as in Proposition 7.3, φ = 0 on N and ψ = a
on N if dimCN = dimCM − 1, while φ = ψ = a on N if N is a one-point set.

This is clear as ψ = a on N, cf. Proposition 7.3 and Lemma 7.2.

Lemma 7.5. Let τι be a special Kähler-Ricci potential on a Kähler manifold
(M, g) of complex dimension m ≥ 2, and let c and ε be as in Lemma 3.1.

(i) If ε = 0, no critical manifold of τι is a one-point set.
(ii) If ε 6= 0, a point y ∈ M satisfies the condition τι(y) = c if and only if

{y} is a critical manifold of τι.

In fact, (i) is obvious from Remark 7.4 (as condition φ = 0 on M ′ contradicts
φ = ψ = a 6= 0 on N). Now let y ∈M . Assertion (ii) is obvious when dτι 6= 0 at y
(namely, one then has τι(y) 6= c, as |∇τι|2 = Q = 2(τι−c)φ by Lemma 3.1). Finally,
let y be a critical point of τι, and let N be the critical manifold of τι containing y.
Using Lemma 7.2, we see that if τι(y) 6= c (or, τι(y) = c), the complex dimension
of (TyN)⊥ equals 1 (or, respectively, m), which yields (ii) in this case as well. �

§8. Geodesic vector fields

The main result of this section is Lemma 8.3, stating that the gradient of a
special Kähler-Ricci potential τι on a Kähler manifold is tangent to all sufficiently
short normal geodesic segments emanating from any critical manifold of τι. This
fact will be used in §9 to obtain a differentiability assertion (Lemma 9.1), needed
for our classification result (Theorem 16.3).

Let ∇ be a fixed connection in the tangent bundle TM of a manifold M . (It
need not be the Levi-Civita connection of a Riemannian metric.) Condition

(i) ∇vv = ψv for some function ψ : M → R
imposed on a C∞ vector field v on M , implies C∞-differentiability of ψ on the
open set where v 6= 0 (but not necessarily continuity of ψ on M). Moreover,

(ii) a C∞ vector field v on M satisfies (i) if and only if all its integral curves
s 7→ x(s) are (re-parameterized) geodesics of ∇,

(iii) if (i) holds for a C∞ vector field v on M and X ⊂ M is a geodesic
segment such that v(x) is tangent to X at some point x ∈ X, while
v 6= 0 at all points of X, then v is tangent to X at every point of X.

In fact, for integral curves, ẋ(s) = v(x(s)) (with ẋ = dx/ds), and so ∇ẋẋ at
any s equals ∇vv at x(s). Now (ii) follows since curves s 7→ x(s) obtained by
re-parameterizing geodesics are characterized by ∇ẋẋ = ψẋ, where ψ, this time,
is a function of s. To verify (iii), note that both X and the underlying set X̃ of
the maximal integral curve of v containing x are geodesics (by (ii)), tangent to
each other at x, and so x ∈ X ′ ⊂ X̃ for some nontrivial subsegment X ′ of X,
which may be chosen maximal with this property. Then X ′= X, for otherwise an
endpoint x ′ of X ′ would be an interior point of X and v(x ′) 6= 0 would be tangent
to X at x ′, thus allowing X ′ to be extended past x ′ despite its maximality.

Remark 8.1. Given a connection ∇ in the tangent bundle TM , we use the
standard symbol expx : Ux → M for the geodesic exponential mapping of ∇ at
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any point x ∈M . Here Ux is a neighborhood of the zero vector in TxM , namely,
the union of maximal line segments emanating from zero on which expx is defined.
Thus, s 7→ x(s) = expxsw is the geodesic with x(0) = x and ẋ(0) = w ∈ TxM . A
related mapping is Exp : UExp →M with Exp(x,w) = expxw , defined on the set
UExp =

⋃
x∈M ({x} × Ux) in the total space TM = {(x,w) : x ∈M, w ∈ TxM},

containing the zero section M (cf. (2.1.v)). It is well known that UExp is open in
TM and Exp is of class C∞. (See [12], Proposition 8.1 in Ch. III.)

Lemma 8.2. Suppose that ∇ is a connection in the tangent bundle TM of a
manifold M and v is a C∞ vector field on M with (i), while X ′ ⊂ M is a
geodesic segment containing an endpoint y with v(y) = 0. If ∇wv = aw 6= 0 for
some vector w tangent to X ′ at y and some a ∈ R, then

(a) there exists a nontrivial compact subsegment X of X ′, containing y, and
such that v(x) 6= 0 for all x ∈ X r {y},

(b) for any subsegment X ⊂ X ′ with the properties listed in (a) we have
v(x) ∈ TxX at every x ∈ X.

Proof. Let s 7→ x(s) be a geodesic parameterization of X ′ with x(0) = y, defined
on a subinterval of [0,∞). Thus, ∇ẋẋ = 0, where ẋ = dx/ds. A fixed 1-form ξ
of class C∞ on a neighborhood U of y such that aξ(w) > 0 at y, for w = ẋ(0),
gives rise to a C∞ function ϕ = ξ(v) : U → R with ϕ = 0 wherever v = 0 in U
and d[ϕ(x(s))]/ds > 0 for all s ≥ 0 near 0 (as dwϕ = aξ(w)), which proves (a).

For X as in (a), let ` > 0 be such that x(`) is an endpoint of X, and let
s 7→ w(s) ∈ Tx(s)M be the vector field along X given by w(0) = ẋ(0) and
w(s) = v(x(s))/f(s) for s ∈ (0, `], where f : [0, `] → R is any fixed C1 function
with f(0) = 0, ḟ(0) = a and |f | > 0 on (0, `]. Thus, w(s) 6= 0 for all s ∈ [0, `]
due to our choice of X and `. Also, setting ṽ(s) = v(x(s)) we have ṽ(0) = 0, while
∇ẋṽ at s = 0 equals ∇wv = aw, with w = ẋ(0). This, along with l’Hospital’s rule,
shows that the mapping [0, `] 3 s 7→ (x(s), w(s)), valued in the total space TM
(see Remark 8.1), is continuous, also at s = 0.

For any fixed s ∈ [0, `], let r 7→ xs(r) ∈ M be the geodesic with xs(s) = x(s)
and [dxs(r)/dr]r=s = w(s), defined on the maximal possible interval containing s.
Then, for any sufficiently small ε ∈ (0, `],

(A) r 7→ xs(r) is defined on an interval containing [0, `], for every s ∈ [0, ε],
(B) v 6= 0 at xs(r) for any s, r with 0 < s ≤ r ≤ ε.

In fact, if there were no ε ∈ (0, `] with (A), we could find values of s ∈ (0, `]
arbitrarily close to 0 such that one of the points (x(s),−sw(s)), (x(s), (`−s)w(s))
lies in the complement TMrUExp, with UExp as in Remark 8.1. Since TMrUExp

is a closed set, it would then also contain the limit of one of these points as s→ 0,
that is, (y, 0) or (y, `ẋ(0)), contradicting either the inclusion relation M ⊂ UExp,
or our choice of `.

Also, d[ϕ(xs(r))]/dr > 0 for all sufficiently small r, s ∈ [0, `] since, due to our
choice of ϕ, this is the case for r = s = 0. As ϕ > 0 on a nontrivial subsegment of
X containing y, except for the point y at which ϕ = 0, making ε > 0 with (A)
smaller we now get ϕ > 0 (and so v 6= 0) at xs(r) for any s, r with s ∈ (0, ε] and
s ≤ r ≤ s+ ε, proving (B).

By (A), (B) and (iii) above, if s ∈ (0, ε), the geodesic [s, `] 3 r 7→ xs(r) is a
(re-parameterized) integral curve of v, and so v is tangent to it at the point xs(ε).
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Taking the limit as s → 0, we now see that v is tangent to the limiting geodesic
X at x(ε). Hence (iii) for x = x(ε) and X gives (b), completing the proof. �

Lemma 8.3. Let N be a critical manifold of a special Kähler-Ricci potential τι
on a Kähler manifold (M, g). For any unit-speed geodesic [0, `) 3 s 7→ x(s) ∈ M
normal to N at x(0) = y ∈ N and such that dτι 6= 0 at x(s) whenever s ∈ (0, `),
setting v = ∇τι, Q = |∇τι|2 and dτι/ds = d[τι(x(s))]/ds, we have, at any s ∈ [0, `),

(i) dx/ds = (sgn a) v/|v|, if s > 0,
(ii) dτι/ds = (sgn a)

√
Q , with the initial value τι = τι0 at s = 0,

where τι0 is the value of τι on N and a depends on N as in Proposition 7.3.

In fact, ∇vv = ψv by (3.2.a) with w = v, and ∇wv = aw for w = ẋ(0) by (7.1),
where ẋ = dx/ds, so that Lemma 8.2(b) for the Levi-Civita connection ∇ of g,
the geodesic segment X ⊂M which is the image of s 7→ x(s), and our y, v, a, gives
ẋ = ±v/|v| for some sign ± and all s ∈ (0, `). Next, τ̇ι = g(v, ẋ) and Q̇ = 2ψτ̇ι
(cf. Remark 7.1(i)). At any s > 0 close to 0 we thus have ± τ̇ι > 0 and, as aψ > 0
by Remark 7.4, also ±aQ̇ > 0. Consequently, ±a > 0, since Q̇ > 0. (Note that
Q(x(s)) > 0 for such s, while Q(x(0)) = 0.) This yields (i), and (ii) now follows
since dτι/ds = τ̇ι = g(v, dx/ds) and |v| =

√
Q. �

§9. A differentiability result

In this section we use Gauss’s Lemma to show that, for a special Kähler-Ricci
potential τι on a Kähler manifold, Q = |∇τι|2 must, locally, be a C∞ function of τι.

The normal exponential mapping of a submanifold N of a Riemannian manifold
(M, g) is the restriction of Exp : UExp →M to the set UExp ∩L, where L is the
total space of the normal bundle of N, while UExp ⊂ TM and Exp are defined as
in Remark 8.1 for the Levi-Civita connection ∇.

For M, g,N,L as above, let s : L → [0,∞) be the norm function of the real
fibre metric in L obtained by restricting g to L. For any y ∈ N, the inverse
mapping theorem allows us to choose a connected neighborhood N ′ of y in N and
a number ` ∈ (0,∞) such that, for the open subset U ′ of L′ given by 0 ≤ s < `,
where L′ is the portion of L lying over N ′, we have U ′ ⊂ UExp and the normal
exponential mapping sends U ′ diffeomorphically onto an open set in M .

The following classical result is also immediate from (c) in §14:

Gauss’s Lemma. Under these assumptions, all half-open geodesic segments of
length `, emanating from N ′ in directions normal to N, intersect orthogonally the
Exp-images of all level sets of the norm function restricted to U ′. �

We can now prove the main result of this section.

Lemma 9.1. For a special Kähler-Ricci potential τι on a Kähler manifold (M, g),
let ψ : M → R be defined as in Lemma 7.2, and let Q = |∇τι|2.

Every point of M then has a neighborhood U on which Q is a C∞ function of
τι, that is, a composite consisting of τι followed by a C∞ function τι 7→ Q defined
on a suitable interval of the variable τι, and such that dQ/dτι = 2ψ for dQ/dτι
and ψ treated as functions on U.
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Proof. At points with dτι 6= 0 our assertion is obvious as dQ = 2ψ dτι (see (3.2.b)).
Suppose now that y ∈M is a critical point of τι, and let N be the critical manifold
of τι containing y (cf. Remark 2.3(iii)). We may choose N ′, `, U ′ as in the third
paragraph of this section and, making N ′ and ` smaller if necessary, also require
that dτι 6= 0 at every point of Exp(U ′ rN ′). (See (a) in Remark 2.3(iii).)

The gradients v = ∇τι and ∇Q = 2ψv (see (3.2.b)), which, by Lemma 8.3(i),
are tangent to the geodesic segments mentioned in Gauss’s Lemma, must therefore
be normal to the Exp-images of all level sets of the norm function restricted to
U ′. Any such level set is either the zero section N ′, that is, the zero-level set, or
it is a bundle of positive-dimensional spheres over N ′ (cf. the inequality in (c) of
Remark 2.3(iii) for u = J(∇τι)); therefore, it is connected, and so τι,Q must both
be constant along its Exp-image. Thus, both τι and Q, restricted to Exp(U ′) and
then pulled back to U ′ via Exp, are functions of the norm function.

Let (−`, `) 3 s 7→ x(s) ∈M be any unit-speed geodesic such that x(0) ∈ N ′ and
ẋ(0) is normal to N at x(0), where ẋ = dx/ds. As x(s) = Exp(x(0), sẋ(0)) and
the value of the norm function at (x(0), sẋ(0)) is |s|, it follows that τι,Q treated as
C∞ functions of the variable s ∈ (−`, `) (via the substitutions τι(x(s)), Q(x(s)))
are even. Their restrictions to [0, `) express the dependence of their Exp-pull-
backs on the norm function (also denoted by s). By Lemma 8.3(ii), s 7→ τι is a
homeomorphism, that is, Q restricted to Exp(U ′) is also a function of τι. Finally,
d2τι/ds2 6= 0 at s = 0 in view of Remark 7.1(ii), since, by (7.1) and (2.1.iii), ẋ(0)
is an eigenvector of (∇dτι)(y) for the eigenvalue a 6= 0. That our assertion now
follows also for the point y is clear since, if τι and Q are C∞-differentiable even
functions on an interval of a real variable s, centered at 0, and d2τι/ds2 6= 0 at
s = 0, then Q, on some neighborhood of 0, is a C∞ function of τι.

In fact, by induction on k ≥ 0, any even C2k function of s is a Ck function
of ζ = s2. (Namely, if our claim holds for k, an even C2k+2 function f of s is
necessarily of class Ck+1 in ζ, as ḟ(s)/s, with ḟ = df/ds, is an even C2k function
of s, also at s = 0, due to Remark 4.2; hence, by the inductive assumption,
2 df/dζ = ḟ(s)/s is a Ck function of ζ.) Thus, τι and Q are C∞ functions of
ζ = s2, while ζ 7→ τι is C∞-diffeomorphic for ζ ≥ 0 close to 0, since 2dτι/dζ =
τ̇ι/s→ τ̈ι(0) 6= 0 as s→ 0 (that is, ζ → 0). This completes the proof. �

§10. Isometric actions of the circle

The results of this section are two corollaries about special Kähler-Ricci poten-
tials τι on compact Kähler manifolds. One, proved under more general assumptions,
states that the Killing field u = J(∇τι) generates an isometric action of the circle;
the other amounts to what will later become a boundary condition satisfied by
dQ/dτι = 2ψ, where Q = |∇τι|2 is treated as a function of τι (cf. Lemma 9.1).

For a C∞ function τι on a Riemannian manifold (M, g), let Crit1(τι) be the
set of those critical points y of τι at which the Hessian Hessyτι has exactly one
nonzero eigenvalue (of any multiplicity). Thus,

(10.1) Hessyτι is semidefinite for every y ∈ Crit1 (τι).

Lemma 10.1. If a Killing field u on a Riemannian manifold (M, g) vanishes at
a point y and z ∈ TyM lies in the domain of expy, then u(x), for x = expy z,
is the image of ∇zu ∈ TyM = Tz(TyM) under the differential of expy at z.
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In fact, the local isometries Φt forming the local flow of u are all defined, for
t near 0 in R, on some open set in M containing the compact geodesic segment
X = {expy sz : 0 ≤ s ≤ 1}. Since they keep y fixed and map geodesics onto
geodesics, we have Φt(expy z) = expy (dΦt

yz). Our claim follows if we apply d/dt
and let t → 0, since (∇u)(y) : TyM → TyM is the infinitesimal generator of the
one-parameter group t 7→ dΦt

y in TyM . �

Lemma 10.2. Suppose that τι is a Killing potential on a Kähler manifold (M, g)
and a point y ∈ M lies in the set Crit1(τι) defined above, while v = ∇τι and
u = Jv. In addition, let U ⊂ M and U ′ ⊂ TyM be open metric balls centered
at y and 0, respectively, and such that the exponential mapping expy sends U ′

diffeomorphically onto U, while the flow of u restricted to U consists of “global”
isometries U → U.

Then the flow of u in U is periodic, with the minimum period 2π/|a| for the
nonzero eigenvalue a of Hessyτι.

This is immediate since, by Lemma 10.1, u restricted to U is the expy-image of
the linear vector field on U ′ given by the skew-adjoint (and hence diagonalizable)
complex-linear operator TyM 3 z 7→ ∇zu ∈ TyM with the eigenvalues ai and 0,
or just ai. (Namely, as u = Jv and ∇J = 0, its eigenvalues are i times those of
z 7→ ∇zv, that is, i times those of (∇dτι)(y), cf. (2.1.iii).) �

Corollary 10.3. Let τι : M → R be a Killing potential on a complete Kähler
manifold (M, g) such that the set Crit1(τι) defined above is nonempty. Then

(i) the flow of the Killing vector field u = J(∇τι) is periodic, that is, consti-
tutes an isometric S1 action on (M, g),

(ii) the absolute value of the nonzero eigenvalue of Hessyτι is the same at all
points y ∈ Crit1(τι).

In fact, Lemma 10.2 and the unique continuation property for isometries ([12],
Lemma 4 in §6 of Ch. VI) give (i); now |a| in Lemma 10.2 is the same for all y.
(The existence of U, U ′ in Lemma 10.2 is well known; cf. [7], Lemma 12.1(i).) �

Corollary 10.4. For a special Kähler-Ricci potential τι on a complete Kähler
manifold (M, g), let ψ : M → R be defined as in Lemma 7.2. Then the restriction
of |ψ| to the set Crit(τι) of critical points of τι is constant and positive. �

This follows from Corollary 10.3(ii), since, by Lemma 7.2, the nonzero eigenvalue
of Hessyτι at any y ∈ Crit(τι) = Crit1(τι) is ψ(y). (Constancy of ψ on connected
components of Crit(τι) is also clear from Remark 7.4.) �

§11. Boundary conditions in the compact case

We will now reach a second major step needed for a classification, in §16, of
special Kähler-Ricci potentials τι on compact Kähler manifolds. The result in
question is Proposition 11.5, and it states that τι has precisely two critical manifolds
and Q = |∇τι|2 is, globally, a C∞ function of τι, satisfying the positivity-and-bound-
ary conditions (5.1). To prove it, we use some facts about Morse-Bott functions, of
which Killing potentials on Kähler manifolds are a special case.
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A C∞ function τι : M → R on a manifold M is called a Morse-Bott function
[5] if every connected component N of the set Crit(τι) of its critical points sat-
isfies conditions (a), (b) of Remark 2.3(iii) and, for every y ∈ N, the nullspace of
the Hessian Hessyτι coincides with TyN. (Since the nullspace contains TyN for
any submanifold N of M contained in Crit(τι), the last requirement amounts to
rank Hessyτι = dimM − dimN.) As in §2, the connected components of Crit(τι)
then are called the critical manifolds of τι.

Example 11.1. Every Killing potential τι on a Kähler manifold (Remark 2.1) is
a Morse-Bott function: if τι is nonconstant, this follows from Remark 2.3(iii) and
(2.1.iii), since Hessyτι = (∇dτι)(y) whenever y ∈ Crit(τι).

Lemma 11.2. Let τι be a Morse-Bott function on a manifold M . Every point
y of any critical manifold N of τι at which Hessyτι is positive or, respectively,
negative semidefinite then has a neighborhood U such that τι > τι(y) everywhere
in U rN or, respectively, τι < τι(y) everywhere in U rN.

This is clear as the Morse lemma ([15, p. 6]) has an obvious extension to Morse-
Bott functions: in suitable local coordinates, y and τι appear as (0, . . . , 0) and,
respectively, a homogeneous quadratic function plus a constant. �

Lemma 11.3. Let τι be a C∞ function on a manifold M ′ such that the τι-pre-
image of every real number is compact and τι has no critical points. Then

(i) there exist a compact manifold P and a diffeomorphic identification M ′=
P × (τι−, τι+) under which τι appears as the projection onto the (τι−, τι+)
factor, τι− and τι+ being the infimum and supremum of τι,

(ii) the τι-preimage of every real number is both compact and connected.

In fact, the surjective submersion τι : M ′ → (τι−, τι+), having compact fibres,
is necessarily a locally trivial fibration, and hence a trivial bundle, as its base is
contractible. (The inferences just used are both well known, and easily obtained, in
our case, with the aid of the holonomy of any C∞ connection, that is, a distribution
complementary to the fibres.) This yields (i), and then (ii) follows. �

Proposition 11.4. Let τι be a Morse-Bott function on a compact manifold M
such that Hessyτι is semidefinite for every y ∈ Crit(τι), and the real codimensions
of all critical manifolds of τι are greater than one. Then τι has exactly two critical
manifolds, which are the τι-preimages of its extremum values τι+ = τιmax and τι− =
τιmin, and the τι-preimage of every real number is both compact and connected.

Proof. As M is compact, τι has finitely many critical manifolds due to their being
mutually isolated (cf. (a) in Remark 2.3(iii)), and none of them disconnects M,
even locally (by the codimension condition), while τι is constant on each of them.
Therefore, M ′ = M r Crit(τι) is connected and dense in M, and the τι-image
τι(M ′) is connected, open in R, and dense in [τι−, τι+], so that τι(M ′) = (τι−, τι+).

Moreover, the function τι : M ′ → R satisfies the hypotheses of Lemma 11.3.
Namely, any sequence of points in M ′ that lies in the τι-preimage of a given real
number has a subsequence converging to a limit y ∈ M , and then y /∈ Crit(τι),
for otherwise our semidefiniteness assumption, combined with Lemma 11.2, would
lead to a contradiction. Hence assertion (ii) in Lemma 11.3 holds for τι : M ′ → R.
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The only critical values of τι : M → R are τι±. In fact, let y ∈ Crit(τι).
Denseness of M ′ in M gives xk → y as k → ∞ for some sequence xk in M ′.
If we had τι(y) ∈ (τι−, τι+), the sequence in P × (τι−, τι+) corresponding to the xk

under the identification of Lemma 11.3(i) (applied to τι : M ′ → R, with τι(M ′) =
(τι−, τι+)) would have a convergent subsequence, that is, a subsequence of the xk

would have a limit in M ′, even though xk → y /∈M ′.
Finally, connectedness of the τι-preimages P [τι ′] of real numbers τι ′, already

established for τι ′ 6= τι±, holds for P [τι±] as well. In fact, given τι0 = τι±, let
N1, . . . , Nl be the connected components of P [τι0]. Also, let U1, . . . , Ul be pairwise
disjoint open sets in M with Nj = Uj ∩ Crit(τι) for j = 1, . . . , l. The τι-preimage
P [τι ′] of every τι ′ ∈ (τι−, τι+) sufficiently close to τι0 must now be contained in
the union U = U1 ∪ · · · ∪ Ul, or else there would be a sequence xk in M ′ r U
with τι(xk) → τι0 as k → ∞, a subsequence of which would have a limit that lies
in P [τι0], yet not in the open set U containing P [τι0]. However, P [τι ′] obviously
intersects each of the sets U1, . . . , Ul, for any τι ′ ∈ (τι−, τι+) sufficiently close to τι0.
Since such P [τι ′] are connected (see above) and U1, . . . , Ul are pairwise disjoint
and open, we must have l = 1. This completes the proof. �

It is the assertion (i) in the next proposition that allows us to divide all triples
(M, g, τι ) with the stated properties into Class 1, characterized by case (1) in (i),
and Class 2, for which (2) holds.

Proposition 11.5. Let τι be a special Kähler-Ricci potential on a compact Kähler
manifold (M, g) of complex dimension m ≥ 1. Then

(i) τι has exactly two critical manifolds, which are the τι-preimages of its
extremum values τιmax and τιmin, and one of two cases must occur :
(1) both critical manifolds of τι are of complex codimension one;
(2) one critical manifold of τι is of complex codimension one, and the

other consists of a single point.
(ii) In addition, Q = |∇τι|2 is a composite consisting of τι followed by a C∞

function [τιmin, τιmax] 3 τι 7→ Q ∈ R that satisfies the positivity-and-bound-
ary conditions (5.1).

Proof. Our M and τι satisfy the assumptions of Proposition 11.4. (This follows
from Example 11.1, the inequality in (c) of Remark 2.3(iii), and (a) in (10.1) com-
bined with relation Crit(τι) = Crit1(τι), obvious from Proposition 7.3.) Now (i)
is immediate from Propositions 11.4 and 7.3. In fact, unless m = 1, the critical
manifolds of τι cannot both consist of single points, for if they did, Lemma 7.5
would give τιmax = τιmin = c, contrary to the requirement, in (1.1), that τι be non-
constant. Another reason is that, if both critical manifolds were single points and
we had m ≥ 2, Reeb’s theorem ([15, p. 25]) would imply that M is a topological
n-sphere, n ≥ 4, admitting no Kähler metric.

In view of (i), the open set M ′ ⊂M on which dτι 6= 0 is the union of the τι-pre-
images of all values in (τιmin, τιmax). By Lemma 9.1, Q = |∇τι|2 is locally constant
on every such τι-preimage; the word ‘locally’ may now be dropped as the τι-preimage
is connected in view of Proposition 11.4, the assumptions of which hold, as we saw,
in our case. Now (ii) follows, except for conditions (5.1), since C∞-differentiability
of the function [τιmin, τιmax] → R is obvious from Lemma 9.1.
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Lemma 9.1 also gives 2ψ = dQ/dτι on the interval [τιmin, τιmax]. By Corol-
lary 10.4, |dQ/dτι| now has the same positive value at both endpoints τιmin, τιmax.
Finally, dQ/dτι > 0 at τιmin and dQ/dτι < 0 at τιmax, as the function τι 7→ Q =
|∇τι|2 is positive on the set (τιmin, τιmax) of non-critical values of τι (cf. (i)), and
vanishes at τιmin and τιmax. This yields (ii), completing the proof. �

§12. Critical manifolds and curvature

The main result of this section, Lemma 12.4, establishes some curvature prop-
erties of critical manifolds of special Kähler-Ricci potentials, needed for our classi-
fication argument in §16.

Lemma 12.1. Given a special Kähler-Ricci potential τι on a Kähler manifold
(M, g), let φ, ψ be the C∞ functions, introduced in §3, on the open set M ′ on
which dτι 6= 0. Then, for any C∞ vector fields w,w′ defined on an open subset of
M ′ and orthogonal to v = ∇τι and u = Jv at every point, with R denoting the
curvature tensor, Q = |∇τι|2, and ...vrt standing for the V component relative to
the decomposition TM ′ = H⊕ V, where V = Span {v, u} and H = V⊥,

(i) QR(w,w′)v = 2(φ− ψ)φg(Jw,w′)u,
(ii) either of g(R(w, v)w′, v) and g(R(w, u)w′, u) equals g(w,w′) times a

function which does not depend on the choice of w and w′,
(iii) Q[∇ww

′]vrt = −φ[g(w,w′)v + g(Jw,w′)u],
(iv) Q[w,w′ ]vrt = −2φ g(Jw,w′)u.

Proof. Assertion (iii) was proved in [7], formula (13.1), and (iv) is obvious from
(iii). Next, by (3.2.b), φ is constant in the direction of w, and hence (3.2.a) gives
both ∇w∇w′v = φ∇ww

′ and ∇[w,w′]v = (ψ− φ)[w,w′]vrt + φ[w,w′]. Now (i) easily
follows from (2.1.i) and (iv). Next, writing 〈 , 〉 for g( , ) we have

〈∇v∇ww
′, v〉 = dv〈∇ww

′, v〉 − 〈∇ww
′,∇vv〉 = (φψ − dvφ)〈w,w′〉 − φdv〈w,w′〉,

since ∇vv = ψv (by (3.2.a) for w = v) and 〈∇ww
′, v〉 = 〈[∇ww

′]vrt, v〉 = −φ〈w,w′〉
(from (iii) with Q = |v|2), while 〈∇vw

′, v〉 = −〈w′,∇vv〉 = 0 (as ∇vv = ψv), and
so 〈∇w∇vw

′, v〉 = −〈∇vw
′,∇wv〉 = −φ〈w,∇vw

′〉 (since (3.2.a) gives ∇wv = φw).
As the local flow of v leaves H invariant (see [7], Remark 17.3, discussion of
condition (a)), [w, v] is a section of H and (3.2.a) gives ∇wv = φw, ∇[w,v]v =
φ[w, v]. Hence, as ∇ is torsion-free, 〈∇[w,v]w

′, v〉 = −〈w′,∇[w,v]v〉 = φ〈w′, [v, w]〉 =
φ〈w′,∇vw〉 − φ2〈w,w′〉. Now (2.1.i) with dv〈w,w′〉 = 〈∇vw,w

′〉+ 〈w,∇vw
′〉 yields

(ii) for 〈R(w, v)w′, v〉. However, 〈R(w, u)w′, u〉 = 〈R(Jw, v)Jw′, v〉 (and so (ii) for
〈R(w, u)w′, u〉 follows as 〈Jw, Jw′〉 = 〈w,w′〉). Namely, ∇ is a connection in the
complex vector bundle TM , since ∇J = 0, and so the operator w′ 7→ R(w, v)w′

commutes with J . Thus, as J is skew-adjoint, 〈R(w, u)w′, u〉 = 〈R(w, u)w′, Jv〉 =
−〈R(w, u)Jw′, v〉, which in turn equals −〈R(Jw′, v)w, u〉 = −〈R(Jw′, v)w, Jv〉 =
〈R(Jw′, v)Jw, v〉 = 〈R(Jw, v)Jw′, v〉. This completes the proof. �

Remark 12.2. The normal bundle L of any submanifold N of a Riemann-
ian manifold (M, g) carries the usual normal connection ∇nrm, characterized by
∇nrm

ẏ w = [∇ẏw]nrm whenever t 7→ w(t) ∈ Ty(t)M is a C1 vector field normal to
N along a C1 curve t 7→ y(t) ∈ N. Here ẏ = dy/dt and ∇ is the Levi-Civita
connection of (M, g), while ... nrm stands for the component normal to N.
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Remark 12.3. Given a totally geodesic submanifold N of a Riemannian manifold
(M, g), a point y ∈ N, and vectors w,w′ ∈ TyN, let ∇, R be the Levi-Civita
connection and curvature tensor of (M, g), and let a Riemannian metric h on N
be a constant multiple of its submanifold metric. Then, for any vector ξ tangent
(or, normal) to N at y, the value R(w,w′)ξ coincides with the one obtained by
replacing R with the curvature tensor of (N,h) (or, respectively, the curvature
tensor of the normal connection ∇nrm in the normal bundle L of N).

In fact, extending w,w′, ξ to C∞ vector fields on a neighborhood U of y in
M tangent/normal to N along N ∩ U, we see that ∇wξ, restricted to N ∩ U,
is the covariant derivative relative to the Levi-Civita connection of (N,h) (or,
respectively, the normal connection in L), and our claim is obvious from (2.1.i).

Suppose that τι is a special Kähler-Ricci potential on a Kähler manifold (M, g)
and N is a critical manifold of τι with dimCN = dimCM−1 (cf. Proposition 7.3),
while c, ε and a are the constants introduced in Lemma 3.1 and Proposition 7.3.
If dimCM ≥ 2, we define a Kähler metric h on the complex manifold N to be
g/f0 restricted to TN, where f0 is the constant given by f0 = 1 (if ε = 0), or
f0 = 2|τι0 − c| (if ε = ±1), with τι0 denoting the constant value of τι on N. Thus,
f0 > 0, as τι 6= c on N when ε = ±1, in view of Lemma 7.5.

Lemma 12.4. Let N be a critical manifold of a special Kähler-Ricci potential τι
on a Kähler manifold (M, g) with dimCM = m ≥ 1 and dimCN = m − 1, and
let L be the normal bundle of N . Then, for H,M ′ as in §3 and ε, a, h as above,

(a) the limit relation Hx → TyN as x → y, for any fixed y ∈ N and a
variable point x ∈M ′, holds in an appropriate Grassmannian bundle,

(b) the Kähler manifold (N,h) is Einstein unless m = 2,
(c) the curvature form Ω of the normal connection in L and the Kähler form

ω(h) of (N,h) are related by Ω = −2εaω(h).

Proof. Since (a) – (c) hold trivially when m = 1, we may assume that m ≥ 2.
First, (a) follows from Remark 7.4 and Lemma 7.2: as x → y, the eigenvalue

φ(x) of (∇dτι)(x) tends to the eigenvalue φ(y) = 0 of (∇dτι)(x) having the same
multiplicity 2(m − 1), and so we have the convergence Hx → TyN of the corre-
sponding eigenspaces. (Cf. (3.1), (d) in Remark 2.3(iii) and (2.1.iii).)

Let f : M ′ → R be given by f = 1 if ε = 0 and f = 2|τι − c| if ε = ±1, so
that f > 0 on M ′ by Lemma 3.1. Also, let v = ∇τι, u = Jv and Q = |∇τι|2. For
any x ∈M ′ we now define symmetric bilinear forms h(x) and r(h)(x) on the space
Hx by declaring h(x) to be the restriction of g(x)/f(x) to Hx, and letting r(h)(x)
assign to vectors w,w′ ∈ Hx the value r(h)(w,w′) equal to

∑
j g(R(w, ej)w′, ej),

where R is the curvature tensor of (M, g) and the ej run through any g(x)-ortho-
normal basis of Hx. Since such ej along with Q−1/2v and Q−1/2u (at x) clearly
form a g(x)-orthonormal basis of TxM , our r(h)(x) and the Ricci tensor r(x) of g
at x are related by r(h)(w,w′) = r(w,w′)− [g(R(w, v)w′, v) + g(R(w, u)w′, u)]/Q,
for w,w′ ∈ Hx, with v, u,Q standing for their values at x. Since r = λg on H
(see (3.1)), Lemma 12.1(ii) shows that r(h)(x) equals a scalar times h(x).

As M ′ is dense in M (Remark 2.3(ii)), choosing a sequence of points x ∈ M ′

converging to any given y ∈ N and using (a) along with Remark 12.3, we see that
the Ricci tensor of h at y is a scalar multiple of h(y), which proves (b).
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Equality R(w,w′)ξ = iΩ(w,w′)ξ for w,w′ ∈ Hx, ξ ∈ H⊥x and x ∈ M ′, with
Ω(w,w′) equal to 2(φ− ψ)φ/Q at x times g(Jw,w′), is immediate: if ξ = v(x),
it follows from Lemma 12.1(i), and so it holds for all ξ as the operator R(w,w′) :
TxM → TxM commutes wih J(x). Let a variable point x ∈ M ′ now tend to any
fixed y ∈ N. Then (a) implies the above equality also when x and Hx are replaced
by y and TyN, while φ(x) → 0, ψ(x) → a (see Remark 7.4) and, unless φ = 0
identically, Lemma 3.1 yields Q(x)/φ(x) → 2[τι(y) − c] = εf(y). Now (c) follows
from Remark 12.3, completing the proof. �

§13. A normal exponential diffeomorphism

This section contains the third major step needed for our classification of spe-
cial Kähler-Ricci potentials τι on compact Kähler manifolds in §16. Namely,
Lemma 13.2 describes a diffeomorphism that will later give rise to a composite
diffeomorphism Ψ = Exp ◦ Φ : L r N → M ′ used in the proof of Theorem 16.3.
Here L is the normal bundle of any given critical manifold N of τι, and M ′ ⊂M
is the open set on which dτι 6= 0.

First, we set L =
∫ τιmax

τιmin
Q−1/2dτι for any given function τι 7→ Q satisfying the

positivity-and-boundary conditions (5.1) on an interval [τιmin, τιmax]. Thus, L <∞,
as one sees making Q the variable of integration near either endpoint. Let τι now
be a special Kähler-Ricci potential on a compact Kähler manifold. The next lemma
shows that L, corresponding in this manner to the function τι 7→ Q obtained in
Proposition 11.5(ii), then is the minimum distance at which a normal geodesic
emanating from a critical manifold of τι encounters another critical point of τι.

Lemma 13.1. Let N,N∗ be the two critical manifolds of a special Kähler-Ricci
potential τι on a compact Kähler manifold (M, g), cf. Proposition 11.5(ii). Then,
with L =

∫ τιmax

τιmin
Q−1/2dτι for Q = |∇τι|2 treated as a function of τι,

(a) L is the minimum distance between N and any given point y ′ ∈ N∗,
(b) every point x ∈ M at which dτι 6= 0 can be joined to N by a geodesic,

normal to N, of some length ` ∈ (0, L),
(c) for any geodesic X ⊂M of length L with endpoints y, y ′ such that y ∈ N

and X is normal to N at y, we have y ′ ∈ N∗ and Q > 0 on Xr{y, y ′}.

Proof. For X, y, y ′ as in (c), let X ′ be the maximal half-open geodesic segment
containing y, as an endpoint, along with all points of X sufficiently close to y,
and such that dτι 6= 0 everywhere in X ′ r {y}. Let [0, `) 3 s 7→ x(s) be an arc-
length parameterization of X ′. By Lemma 8.3(ii), ds = ±Q−1/2dτι on X ′, so that
` =

∫ `

0
ds =

∣∣∣∫ τι ′

τι0
Q−1/2dτι

∣∣∣, where τι0 = τι(y) ∈ {τιmin, τιmax} is the value of τι on N,
and τι ′ = τι(x(`)) with x(`) = lim s→` x(s). (Clearly, ` ≤ L <∞, and ` < L unless
τι ′ ∈ {τιmin, τιmax}.) However, maximality of X ′ now shows that (dτι)(x(`)) = 0,
and so, as τι(x(`)) = τι ′, Proposition 11.5(i) gives {τι0, τι ′} = {τιmin, τιmax}, that is,
` = L. Consequently, X ′ = X and (c) follows.

Given y ′ ∈ N∗, let y be the point of N nearest to y ′, and let X ′ be a minimizing
geodesic segment of some length L′, joining y ′ to y. As (c) implies that every
point in a given critical manifold lies at the distance L from some point in the
other critical manifold, we have L′ ≤ L. On the other hand, L′ ≥ L. In fact, if we
had L′ < L, by extending X ′ beyond y ′ so as to obtain a geodesic segment X of
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length L we would conclude, from the final clause of (c), that y ′ is not a critical
point of τι. (Note that X ′ is normal to N at y due to our distance-minimizing
choice of y and X ′.) Hence L′ = L, which gives (a).

To prove (b), let us connect any x ∈ M ′ = M r (N ∪ N∗) with the point y
nearest to it in N ∪N∗ by a minimizing geodesic segment X ′ of some length ` > 0.
Thus, ` < L, or else some point of X ′ would lie at the distance L from y, and so,
by (c), it would be a point of N ∪N∗, closer to x than y is. Extending X ′ beyond
x, we obtain a geodesic segment X of length L and, by (c), one of the endpoints
of X lies in N. Also, X is normal to N at that endpoint, since, by (a), X is a
minimum-length curve joining N to N∗. This completes the proof. �

Lemma 13.2. Let L =
∫ τιmax

τιmin
Q−1/2dτι for τιmin, τιmax and τι 7→ Q determined as

in Proposition 11.5(ii) by a special Kähler-Ricci potential τι on a compact Kähler
manifold (M, g). If L denotes the total space of the normal bundle of a critical
manifold N of τι, while M ′ ⊂M and L′ ⊂ L are the open sets defined by dτι 6= 0
and, respectively, 0 < s < L, where s stands for the norm function of the fibre
metric obtained by restricting g to L, then the normal exponential mapping of N,
defined as in §9, is a C∞ diffeomorphism Exp : L′ →M ′.

Proof. The Exp-image of any open line segment of length L emanating from 0
in any fibre L′y of the punctured-disk bundle L′ has the form X r {y, y ′}, where
X and y, y ′ satisfy the premise, and hence also the conclusion, of Lemma 13.1(c);
thus, X r {y, y ′} ⊂M ′, and so Exp actually sends L′ into M ′.

Surjectivity of Exp : L′ → M ′ is obvious from Lemma 13.1(b). To prove its
injectivity, suppose that (y, z) ∈ L′ and x = Exp(y, z) ∈ M ′. Since 0 < |z| < L,
we can express (y, z) in terms of x by travelling backwards along the unit-speed
geodesic t 7→ x(t) = Exp(y, tz/|z|), which has x(0) = y, ẋ(0) = z/|z|, x(s) = x
(where ẋ = dx/dt and s = |z| ∈ (0, L)) and, by Lemma 8.3(i), ẋ(s) = w(x) for
the vector field w = (sgn a)v/|v| on M ′ (with v, a as in Lemma 8.3). In fact,
the re-parameterized geodesic t 7→ y(t) = Exp(x,−tw(x)) clearly has y(0) = x,
ẏ(0) = −w(x), y(s) = y and ẏ(s) = −z/|z|, so that (y, z) = (y(s),−sẏ(s)).
Moreover, s is uniquely determined by x and depends C∞-differentiably on x
(via τι(x)), since the assignment s 7→ τι defined by condition (b) in Lemma 8.3 is a
C∞ diffeomorphism (0, L) → (τιmin, τιmax). The last formula for (y, z) thus shows
that (y, z) is determined by x, i.e., Exp : L′ → M ′ is injective, and its inverse
M ′ → L′ is of class C∞. This completes the proof. �

§14. Variations and partial covariant derivatives

In this section we derive some equalities, needed in §15, and involving variations
of normal geodesics emanating from a critical manifold of a special Kähler-Ricci
potential on a Kähler manifold.

Let (s, t) 7→ x(s, t) ∈ M be a fixed C∞ variation of curves in a manifold M ,
that is, a C∞ mapping with real variables s, t ranging independently over some
intervals. By (s, t)-dependent functions ϕ or vector fields w we then mean assign-
ments sending each (s, t) to ϕ(s, t) ∈ R or w(s, t) ∈ Tx(s,t)M . Differentiability of
such objects is well defined, as they are sections of specific pullback bundles. For
instance, the velocities of the curves s 7→ x(s, t) and t 7→ x(s, t), with t or s fixed,
are (s, t)-dependent vector fields, here denoted by xs and xt, that have, in local
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coordinates, the components xj
s = ∂xj/∂s and xj

t = ∂xj/∂t, where xj(s, t) are
the components of x(s, t). Ordinary vector fields u or functions f on M give rise
to (s, t)-dependent ones that assign u(x(s, t)) or f(x(s, t)) to any (s, t).

We use the subscript notation ϕs, ϕt for the partial derivatives of (s, t)-depen-
dent C1 functions ϕ, including ordinary C1 functions on M . If, in addition, there
is a fixed connection ∇ in the tangent bundle TM , we may differentiate (s, t)-
dependent C1 vector fields w covariantly with respect to either parameter s or
t (that is, along the curves mentioned above), obtaining (s, t)-dependent fields
ws, wt equal to ∇ẋw for ẋ = xs (or, ẋ = xt), with the local-coordinate expressions
wj

s = ∂wj/∂s+ Γ j
klx

k
sw

l and wj
t = ∂wj/∂t+ Γ j

klx
k
tw

l. Here Γ j
kl are the component

functions of ∇, evaluated at x(s, t), and repeated indices are summed over.
Applied to xs and xt, this leads to the (s, t)-dependent fields xss = (xs)s,

xst = (xs)t, etc. Thus, xss = 0 identically if and only if all the curves s 7→ x(s, t)
are uniform-parameter geodesics. If ∇ is torsion-free, then Γ j

kl = Γ j
lk, and so

(∗) xst = xts.
Let us now assume that ∇ is the Levi-Civita connection of a fixed Riemannian
metric g on M , while N is a submanifold of M and t 7→ ζ(t) is a C∞ unit vector
field normal to N along some given C∞ curve t 7→ y(t) ∈ N, where t ranges over
some interval. Let us set x(s, t) = Exp(y(t), sζ(t)) for all s in some interval of
the form [0, `] with ` > 0, where Exp : UExp → M is defined as in Remark 8.1.
(Such ` exists, that is, (y(t), sζ(t)) ∈ UExp for all s, t, provided that one replaces
the original interval of t with a suitable subinterval.) Then

(a) |xs| = 1 and xss = 0 for all s, t,
(b) xst = ∇ẏζ at s = 0 and any t,
(c) 〈xs, xt〉 = 0 for all s, t, which is known as Gauss’s Lemma (cf. §9),
(d) xs(0, t) = ζ(t) is unit and normal to N, and xt(0, t) = ẏ(t) is tangent to

N, with ẏ = dy/dt,
where 〈 , 〉 stands for g( , ). In fact, the formula for x(s, t) implies (a), (b) and (d).
The Leibniz rule for (s, t)-dependent functions such as 〈xs, xt〉 yields 〈xs, xt〉s =
〈xss, xt〉 + 〈xs, xts〉, and, from (∗), 2〈xs, xts〉 = 2〈xs, xst〉 = 〈xs, xs〉t. Hence (a)
gives 〈xs, xt〉s = 0, that is, 〈xs, xt〉 does not depend on s, and (c) follows since,
by (d), 〈xs, xt〉 = 0 when s = 0.

Still making all the assumptions listed in the paragraph following (∗), let us also
suppose that (M, g) is a Kähler manifold with a special Kähler-Ricci potential τι
and N is a critical manifold of τι, while v = ∇τι, u = Jv, Q = |∇τι|2, and φ, ψ
are the C∞ functions, defined in §3, on the open set M ′ given by dτι 6= 0. If
x(s, t) ∈M ′ for all s > 0 and all t, then, for all s, t with s > 0,

(e) |v| = |u| = Q1/2,
(f) Qs = ±2ψQ1/2 and φs = ±2(ψ − φ)φQ−1/2,
(g) v = ±Q1/2xs,
(h) 〈u, xt〉s = ±2〈u, xt〉ψQ−1/2 = 2〈u, xst〉,

where ± is the sign of the constant a in Proposition 7.3. In fact, (e) is obvious,
while Lemma 8.3(i) and (a) give v = ±|v|xs with the required sign ±, so that (g)
follows from (e). Also, fs = 〈xs,∇f〉 for f = Q and f = φ, and so (3.2.b), (g)
and (a) yield (f). Next, 〈u, xts〉 = −〈ut, xs〉 = 〈us, xt〉. Namely, the first relation
follows from the Leibniz rule and (∗), as 〈u, xs〉 = 0 (by (g), since 〈u, v〉 = 0), while
the second is clear from skew-symmetry of ∇u, as us = (∇u)xs. The Leibniz rule
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now yields 〈u, xt〉s = 〈us, xt〉 + 〈u, xts〉 = 2〈us, xt〉. This implies both 〈u, xt〉s =
2〈u, xts〉 and 〈u, xt〉s = ±2〈u, xt〉ψQ−1/2 (since (3.2.a) gives ∇vu = ∇v(Jv) =
J∇vv = ψu, so that, by (g), us = ±ψQ−1/2u). Thus, (h) follows.

§15. The differential of the normal exponential mapping

This section provides a finishing touch required for the classification argument
in §16. Namely, in the proof of Theorem 16.3 we use the normal bundle L of
a critical manifold N of a special Kähler-Ricci potential τι on a compact Kähler
manifold (M, g) to construct a Class 1 or Class 2 triple as in §5 or §6, and then
exhibit a biholomorphic isometry Ψ between that triple and (M, g, τι ). Specifically,
Ψ is the composite of the normal exponential mapping Exp of L preceded by a
suitable fibre-preserving mapping L → L. Here we establish some properties of
Exp needed for showing, in §16, that Ψ is in fact holomorphic and isometric.

Let us consider (the total space of) the normal bundle L of a fixed critical
manifold N of a special Kähler-Ricci potential τι on a Kähler manifold (M, g). By
Proposition 7.3, two cases are possible:

(I) N is a complex submanifold of complex codimension 1 in M , and so its
normal bundle L is a complex line bundle over N, or

(II) N = {y} for some point y ∈M , so that L = {y} × TyM .
We denote by HN the distribution on L r N such that, in case (I), HN is the
restriction to LrN of the horizontal distribution of the normal connection in L
(cf. Remark 12.2), and, in case (II), HN is the distribution on TyM r {0} with
HN

w = w⊥ ∩ (Jw)⊥ for any w ∈ TyM r {0}, where L = {y} × TyM is identified
with TyM . Note that HN is not only a real vector subbundle of the tangent bundle
T (L r N), but also a complex vector bundle, with the complex structure in each
fibre H∗ = HN

(y,z) inherited, in case (II), from the ambient space TyN (in which
H∗ is contained as a complex subspace), or pulled back, in case (I), from TyN by
the differential at (y, z) of the bundle projection L → N.

We also define vector fields vN, uN on LrN by vN(y, z) = az and uN(y, z) =
iaz for y ∈ N and z ∈ (TyN)⊥, with a determined by N as in Proposition 7.3.

Suppose now that L is, again, the total space of the normal bundle of a critical
manifold N of a special Kähler-Ricci potential τι on a Kähler manifold (M, g)
with dimCM = m ≥ 1, while HN, vN and uN are the complex vector bundle and
vector fields defined above. Similarly, in the open set M ′ ⊂ M on which dτι 6= 0
we have the vector fields v = ∇τι, u = Jv and the distribution H = v⊥ ∩ u⊥. We
also assume that the image of the set U ′ = (UExp ∩ L) r N under the normal
exponential mapping Exp of N, cf. §9, is contained in M ′ (which can always be
achieved by removing from M all critical manifolds of τι other than N).

Lemma 15.1. Under these assumptions, let Θ : T(y,z)L → TxM denote the dif-
ferential of Exp at some fixed (y, z) ∈ U ′, with x = Exp(y, z), and let the symbol
H∗ stand for HN

(y,z). Then Θ(H∗) ⊂ Hx and Θ : H∗ → Hx is complex-linear.
Also, letting w,w′ ∈ TyN be the images of any given ξ, ξ′ ∈ H∗ under the differen-
tial at (y, z) of the bundle projection L → N, we have, with c, ε as in Lemma 3.1,

(i) g(Θξ,Θξ′) = g(w,w′) if ε = 0,
(ii) [τι(y)− c] g(Θξ,Θξ′) = [τι(x)− c] g(w,w′) in case (I), if ε 6= 0,
(iii) ag(z, z) g(Θξ,Θξ′) = 2 [τι(x)− c] g(ξ, ξ′) in case (II), if ε 6= 0,
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where a is the constant defined, for N, in Proposition 7.3. Finally, the Θ-images
of vN(y, z) and uN(y, z) are |az|v(x)/|v(x)| and, respectively, u(x).

Proof. Let y(t), ζ(t), x(s, t) be as in the paragraph following (∗) in §14 and, in
addition, such that, in case (I) above, the unit vector field t 7→ ζ(t) normal to N
along the curve t 7→ y(t) ∈ N is parallel relative to the Levi-Civita connection of
(M, g), while, in case (II), y(t) = y for all t and ζ̇ = dζ/dt ∈ TyM is g(y)-orthog-
onal to ζ(t) and Jζ(t) for every t. These assumptions mean that, for any fixed s,
the curve t 7→ (y(t), sζ(t)) in U ′ is “horizontal” (tangent to HN at every point).

Note that every vector in HN at any point of LrN is tangent to a horizontal
curve, since our HN is, also in case (II), the horizontal distribution of a connection
(cf. §6). Also, in case (I) we assume that ∇ẏζ = 0, rather than just [∇ẏζ]nrm = 0
as required by the definition of the normal connection (Remark 12.2), since N is
totally geodesic, cf. Remark 2.3(iii)(c), and so ∇ẏζ is normal to N whenever ζ is.

Writing 〈 , 〉 for g( , ) we have 〈v, xt〉 = 〈u, xt〉 = 0 for all s, t (notation
of §14). First, 〈v, xt〉 = 0 by (g), (c) in §14. Next, (h) and (f) in §14 yield
[〈u, xt〉/Q]s = 0, that is, 〈u, xt〉/Q is constant as a function of s with fixed t. To
see that its constant value is 0, we evaluate its limit as s → 0 using l’Hospital’s
rule and noting that, by (h), (f) in §14, 〈u, xt〉s/Qs = ±〈u, xst〉Q−1/2/ψ. In case
(I), 〈u, xt〉s/Qs = ±〈u/|u|, xst〉/ψ → 0 as s = 0, by (b), (e) in §14, since ∇ẏζ = 0,
while ψ = a 6= 0 on N (see Remark 7.4). In case (II), 〈u, xt〉s/Qs = 〈Jxs, xst〉/ψ →
〈Jζ(t), ζ̇ 〉/a = 0 as s → 0 by (g), (c) in §14 with u = Jv, ψ = a 6= 0 on N, and
our orthogonality assumption for case (II). Thus, 〈u, xt〉 = 0. Hence Θ(H∗) ⊂ Hx,
as 〈v, xt〉 = 〈u, xt〉 = 0, that is, v and u are g-normal to the Exp-image of every
horizontal curve in U ′.

To prove (i) – (iii) we may assume, due to symmetry of g, that ξ = ξ′. Since,
as we just saw, xt(s, t) ∈ Hx(s,t), while vt is the covariant derivative of v in
the direction of xt (cf. §14), (3.2.a) yields vt = φxt for every (s, t). Also, Qt =
〈xt,∇Q〉 = 0, as ∇Q = 2ψv (see (3.2.b)) and 〈v, xt〉 = 0. Thus, xst = ±Q−1/2φxt,
since xs = ±Q−1/2v by (g) in §14. The Leibniz rule and (∗) in §14 now give
〈xt, xt〉s = 2〈xt, xst〉 = ±2〈xt, xt〉φQ−1/2. This, along with (d) in §14, yields
〈xt, xt〉 = g(ẏ, ẏ) when φ = 0, thus proving (i); at the same time, combined
with (f) in §14, it implies that [〈xt, xt〉φ/Q]s = 0, and so 〈xt, xt〉φ/Q does not
depend on s. When φ 6= 0 on M ′, Lemma 3.1 gives Q/φ = 2(τι − c), so that
〈xt, xt〉/(τι − c) is constant as a function of s, and we find its value by taking its
limit as s → 0. Specifically, in case (I), τι(y) 6= c (see Lemma 7.5(ii)), and (ii)
follows as 〈xt, xt〉/(τι − c) at x = x(s, t) equals g(ẏ, ẏ)/(τι − c) at y = x(0, t),
cf. (d) in §14. In case (II) we find the limit by using l’Hospital’s rule twice, as
τι(y) = c (Lemma 7.5(ii)) and dτι = 0 at y, while xt = 0 at s = 0 by (d) in
§14; this gives 2〈xts, xts〉 in the numerator (at s = 0) and τιss in the denominator.
By Remark 7.1(ii), (7.1) and (∗), (b) in §14, τιss = ψ(y) = a and xts = ζ̇ at
s = 0. (In this case ∇ẏζ really stands for ζ̇, as y(t) = y is constant.) Now (iii)
follows: 〈xt, xt〉/(τι − c) at any x = x(s, t) is the same as at y = x(0, t), that is,
〈xt, xt〉/(τι − c) = 2g(ζ̇, ζ̇)/a = 2g(ξ, ξ)/(as2) = 2g(ξ, ξ)/[ag(z, z)] for z = sζ(t)
and ξ = sζ̇(t).

Equality xst = ±Q−1/2φxt obtained above amounts to ∇ẋw = ±Q−1/2φw for
ẋ = xs, where w = xt stands for the vector field s 7→ w(s) = xt(s, t) along
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the geodesic s 7→ x(s, t), with fixed t. As ∇J = 0, relation ∇ẋw = ±Q−1/2φw
holds for w̃ = Jw whenever it does for w. In case (I), w has an Exp-preim-
age which is a vector field along the curve s 7→ (y(t), sζ(t)) ∈ L arising from the
horizontal lift of w(0). (In fact, at any s, t, the preimage is the velocity vector
of the curve t 7→ (y(t), sζ(t)), which we chose to be horizontal, and which has
the projection image t 7→ y(t) with the velocity w(0), cf. (d) in §14.) Replacing
w(0) by Jw(0) causes such a horizontal-lift field to become multiplied by i in
the complex vector bundle HN, and at the same time results in replacing w such
that ∇ẋw = ±Q−1/2φw for ẋ = xs by w̃ = Jw, since w then is determined
by the initial value w(0). Thus, Θ : H∗ → Hx is complex-linear in case (I). In
case (II), with L = TyM , an Exp-preimage of w is the vector field s 7→ sζ̇(t)
along the line segment s 7→ sζ(t) ∈ TyM (where t is fixed). Hence w(0) = 0
and w(s)/s has a limit as s→ 0, equal, by the local-coordinate formula for ∇ẋw,
to the value of ∇ẋw at s = 0. As ζ̇(t) is the Exp-preimage of the limit, w
such that ∇ẋw = ±Q−1/2φw for ẋ = xs is, in case (II), uniquely determined by
(∇ẋw)(0) = ζ̇(t) (for fixed t). Replacing w by w̃ = Jw now amounts to using
Jζ̇(t) instead of ζ̇(t), that is, to multiplying the Exp-preimage of w by i in the
complex vector bundle HN, and so Θ : H∗ → Hx is complex-linear also in case (II).

Finally, relation ẋ = (sgn a)v/|v| in Lemma 8.3(i), for x(s) = Exp(y, sz/|z|)
at s = |z|, shows that Θ sends z/|z|, treated as a vertical vector in T(y,z)L,
onto (sgn a)v(x)/|v(x)|. Multiplying both vectors by a|z|, we obtain our assertion
about the Θ-image of vN(y, z). Also, since z ∈ (TyN)⊥, (7.1) gives ∇zu = iaz.
Now Θ(uN(y, z)) = u(x) by Lemma 10.1, since on the normal space Ly ⊂ TyM
(identified, as usual, with {y} × Ly ⊂ L), the normal exponential mapping of N
coincides with expy. This completes the proof. �

§16. A global classification of special Kähler-Ricci potentials

We will now show that every triple (M, g, τι ) in which τι is a special Kähler-Ricci
potential on a compact Kähler manifold (M, g) is biholomorphically isometric to
one of Class 1 or 2 examples, constructed in §5 and §6. Our result (Theorem 16.3)
thus provides a complete classification of such triples (M, g, τι ).

Lemma 16.1. Let (S, γ) and (M, g) be complete Riemannian manifolds with
open subsets S′ ⊂ S and M ′ ⊂M such that both SrS′ and MrM ′ are unions of
finitely many compact submanifolds of codimensions greater than one. Any isometry
Ψ of (S′, γ) onto (M ′, g) then can be uniquely extended to an isometry of (S, γ)
onto (M, g). If, in addition, (S, γ) and (M, g) are Kähler manifolds and the
isometry Ψ : S′ →M ′ is a biholomorphism, then so is the extension S →M .

In fact, by the codimension hypothesis S′ (or, M ′) is connected and dense in S
(or, in M), and the inclusion mappings S′ → S, M ′ →M are distance-preserving.
As metric spaces, S,M thus are the completions of S′ and M ′. Our claim now
follows since distance-preserving mappings are C∞ Riemannian isometries ([16];
cf. [12], Th. 3.10, Ch. IV), with the Kähler case obvious from continuity of J . �

Remark 16.2. Given locally trivial fibre bundles M,M̂ over a manifold N and
a C∞ diffeomorphism Φ : M → M̂ sending each fibre My onto M̂y, let H, Ĥ be
vector subbundles of TM and TM̂ with TM = H⊕V and TM̂ = Ĥ ⊕ V̂, where
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V, V̂ are the vertical distributions. If Φ sends H onto Ĥ, then its differential dΦx

at any x ∈ M , restricted to Hx, preserves any fibre metric or complex vector-
bundle structure obtained in both H and Ĥ by lifting a fixed analogous object
from TN. (In fact, dΦx becomes the identity mapping if one uses the differentials
of the bundle projections to identify both Hx and ĤΦ(x) with Tπ(x)N.)

Theorem 16.3. Let τι be a special Kähler-Ricci potential on a compact Kähler
manifold (M, g) with dimCM = m ≥ 1. Then, up to a biholomorphic isometry,
the triple (M, g, τι ) belongs to one of Classes 1 and 2 described in §5 and §6.

Proof. Let N,N∗ be the two critical manifolds of τι, ordered so that either
(1) both N and N∗ are of complex dimension m− 1, or
(2) N = {y} for some y ∈M, while m ≥ 2 and dimCN

∗ = m− 1.
(Cf. Proposition 11.5(i).) We will now exhibit ingredients needed to construct a
Class 1 example (case (1)) or a Class 2 example (case (2)). First, in both cases, we
set m = dimCM , choose [τιmin, τιmax] 3 τι 7→ Q to be the assignment associated
with M, g, τι as in Proposition 11.5(ii), define τι0 to be the endpoint of [τιmin, τιmax]
which is the constant value of τι on N, let c, ε, a be the constants determined
by M, g, τι and N as in Lemma 3.1 and Proposition 7.3, and select a positive
function τι 7→ r on (τιmin, τιmax) with dr/dτι = ar/Q. Thus, c is left undefined
when ε = 0, and, in case (2), τι0 = c by Lemma 7.5. Next, in case (1), we let
N,h and L stand, respectively, for our critical manifold, the metric on N defined
in the paragraph preceding Lemma 12.4, and the normal bundle of N, carrying
the normal connection ∇nrm (Remark 12.2) along with the Hermitian fibre metric
whose real part is g restricted to L. In case (2) we in turn set V = TyM and let
〈 , 〉 be the Hermitian inner product in V with Re〈 , 〉 = g(y).

The ingredients just defined in case (1) (or, (2)) satisfy the conditions required
in §5 (or, §6). First, in both cases, Proposition 11.5(ii) implies the positivity-and-
boundary conditions (5.1), and dQ/dτι = 2a at τι = τι0, since dQ/dτι = 2ψ by
Lemma 9.1, while ψ = a on N by Remark 7.4. That, in case (1), either ε = 0
or c /∈ [τιmin, τιmax] and ε = sgn (τι − c) = ±1 for all τι ∈ [τιmin, τιmax] is in turn
clear from Lemmas 3.1(iii) and 7.5(ii). Finally, in case (1), assertions (b), (c) of
Lemma 12.4 imply that Ω = −2εaω(h) and h is Einstein unless m = 2.

Applied to those ingredients, the construction of §5 (or, §6) now yields a compact
Kähler manifold of complex dimension m, which we denote by (S, γ) rather than
(M, g), and a special Kähler-Ricci potential on (S, γ), still denoted by τι. On both
M and S we then also have a function Q equal to |∇τι|2, where the norm and
gradient refer to the respective metric g or γ (cf. (b) in §4).

Let M ′ ⊂M and S′ ⊂ S be the open subsets on which dτι 6= 0. Thus, in both
cases (1) and (2), S′ = LrN, provided that, in case (2), we identify {y}×TyM with
TyM and, again, denote by L the total space of the normal bundle of N = {y},
containing N as the zero section. (See Remarks 5.2 and 6.1.)

We now define a C∞ diffeomorphism Ψ : S′ → M ′, using the diffeomorphism
(0,∞) 3 r 7→ τι ∈ (τιmin, τιmax) which is the inverse of our function τι 7→ r with
dr/dτι = ar/Q (cf. Remark 5.1), and the diffeomorphism τι 7→ s of (τιmin, τιmax)
onto (0, L), for L =

∫ τιmax

τιmin
Q−1/2dτι, characterized by ds/dτι = (sgn a)Q−1/2 with

s = 0 at τι = τι0. The composite r 7→ τι 7→ s is a diffeomorphism (0,∞) → (0, L),
and leads to a diffeomorphism Φ : L r N → L′ that may be described as follows.
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Letting s also stand for the norm function of the fibre metric in L, we denote by
L′ the open subset of L given by 0 < s < L, and let Φ(y, z) = (y, sz/|z|) for
any y ∈ N and z ∈ Ly r {0}, with s ∈ (0, L) depending on r = |z| ∈ (0,∞) via
our composite assignment r 7→ s. (That Φ is a diffeomorphism is clear since, if
(y, w) = Φ(y, z) and r = |z| > 0, then w = sz/r and z = rw/s with r obtained
from s = |w| via the inverse diffeomorphism (0, L) → (0,∞).) Finally, we set
Ψ = Exp◦Φ, which is a diffeomorphism S′ = LrN →M ′ in view of Lemma 13.2.

The diffeomorphism Ψ : S′ → M ′ sends HN, vN, uN in S′ = L r N (defined
in §15), the functions τι,Q on S′, and the metric γ, onto the analogous objects
H, v, u, τι,Q, g in M ′, with v = ∇τι, u = Jv and H = v⊥ ∩ u⊥. In fact, the norm
function s : L′ → R corresponds under the normal exponential mapping Exp to
the arc-length parameter for normal geodesics emanating from N, also denoted by
s, and so our claim, for τι, follows since both functions s 7→ τι are solutions to the
same initial value problem (by Lemma 8.3(ii) and the last paragraph). The claim
about Q is now obvious since the dependence of Q on τι in S′ is the same as in
M ′. That Ψ maps HN onto H is in turn clear since so does Exp (Lemma 15.1),
while Φ leaves HN invariant (since the norm function is constant along any curve
in L tangent to HN, and so Φ multiplies such a curve by a constant factor). As
for vN and uN, our claim is immediate from the final clause of Lemma 15.1, since
Φ obviously leaves uN invariant, while its differential at any point (y, z) ∈ LrN
sends vN(y, z) to r/s times ds/dr times vN(Φ(y, z)), with s and ds/dr evaluated
at r = |z|, for r, s as above. (Note that |a|rds/dr = Q1/2 by Lemma 8.3(ii),
as dr/dτι = ar/Q, and the factor |az|/|v(x)| in Lemma 15.1 equals |a|sQ−1/2.)
Finally, Ψ∗g = γ, since Ψ maps γ restricted to HN onto g restricted to H in
view of Lemma 15.1 and Remark 16.2, while g(v, v) = g(u, u) = Q, g(u, v) = 0,
g(v,H) = g(u,H) = {0}, and the same equalities hold if one replaces g, v, u,H
with γ, vN, uN,HN (cf. (4.1.i) and the line preceding Remark 2.4).

The isometry Ψ of (S′, γ) onto (M ′, g) is also holomorphic: its differential is
complex-linear both on HN and on the distribution in LrN spanned by vN and
uN, the former conclusion being immediate from Lemma 15.1 and Remark 16.2, the
latter obvious as uN = JvN in LrN (cf. §15) and u = Jv in M .

We may now use Lemma 16.1, as its assumptions hold for our (S, γ), (M, g),
S′, M ′ and Ψ in view of Proposition 11.5(i). This completes the proof. �

Remark 16.4. In [7], Theorem 18.1, we proved a local classification result for
special Kähler-Ricci potentials τι on Kähler manifolds (M, g). Namely, up to a
biholomorphism, such g and τι always arise, in a neighborhood of any point with
dτι 6= 0, from a specific construction of a local model. The construction in question
also appears at the beginning of §4 of the present paper.

Using the arguments developed in the preceding sections, one can easily obtain,
in every complex dimension m ≥ 1, an analogous classification theorem valid at
any critical point y of τι, provided that one suitably modifies the local models.
Since the case m = 1 is trivial (Example 3.2), we assume from now on that m ≥ 2.

There are two kinds of such modified local models, depending on the dimension
of the critical manifold N of τι, containing y. Namely, the first kind is characterized
by dimCN = m − 1, and the second by N = {y}. Note that these are the only
possibilities allowed by Proposition 7.3.
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A modified local model of the first kind is obtained from I, τι,Q, r, a, ε, c,m,N, h,
L,H, 〈 , 〉, having the properties listed in the second paragraph of §4, along with a
finite endpoint τι0 of I, satisfying the additional assumptions stated in part (ii) of
Lemma 4.4. Our local model then is the triple (Uo, g, τι) obtained in Lemma 4.4(ii).

The data needed to build a modified local model of the second kind consist of
a half-open interval I ′, with the endpoint denoted by c, a C∞ function Q of the
variable τι ∈ I ′, such that Q = 0 and dQ/dτι = 2a at τι = c, for some a ∈ Rr{0},
while Q > 0 on I ′ r {c}, and, finally, an m-dimensional complex vector space V
with a Hermitian inner product 〈 , 〉. Note that the assumptions made in §6 hold
here as well, except for those involving the other endpoint of I ′. However, a “one
end” part of the construction in §6 still works exactly as before, leading to a local
model (U, g, τι) formed by a Kähler metric g with a special Kähler-Ricci potential
τι on a neighborhood U of 0 in V . An additonal ingredient of the construction is
the choice of a function r on I ′ r {c} with dr/dτι = ar/Q.

Here is an outline of a classification argument involving the new local models.
Assuming that y is a critical point of a special Kähler-Ricci potential τι on a
Kähler manifold (M, g) with dimCM = m ≥ 2 and N is the critical manifold
of τι containing y, we will now define data I, τι,Q, r, a, ε, c,m,N, h,L,H, 〈 , 〉, τι0 (if
dimCN = m − 1), or I ′, τι,Q, r, a, c,m, V , 〈 , 〉 (if N = {y}), having the required
properties. Then we will explain why such a local model is biholomorphically
equivalent to the pair (g, τι) on a neighborhood of y. The distinction between the
two kinds of data (and models) will be a consequence of the dichotomy established
in Proposition 7.3.

First, m = dimCM is already defined. Next, let a 6= 0 be the constant associ-
ated with N as in Proposition 7.3. The restriction of Q = |∇τι|2 to any sufficiently
small connected neighborhood U of y is a C∞ function of τι (Lemma 9.1). Also,
the values assumed by τι on U form a half-open interval I ′ with the endpoint
at τι0 = τι(y). The last fact follows since τι is a Morse-Bott function and its Hes-
sian at any critical point is semidefinite (See Example 11.1, Proposition 7.3 and
Lemma 11.2.)

Our Q thus becomes a C∞ function of the variable τι ∈ I ′, with dQ/dτι = 2a
at τι = τι0 (see Lemma 9.1 and Remark 7.4). Let us now fix a positive function r
of τι ∈ I ′ r {τι0} with dr/dτι = ar/Q, and choose c, ε ∈ R as in Lemma 3.1, so
that c is defined only when ε = ±1.

According to Proposition 7.3, two cases are possible. First, it may happen that
dimCN = m − 1. We then choose L to be the normal bundle of N, and let h
be the metric on N defined in the paragraph preceding Lemma 12.4 (that is, a
specific multiple of the submanifold metric of N), while a connection and a parallel
Hermitian fibre metric in L are selected as in the paragraph following (1), (2) in
the proof of Theorem 16.3.

In the remaining case N = {y}, we set V = TyM and choose 〈 , 〉 so that
Re〈 , 〉 = g(y). Note that Lemma 7.5(ii) then gives τι0 = c.

The data just defined thus satisfy, in the former case, all the conditions required
in Lemma 4.4(ii) (cf. (b), (c) in Lemma 12.4), and, in the latter, all the assumptions
of a “one end” version of §6. This allows us, in either case, to construct the
corresponding local model.

The biholomorphism between the local model in question and a neighborhood of
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y in M is Ψ = Exp ◦ Φ, defined as in the proof of Theorem 16.3; here, however,
instead of Lemma 13.2 we simply use the inverse mapping theorem. The rest of the
proof is an exact replica of the argument that we used to establish Theorem 16.3.

§17. The conformally-Einstein case: six types

This section introduces a systematic case-by-case approach to classifying com-
pact Kähler manifolds which are almost-everywhere conformally Einstein. We first
divide them into six disjoint types (a1), (a2), (b1), (b2), (c1), (c2), and then prove,
in Theorem 17.4, that three of the six types are, in fact, empty. To define the types,
we distinguish three local cases. Namely, in Proposition 11.5 we showed that, when-
ever τι is a special Kähler-Ricci potential on a compact Kähler manifold, Q = |∇τι|2
is a C∞ function of τι. However, in the almost-everywhere conformally Einstein
case, that is, when (1.1) is replaced by the stronger assumption (1.2) (in complex
dimensions m ≥ 3) or (1.3) (for m = 2), the same conclusion holds even without
compactness, and in addition the function τι 7→ Q is rational. This result, estab-
lished in [7], Proposition 22.1, is stated below; note that, by (1.4), our assumptions
imply (1.1), and so Lemma 3.1 may be applied. (In [7], φ was used instead of ε,
which makes no difference, since φ and ε are either both zero or both nonzero.)

Proposition 17.1. If M, g,m, τι satisfy (1.2) with m ≥ 3 or (1.3) with m = 2,
then, for ε and c as in Lemma 3.1, one of the following three cases occurs:

(a) ε = 0,
(b) ε 6= 0 and c = 0,
(c) ε 6= 0 and c 6= 0.

In all three cases, Q = |∇τι|2 : M → R is a rational function of τι. Namely,
(i) Q = −Kτι 2 + (2m− 1)−1 [ατι2m−1 − η/m] in case (a),
(ii) Q = m−1Kτι + ατιm+1 − 2(m+ 1)−1η/m in case (b),

for some constants K,α, η. In case (c), there exist constants A,B,C such that

Q = (t− 1)[A + BE(t) + CF (t)] for t = τι/c,

with F (t) = (t−1)−m(t−2)t2m−1, E(t) = (t−1)
∑m

k=1
k
m

(
2m−k−1

m−1

)
tk−1, and τι 6= c

everywhere in M unless C = 0. �

Given a quadruple (M, g,m, τι) with (1.2) for m ≥ 3, or (1.3) for m = 2, and
such that M is compact, we thus have one of conditions (a), (b), (c) in Proposi-
tion 17.1. At the same time, τι is a special Kähler-Ricci potential (cf. (1.4)). Hence,
by Proposition 11.5, each of the cases (a), (b), (c) leads to two subcases: (a1), (a2),
or (b1), (b2), or (c1), (c2), corresponding to (1) and (2) in Proposition 11.5(i).

As a result, every quadruple (M, g,m, τι) with the stated properties belongs to
exactly one of the six types (a1), (a2), (b1), (b2), (c1), (c2) just described.

To show that three of the six types are empty, we first prove two lemmas.

Lemma 17.2. Let f = (k − 1)βk+1 − (k + 1)βk + (k + 1)β − (k − 1) for β ∈ R
and an integer k ≥ 2. Then f 6= 0 unless β = 1 or β = (−1)k.

In fact, d2f/dβ2 = k(k + 1)(k − 1)(β − 1)βk−2, and so f ′ = df/dβ is strictly
decreasing (or, increasing) on (0, 1) (or, on (1,∞)), while (−1)kf ′ is strictly
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decreasing on (−∞, 0). Evaluating f ′ at 1, 0 and −1, we now obtain f ′ > 0
on (0, 1) ∪ (1,∞), and, if k is even, f ′ > 0 on (−∞, 0] while, if k is odd,
f ′ < 0 on (−∞, β0) and f ′ > 0 on (β0, 0), for some β0 ∈ (−1, 0). Therefore,
evaluating f at 1, 0 and −1, we see that f > 0 on (−∞,−1) and f < 0
on (−1, 1) (for odd k), f < 0 on (−∞, 1) (for even k), and f > 0 on (1,∞) (for
all integers k ≥ 2). �

Another, purely algebraic proof of Lemma 17.2 can be obtained by noting that f
equals (β−1)3Π(β) with Π(β) =

∑k−1
j=1 j (k−j)β j−1, while Π(β)/(β+1) or Π(β)

is a sum of squares, as Π(β) = 22−k
∑

1≤ j≤ k/2 j
(

k+1
2j+1

)
(β + 1)k−2j(β − 1)2j−2.

Lemma 17.3. Let the positivity-and-boundary conditions (5.1) hold for some given
τιmin, τιmax and a function τι 7→ Q defined by the formula in (i) or (ii) of Proposi-
tion 17.1, with an integer m ≥ 2 and real constants K,α, η.

(a) In case (i) we have Q = K(τι 2
0 − τι 2) and τιmax = −τιmin = |τι0| for some

τι0 6= 0, while α = 0, K > 0 and η < 0.
(b) In case (ii), τιmax = −τιmin > 0.

Proof. Since τιmin 6= τιmax, we may write {τιmin, τιmax} = {τι0, τι1} with τι0 6= 0. Let
ϕ0 and ϕ1 be the values at τι0 and τι1 of any function ϕ of the variable τι, such as
Q or ψ given by 2ψ = dQ/dτι. Also, let k = 2m− 2 and k ′ = 2m− 1 (case (i)),
or k = m and k ′ = 1 (case (ii)). For β = τι1/τι0 and f = f(β) as in Lemma 17.2,
assuming (i) or (ii) we get 2τι−k−1

0 [Q0−Q1 +(τι1− τι0)(ψ0 +ψ1)] = αf(β)/k ′. This
gives αf(β) = 0, since, by (5.1), Q0 = Q1 = ψ0 + ψ1 = 0. As τι1 6= τι0 (that is,
β 6= 1), Lemma 17.2 now implies that α = 0, or k is odd and τι1 = −τι0.

In case (i), k = 2m − 2 is even, and so α = 0, while (i) with α = 0 and
Q0 = Q1 = 0 easily yields (a). (In both cases, |K| + |α| > 0 due to the nonzero-
derivative requirement in (5.1).) In case (ii), however, α 6= 0, since relation α = 0
in (ii), along with Q0 = Q1 = 0 and τι1 6= τι0, would give K = η = 0. Thus,
τι1 = −τι0 6= 0 in case (ii), and (b) follows, completing the proof. �

Theorem 17.4. Let M, g,m, τι satisfy (1.2) with m ≥ 3 or (1.3) with m = 2. If
M is compact, then (M, g,m, τι) cannot be of type (a2), (b1) or (b2).

In fact, type (a2) is empty by Lemma 7.5(i). Next, if (M, g,m, τι) were of type
(b1) or (b2), Lemma 3.1 would give τι 6= c, that is, τι 6= 0, everywhere in the open set
M ′ ⊂M on which dτι 6= 0. As M ′ is connected and dense in M (Remark 2.3(ii)),
τι would be nonnegative or nonpositive on M , even though τιmax = −τιmin > 0 by
Lemma 17.3(b) (which applies in view of Propositions 17.1(ii) and 11.5(ii)). �

§18. Type (a1): examples and a classification theorem

The simplest (and well known) examples of quadruples (M, g,m, τι) with com-
pact M , satisfying (1.2), are certain Riemannian products having S2 as a factor;
see [7], §25. This section begins with a slightly more general construction of such
examples, in which g is a locally reducible metric on the compact total space M
of an S2 bundle with a flat connection. We then show (Theorem 18.1) that, up
to τι-preserving biholomorphic isometries, the quadruples with (1.3) constructed
here are precisely the quadruples of type (a1) described in §17. In other words,
Theorem 18.1 provides a complete classification for type (a1).
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First. let there be given an integer m ≥ 2, a real number K > 0, a compact
Kähler-Einstein manifold (N,h) of complex dimension m−1 with the Ricci tensor
r(h) = (3 − 2m)Kh, and a C∞ complex line bundle L over N with a Hermitian
fibre metric and a fixed flat connection making the metric parallel (that is, a flat
U(1) connection). The simplest choice of such L is the product bundle L = N×C.

Let E = N×R now denote the product real-line bundle over N, with the obvious
“constant” Riemannian fibre metric, and let M be the unit-sphere bundle of the
direct sum L⊕E . Thus, M is a 2-sphere bundle over N, with TM = H⊕V, where
V is the vertical distribution (tangent to the fibres), and H is the restriction to
M of the horizontal distribution of the direct-sum connection in L ⊕ E . Since the
latter connection is flat, the distributions V,H are both integrable. We now define
a metric g on M by choosing g on V to be 1/K times the standard unit-sphere
metric of each fibre, declaring V and H to be g-orthogonal, and letting g on
H be the pullback of h under the bundle projection M → N. Finally, we define
τι : M → R to be any nonzero constant times the restriction to M of the composite
L ⊕ E → E → R consisting of the direct-sum projection morphism L ⊕ E → E
followed by the Cartesian-product projection E = N ×R → R.

The flat connection in L⊕ E allows us to treat it, locally, as a product bundle,
which makes (M, g), locally, a Riemannian-and-Kähler product of (U, h) and the
(oriented) sphere S2 with a metric of constant curvature K.

Theorem 18.1. Every quadruple (M, g,m, τι) constructed as above satisfies con-
dition (1.3), and belongs to type (a1) defined in §17.

Conversely, every quadruple (M, g,m, τι) with compact M which satisfies (1.2)
with m ≥ 3 or (1.3) with m = 2, and belongs to type (a1) is, up to a τι-preserving
biholomorphic isometry, obtained from the above construction.

We will prove Theorem 18.1 at the end of this section. First, let us define the
Riemann sphere S of a complex vector space V with dimCV = 1 to be, as usual,
the complex projective line of all complex lines through 0 in V × C. Thus, S
contains V as an open subset: V = S r {∞}, where ∞ is the complex line
V × {0} viewed as an element of S.

If, in addition, V is endowed with a Hermitian inner product 〈 , 〉, while K > 0
and τι0 6= 0 are real constants, we use the constant a = −Kτι0, the norm function
r : V → [0,∞) of 〈 , 〉, and functions τι,Q of the variable r ∈ (0,∞) chosen so
that ar dτι/dr = Q = K(τι 2

0 − τι 2) and |τι| < |τι0|, to define the Riemannian metric
(ar)−2QRe〈 , 〉 on V r {0}, where Re〈 , 〉 is the Euclidean metric.

Lemma 18.2. For any V , 〈 , 〉,K, τι0, τι and Q with the properties just listed, the
resulting metric (ar)−2QRe〈 , 〉 on V r {0} has a C∞ extension to a metric γ of
constant Gaussian curvature K on the Riemann sphere S.

Furthermore, an isometry ϕ : S → S1 between (S, γ) and the unit sphere S1

about (0, 0) in V ×R with 1/K times its submanifold metric can be defined by
ϕ(z) = χ(z)/|χ(z)| for z ∈ V and ϕ(∞) = (0,−1), where χ(0) = (0,

√
Kτι0) and

χ(z) = (
√
Qz/|z|,

√
Kτι) if z ∈ V r {0}.

Proof. The extension γ of our metric to S exists since this is a special case of the
construction in §6, for m = 1 and Q = K(τι 2

0 − τι 2) on the interval [τιmin, τιmax]
with τιmin = −|τι0| and τιmax = |τι0|.
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That ϕ : S → S1 is an isometry will follow from Lemma 16.1 once we have
shown that our χ maps S bijectively onto the sphere Ŝ ⊂ V × R of radius√
K |τι0| centered at 0 and, on V r {0}, the pullback under χ of the submanifold

metric of Ŝ equals Q/r2 times the Euclidean metric Re〈 , 〉 on V . This is in
turn clear since χ sends lines (through 0 in V ) and circles (about 0, in V ) into
meridians and, respectively, parallels in Ŝ, in the cartographic terminology based
on the poles (0,±

√
Kτι0). Our lines are orthogonal to circles, and meridians to

parallels; thus, all we need to show is that χ restricted to any line or circle deforms
the Euclidean metric by the conformal factor Q/r2.

For the circles, this is immediate: the obvious S1 actions make χ equivariant,
and χ sends the circle of any radius r > 0 onto a parallel which is a circle of radius√
Q, where Q = K(τι 2

0 − τι 2), with the required ratio
√
Q/r2 of the radii.

For the lines, let z(r) = rz0 with 〈z0, z0〉 = 1. Then χ(z(r)) = (
√
Qz0,

√
Kτι)

(where τι,Q depend on r ∈ (0,∞) as before), and so, as dQ/dτι = −2Kτι, we have
|d[χ(z(r))]/dr|2 = K(Q +Kτι 2)(dτι/dr)2/Q. Hence |d[χ(z(r))]/dr|2 equals Q/r2,
that is, Q/r2 times |d[z(r)]/dr|2. (In fact, Q + Kτι 2 = Kτι 2

0 , a = −Kτι0 and, as
dr/dτι = ar/Q, we have dτι/dr = Q/(ar).) This completes the proof. �

Proof of Theorem 18.1. For (M, g,m, τι) obtained as above, (1.3) is immediate
from [7], §25. (In [7], g is a product metric on a product bundle; however, the
argument is local, and so the conclusion holds in the local-product case as well.)
Since τι is constant in the N -direction of a local product decomposition for g, both
v = ∇τι and u = Jv are tangent to the S2 factor, and so the horizontal distribu-
tion H equals v⊥∩ u⊥ on the set M ′ ⊂M on which dτι 6= 0. As H is integrable,
Lemma 12.1(iv) gives φ = 0 on M ′, that is, ε = 0 (cf. Lemma 3.1(iii)). Conse-
quently, (M, g,m, τι) is of type (a1), since type (a2) is excluded by Theorem 17.4.

Conversely, let a quadruple (M, g,m, τι) with compact M satisfy (1.2) with
m ≥ 3, or (1.3) with m = 2, and be of type (a1). By (1.4), τι is a special Kähler-
Ricci potential, and so, according to Theorem 16.3, (M, g, τι ) is a Class 1 triple,
obtained as in §5. (It cannot belong to Class 2, as τι would then have a one-point
critical manifold, cf. Remark 6.1, contrary to the definition of type (a1).)

As (M, g, τι ) is a Class 1 triple, the assignment τι 7→ Q obtained in Proposi-
tion 11.5(ii) and the distribution H = v⊥ ∩ u⊥, with v, u as above, coincide with
objects used in the construction of §5: the function τι 7→ Q, and the horizontal
distribution of the connection in the line bundle L. (Cf. (b) in §4.) The definition
of type (a1) gives ε = 0, and hence φ = 0 on M ′ (see Lemma 3.1(iii)). Thus, H
is integrable by Lemma 12.1(iv), and the connection in L is flat.

By Proposition 17.1(i) and Lemma 17.3(a), Q = K(τι 2
0 − τι 2) and τιmax =

−τιmin = |τι0| for some K ∈ (0,∞) and τι0 ∈ Rr{0}. This K and N,h,L,H, 〈 , 〉
used in the construction of §5 lead to an S2 bundle defined at the beginning of
the present section, which we now denote by M̂ , with a Kähler metric ĝ, a special
Kähler-Ricci potential τ̂ι, and two distributions V̂ and Ĥ. Note that the construc-
tion leaves us the freedom to multiply τ̂ι by a nonzero constant.

Let Φ now be the fibre-preserving C∞ diffeomorphism of the CP1 bundle M
over N onto the S2 bundle M̂ over N which operates between the fibres over
each y ∈ N as the canonical isometry ϕ defined in Lemma 18.2. Since ϕ is also
orientation-preserving (for the obvious 2-sphere orientations), it is holomorphic,
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that is, Φ maps fibres of M biholomorphically onto those of M̂ .
By Lemma 18.2, τι corresponds under Φ to a constant multiple of τ̂ι (as the

R-component of χ is
√
Kτι), and Φ preserves horizontality of curves, that is,

sends the distribution H onto Ĥ. Therefore, Φ is a holomorphic isometry: we
just verified that for the restriction of Φ to the fibres, while the differential of Φ
at any point, restricted to H, is complex-linear and isometric by Remark 16.2.
Finally, both Φ∗ĝ and g make H orthogonal to the vertical distribution in M,
which completes the proof. �

§19. A structure theorem for type (c1)

We now proceed to establish a structure theorem for type (c1) of §17, which
reduces its classification to the question of finding all objects that satisfy conditions
(19.1) – (19.4) below with 1 /∈ I. The latter question is addressed in [8]; for a brief
summary of the results of [8], see §1.

We conclude this section with two corollaries concerning type (c2). In [8] they
are used to show that type (c2) is actually empty.

Let a sextuple m, I,Q,A,B,C consist of

(19.1)
an integer m ≥ 2, a nontrivial closed interval I ⊂ R, constants A,B,C,
and the function Q = (t− 1)[A + BE(t) + CF (t)] of the variable t ∈ I,

with E,F as in Proposition 17.1. We then consider the following conditions:

a) Q is analytic on I, that is, I does not contain 1 unless C = 0.
b) Q = 0 at both endpoints of I.

(19.2) c) Q > 0 at all interior points of I.
d) dQ/dt is nonzero at both endpoints of I.
e) The values of dQ/dt at the endpoints of I are mutually opposite.

Lemma 19.1. Let (M, g,m, τι) be a quadruple satisfying (1.2) with m ≥ 3 or
(1.3) with m = 2, and such that M is compact, while εc 6= 0 for ε, c as in
Lemma 3.1. If the assignment [τιmin, τιmax] 3 τι 7→ Q ∈ R of Proposition 11.5(ii),
cf. (1.4), is treated as a C∞ function of the variable t = τι/c, then one has (19.1)
and (19.2) for these m,Q along with I = [τιmin/c, τιmax/c] and some A,B,C.

In fact, Proposition 17.1 yields (19.1); hence Q is a rational function of t, so
that its C∞-differentiability on I amounts to analyticity, and (19.2) follows from
Proposition 11.5(ii). �

Given m, I,Q,A,B,C with (19.1) – (19.2) and with 1 /∈ I, let us choose

(19.3)
a, c ∈ R r {0} and ε = ±1 such that ±2ac are the values of
dQ/dt at the endpoints of I, and εc(t− 1) > 0 for all t ∈ I.

(Such a, c, ε exist by (19.2.d) and (19.2.e), since 1 /∈ I.) Let us also select

(19.4)

a compact Kähler-Einstein manifold (N,h) with dimCN = m− 1 having the
Ricci tensor r(h) = κh for κ = εmA/c, a C∞ complex line bundle L over N,
and a connection in L making a Hermitian fibre metric 〈 , 〉 parallel, with
the curvature form Ω = −2εaω(h), where ω(h) is the Kähler form of (N,h).

Remark 19.2. The existence of L with the connection required in (19.4) is by
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no means guaranteed for a given choice of data (19.1) – (19.3) with 1 /∈ I and
(N,h) as in (19.4). For instance, m, I,Q,A,B,C then must satisfy the following
additional condition: either A = 0, or the values of A−1dQ/dt at the endpoints
of I are rational. In fact, by (19.3) – (19.4) with A 6= 0, those values are ±m/2
times the ratio c1(L)/c1(N) of two integral classes in H2(N,R). Further necessary
conditions follow from a theorem of Kobayashi and Ochiai [13]. See [8], end of §39,
for details.

We will now use any given data with (19.1) – (19.4) and 1 /∈ I to construct a
quadruple (M, g,m, τι) with (1.3), belonging to type (c1) of §17, and such that M
is a holomorphic CP1 bundle over N.

First, we choose a positive function r of the variable t restricted to the interior
of I, such that dr/dt = acr/Q, with Q depending on t as in (19.1). Now dr/dτι =
ar/Q, while (19.2) gives (5.1), for Q, r treated as functions of the variable τι = ct
in the interval [τιmin, τιmax] = cI or (τιmin, τιmax). By Remark 5.1, r ranges over
(0,∞), and so τι,Q restricted to the interior of I become functions of r ∈ (0,∞).

We will also use the symbol r for the norm function L → (0,∞) of 〈 , 〉. Being
functions of r > 0, both τι and Q thus may now be viewed as functions on LrN.
Let g now be the metric on the complex manifold L r N such that the vertical
subbundle V of the tangent bundle is g-orthogonal to the horizontal distribution
H of the connection chosen in L, while g on H equals 2|τι−c| times the pullback
of h to H under the bundle projection L → N, and g on V is Q/(ar)2 times the
standard Euclidean metric Re 〈 , 〉.

This is clearly a special case of the construction in §5. Consequently, g and
τι have C∞ extensions to a metric and a function, still denoted by g, τι, on the
compact complex manifold M obtained as the projective compactification of L.

Theorem 19.3. Let M, g,m, τι be obtained via the above construction from some
data with (19.1) – (19.4) such that 1 /∈ I. Then M is compact, the quadruple
(M, g,m, τι) satisfies (1.3), and (M, g,m, τι) belongs to type (c1) of §17.

Conversely, if (M, g,m, τι) with compact M satisfies (1.2) with m ≥ 3 or (1.3)
with m = 2 and is of type (c1), then, up to a τι-preserving biholomorphic isometry,
it is obtained as above from m with some data (19.1) – (19.4) such that 1 /∈ I.

Proof. According to [7], Proposition 23.3, M, g,m, τι constructed above satisfy
(1.3), since our description of g and τι on L r N is a special case of that in [7],
§23, case (iii). In addition, since ε = ±1, assertion (c) in [7], §16 states that φ 6= 0
and our constant c 6= 0 is the same as in Lemma 3.1, and so, by Remark 5.2,
(M, g,m, τι) is of type (c1). This proves the first claim.

Now let (M, g,m, τι) be as in the second claim. By (1.4) and Theorem 16.3, the
triple (M, g, τι ) belongs to Class 1 or Class 2. It cannot, however, be in Class 2, or
have 1 ∈ I for I as in Lemma 19.1, as either condition would imply that τι has a
one-point critical manifold (cf. Remark 6.1 and Lemma 7.5), thus contradicting the
definition of type (c1). Hence M, g, τι are obtained as in §5 from some data that
include a function Q of τι and a Kähler manifold (N,h) with the Ricci tensor
r(h) = κh for some function κ : N → R. As a function on M this Q equals
|∇τι|2 (see (b) in §4), while, by Proposition 17.1, Q = (t− 1)[A + BE(t) + CF (t)]
with t = τι/c. (We use c and ε defined in Lemma 3.1.) Finally, as shown in [7],
Remarks 23.2 and 9.4, κ is the constant εmA/c. This completes the proof. �
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Lemma 19.1 and Theorem 19.3 also lead to conclusions about type (c2):

Corollary 19.4. Let M, g,m, τι with compact M satisfy (1.2) with m ≥ 3, or
(1.3) with m = 2, and belong to type (c2) of §17. Then conditions (19.1) and
(19.2) hold for m and some I,Q,A,B,C such that 1 ∈ I.

This is clear since, for I,Q,A,B,C chosen as in Lemma 19.1, [τιmin, τιmax] con-
tains τι = c (by Lemma 7.5(ii)), and so I contains the point t = 1. �

Corollary 19.5. One of the following two assertions holds for any given quadruple
(M, g,m, τι) with (1.2) and m ≥ 3, or (1.3) and m = 2, and with compact M .

(i) Up to a τι-preserving biholomorphic isometry, (M, g,m, τι) arises from
the construction preceding Theorem 19.3, or from that in §18.

(ii) We have (19.2) with (19.1) for our m and some I,Q,A,B,C with 1 ∈ I.

In fact, (M, g,m, τι) belongs to one of the six types introduced in §17. However,
types (a2), (b1), (b2) are excluded by Theorem 17.4, types (a1) and (c1) lead to
(i) (see Theorems 18.1 and 19.3), and, for type (c2), Corollary 19.4 gives (ii). �

As it eventually turns out, type (c2) is empty: as shown in [8], Proposition
19.2, the conclusion of Corollary 19.4 and (ii) in Corollary 19.5 cannot occur, since
conditions (19.1) – (19.2) with any m ≥ 2 imply that 1 /∈ I.
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