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ABSTRACT. We classify compact Kähler surfaces with nonconstant Killing potentials
such that all integral curves of their gradients are reparametrized geodesics.

1. INTRODUCTION

Let τ be a Killing potential on a Kähler manifold (M, g), by which one means a
C∞ function τ : M → IR such that J(∇τ) is a Killing field on (M, g). We say that
τ has a geodesic gradient if all nontrivial integral curves of ∇τ are reparametrized
geodesics, or—equivalently (Section 4)—if dQ ∧ dτ = 0, where Q = g(∇τ,∇τ).

There are many known examples of nonconstant Killing potentials with geodesic
gradients on compact Kähler manifolds. They include the soliton functions of the
Kähler-Ricci solitons discovered by Koiso [9] and, independently, Cao [2]; special
Kähler-Ricci potentials [4, § 7], [5, §§5–6]; and functions on complex projective spaces
obtained as ratios of suitable real quadratic forms (Example 4.5).

Theorem 5.3 of this paper classifies all triples (M, g, τ) formed by a compact Käh-
ler surface (M, g) and a nonconstant Killing potential τ : M → IR with a geodesic
gradient, which is not a special Kähler-Ricci potential. It turns out that M must
then be a holomorphic CP1 bundle over a Riemann surface Σ, while g and τ are
obtained, via an explicit Calabi-style construction, from a Riemannian metric h on
Σ, a function Q on a closed interval I, subject only to specific positivity and bound-
ary conditions, and a nonconstant mapping γ : Σ→ IRP1r I (where I ⊂ IR ⊂ IRP1).
The objects Σ, h, I, Q and γ, being geometric invariants of M, g and τ, may conse-
quently be used to parametrize the moduli space of the triples (M, g, τ) in question.

On the other hand, the author and Maschler provided, in [5], a complete descrip-
tion of special Kähler-Ricci potentials on compact Kähler manifolds. Combined
with that result, Theorem 5.3 leads to a classification, in Theorem 6.1, of all compact
Kähler surfaces admitting nonconstant Killing potentials with geodesic gradients.
They are biholomorphic to total spaces of CP1 bundles, or to CP2.

2. PRELIMINARIES

All manifolds, mappings and tensor fields, including Riemannian metrics and
functions, are assumed to be of class C∞. A (sub)manifold is by definition connected.
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Let Ric be the Ricci tensor of a torsion-free connection ∇ on a manifold M. Any
vector field v on M satisfies the Bochner identity

(2.1) a) d div v = div∇v − Ric( · , v), that is, b) vk
,kj = vk

,jk − Rjkvk.

The coordinate form (2.1.b) arises by contraction in l = k from the Ricci identity
v l

,jk − v l
,kj = Rjkq

lvq, which in turn is nothing else than the definition of the cur-
vature tensor R. For such M,∇ and v, we treat ∇v as the endomorphism of the
tangent bundle acting on vector fields w by w 7→ ∇wv, and then div v = tr∇v.

Whenever (M, g) is a Riemannian manifold, the symbol ∇ will denote both the
Levi-Civita connection of g and the g-gradient. If τ : M→ IR, we have

(2.2) 2∇dτ(v, · ) = dQ, where v = ∇τ and Q = g(v, v),

as one sees noting that, in local coordinates, (τ,kτ ,k), j = 2τ,kjτ
,k.

Given a submanifold Σ of a Riemannian manifold (M, g) and ε ∈ (0, ∞), we
denote by NΣ the normal bundle of Σ, by N εΣ the (disjoint) union of radius ε
open balls around 0 in the normal spaces of Σ, by Bε(Σ) the set of points of M
lying at distances less than ε from Σ, also called the ε-neighborhood of Σ in (M, g),
by D ⊂ TM is the domain of the exponential mapping Exp of (M, g), and by
Exp⊥ : D ∩ NΣ → M the normal exponential mapping of Σ, that is, the restriction of
Exp to D∩ NΣ. Thus, N εΣ ⊂ NΣ and Bε(Σ) ⊂ M are open submanifolds.

Remark 2.1. As shown by Kobayashi [7], if u is a Killing vector field on a Rie-
mannian manifold (M, g), the connected components of the zero set of u are mu-
tually isolated totally geodesic submanifolds of even codimensions. Every point of
any such component Σ obviously has a neighborhood Σ′ in Σ with the property
that, for some ε ∈ (0, ∞), the domain of Exp⊥ contains N εΣ′ and Exp⊥ maps N εΣ′

diffeomorphically onto an open set U ⊂ M. Whenever Σ′, ε and U are chosen as
above, the inverse of the diffeomorphism Exp⊥ sends u restricted to U to a vector
field û on N εΣ′ which is vertical (tangent to the open-ball fibres N ε

yΣ, y ∈ Σ′) and,
in each fibre N ε

yΣ, coincides with the linear vector field provided by the endomor-
phism [∇u]y of TyM restricted to NyΣ.

This is immediate since Exp⊥ maps short line segments emanating from 0 in
N ε

yΣ onto geodesics, and so the local flow of u in the submanifold Exp⊥(N ε
yΣ)

corresponds, via Exp⊥, to the linear local flow near 0 in NyΣ generated by [∇u]y.

Remark 2.2. Let Σ be a compact submanifold of a Riemannian manifold (M, g).
If ε ∈ (0, ∞) is sufficiently small, then the domain of Exp⊥ contains N εΣ and Exp⊥

maps N εΣ diffeomorphically onto Bε(Σ). For any such ε, the squared distance from
Σ is a C∞ function on Bε(Σ), corresponding under the diffeomorphism Exp⊥ to the
squared-norm function on N εΣ, and its g-gradient is tangent to all normal geodesics
of lengths less that ε emanating from Σ, all of which are distance-minimizing.

The last claim follows from the generalized Gauss lemma, cf. [6, p. 26], in exactly
the same way as the ordinary Gauss lemma is used to establish a special case of this
claim, in which Σ consists of a single point.

The following well-known fact will be needed at the very end of Section 12.
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Lemma 2.3. Let (M̂, ĝ) and (M, g) be complete Riemannian manifolds with open sub-
sets M̂′ ⊂ M̂ and M′ ⊂ M such that both M̂ r M̂′ and M r M′ are unions of finitely
many compact submanifolds of codimensions greater than one. Any isometry of (M̂′, ĝ)
onto (M′, g) can then be uniquely extended to an isometry of (M̂, ĝ) onto (M, g). If,
in addition, (M̂, ĝ) and (M, g) are Kähler manifolds and the isometry M̂′ → M′ is a
biholomorphism, then so is the extension M̂→ M.

Proof. See, for instance, [5, Lemma 16.1].

Remark 2.4. One easily verifies that a Riemannian manifold (M, g) is complete if
and only if every curve (b, c) 3 t 7→ x(t) ∈ M of finite length has limits as t → b
and t→ c.

Remark 2.5. We treat IR as a subset of IRP1 via the usual embedding τ 7→ [τ, 1]
(in homogeneous coordinates). For algebraic operations involving ∞ = [1, 0] ∈ IRP1

and elements of IR ⊂ IRP1, the standard conventions apply; thus, p/∞ = 0 and
q/0 = p + ∞ = ∞ if p ∈ IR and q ∈ IR r {0}.

3. KILLING POTENTIALS

The symbols J and ω always stand for the complex-structure tensor of a given
Kähler manifold (M, g) and for its Kähler form, with ω = g(J · , · ). Real-holomor-
phic vector fields on M then are the sections v of TM such that £v J = 0. This is
equivalent to [J,∇v] = 0, the commutator [ , ] being applied here to vector-bundle
morphisms TM→ TM. In fact, £v J = [J,∇v], since ∇J = 0.

A C∞ function τ on a Kähler manifold is a Killing potential (Section 1) if and
only if v = ∇τ is a real-holomorphic vector field; cf. [4, Lemma 5.2]. In this case,

(3.1) dv ∆τ = 2 div∇vv − 2|∇v|2, where v = ∇τ .

In fact, the Bochner identity (2.1.a) with v = ∇τ reads d∆τ = div∇dτ − Ric( · , v).
Multiplying both sides by 2 and subtracting the well-known equality

(3.2) d∆τ = −2Ric( · , v), with v = ∇τ ,

valid whenever τ is a Killing potential [1], cf. [4, formula (5.4)], we obtain d∆τ =
2 div∇dτ. Hence dv ∆τ = 2vk

,jkv j = 2(vk
, jv j),k − 2vk

, jv j
,k, as required.

Remark 3.1. Given a Killing potential τ on a Kähler manifold (M, g), let us con-
sider the vector fields v = ∇τ and u = Jv. Then

(a) v, u are both real-holomorphic, and commute,
(b) u is a Killing field.

Specifically, (b) amounts to the definition of a Killing potential at the beginning of
Section 1, and (a) is well known [4, formula (5.1.b) and Lemma 5.2].

On compact Kähler manifolds, Killing potentials have yet another characteriza-
tion: their gradients are precisely the same as J-images of Killing fields with zeros.
See Appendix A.

A special Kähler-Ricci potential [4, § 7] on a Kähler manifold (M, g) is any non-
constant Killing potential τ such that, at points where dτ 6= 0, all nonzero vectors
orthogonal to ∇τ and J(∇τ) are eigenvectors of both ∇dτ and Ric.
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Remark 3.2. Let τ and f be functions on a manifold M such that τ is noncon-
stant and f = χ ◦ τ with some C∞ function χ : I → IR, where I = τ(M) is the
range of τ. We then say that f is a C∞ function of τ.

Remark 3.3. In view of (2.2) and (3.2), a nonconstant Killing potential τ on a
Kähler manifold (M, g) is a special Kähler-Ricci potential if and only if every point
with dτ 6= 0 has a neighborhood on which both Q = g(∇τ,∇τ) and ∆τ are C∞

functions of τ.

4. GEODESIC GRADIENTS: THE SIMPLEST EXAMPLES

Let ∇ be a connection in the tangent bundle TM of a manifold M. A geodesic
vector field relative to ∇ is any vector field v on M such that, for some function
ψ : M′→ IR defined on the open set M′ ⊂ M on which v 6= 0,

(4.1) ∇vv = ψv everywhere in M′,

or, equivalently, such that the integral curves of v are reparametrized ∇-geodesics.
We say that a function τ : M → IR on a Riemannian manifold (M, g) has a

geodesic gradient if v = ∇τ is a geodesic vector field for the Levi-Civita connection
∇ of g. It is clear from (2.2) and (4.1) that this amounts to the condition

(4.2) dQ ∧ dτ = 0, where Q = g(∇τ,∇τ),

which is in turn the same as requiring Q to be, locally in M′, a function of τ.

Remark 4.1. If v is a geodesic vector field for a connection ∇ on M, then so is
µv for any function µ : M→ IR.

Example 4.2. Each of the following assumptions about a given Riemannian man-
ifold (M, g) and a function τ : M→ IR implies that τ has a geodesic gradient.

(a) Some group of isometries of (M, g) with principal orbits of codimension 1
leaves τ invariant.

(b) dim M = 1.
(c) τ = χ ◦ ρ for some function ρ on (M, g) that has a geodesic gradient and

some χ : I→ IR, where I ⊂ IR is an interval containing the range ρ(M).
(d) (M, g) is the ε-neighborhood, for any sufficiently small ε ∈ (0, ∞), of a given

compact submanifold Σ in a Riemannian manifold, and τ is the squared dis-
tance from Σ.

(e) (M, g) is a Riemannian product and τ is a function with a geodesic gradient
on one of the factor Riemannian manifolds, treated as a function on M.

For (a) this is a direct consequence of (4.2), as the gradients of τ and Q are both
normal to the orbits; (b) leads to (a) for the trivial group; and the claims in (c) – (d)
easily follow from Remarks 4.1 and 2.2, while the case of (e) is obvious.

Example 4.3. A a nonconstant function τ with a geodesic gradient exists on every
Riemannian manifold (M, g), and may be chosen so that 0 is a regular value of τ,
and τ−1(0) is any prescribed compact submanifold Σ of codimension 1 which
disconnects M (such as a sphere embedded in a coordinate domain).
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In fact, for ε as in Remark 2.2 and a unit normal vector field w along Σ, the
assignment (y, t) 7→ expy twy defines a diffeomorphism Σ × (−ε, ε) → Bε(Σ). As
the function ρ : Bε(Σ) → IR sending expy twy to t has a geodesic gradient (cf.
Remark 2.2), we may set τ = χ ◦ ρ, as in (c), with χ : IR→ IR that is nondecreasing,
constant on both (−∞,−δ) and (δ, ∞) for some δ ∈ (0, ε), and equal to the identity
on a neighborhood of 0.

Example 4.4. Every special Kähler-Ricci potential on a Kähler manifold (Section 3)
has a geodesic gradient, which is immediate as (2.2) then implies (4.2).

Example 4.5. For fixed nonnegative integers k, l, m with m = k + l + 1 ≥ 2, let
g be the Fubini-Study metric on M = CPm. Then τ : M → IR defined by the as-
signment [x, y] 7→ |y|2/(|x|2+ |y|2), where [x, y] are the homogeneous coordinates,
while x ∈ Ck+1 and y ∈ C l+1, is a nonconstant Killing potential with a geodesic
gradient. More precisely, it is easy to verify that Q in (4.2) equals 4(1− τ)τ, so that
the critical points of τ form the union of two disjoint linear varieties CPk and CP l

in CPm, corresponding to the subspaces Ck+1×{0} and {0}× C l+1 of Cm+1.

Remark 4.6. Let τ be a function with a geodesic gradient exists on a Riemannian
manifold. For any nonconstant integral curve t 7→ x(t) of the gradient v = ∇τ,
the τ-image of the curve has the form (b, c), with −∞ ≤ b < c ≤ ∞. Since τ is an
increasing function of t, it can be used as a new curve parameter. In terms of τ, the
length of the curve obviously equals

∫ c
b Q−1/2 dτ, where Q = g(v, v).

5. FURTHER EXAMPLES AND A CLASSIFICATION THEOREM

The following construction generalizes that of [5, §5] (in the case m = 2), and
gives rise to compact Kähler surfaces (M, g) with nonconstant Killing potentials τ
which have geodesic gradients but, in contrast with [5, §5], need not be special Käh-
ler-Ricci potentials. For a detailed comparison with [5, §5], see Remark 5.1 below.

One begins by fixing a nonuple

(5.1) I, a, Σ, h, L, ( , ), H, γ, Q

consisting of the following objects:
(i) a nontrivial closed interval I = [τmin, τmax] of the variable τ,

(ii) a real number a > 0,
(iii) a compact Kähler manifold (Σ, h) of complex dimension 1,
(iv) a C∞ function Q : I → IR equal to 0 at the endpoints of I, positive on its

interior I◦, with dQ/dτ = 2a at τmin and dQ/dτ = −2a at τmax,
(v) a C∞ mapping γ : Σ→ IRP1 r I, with I ⊂ IR ⊂ IRP1 as in Remark 2.5,

(vi) a C∞ complex line bundle L over Σ with a Hermitian fibre metric ( , ),
(vii) the horizontal distribution H of a connection in L making ( , ) parallel and

having the curvature form Ω = −a(τ∗ − γ)−1ω(h),

where ω(h) is the Kähler form of (Σ, h). Thus, Ω = 0 at points at which γ = ∞.
Note that, in (iii), (Σ, h) is nothing else than a closed oriented real surface endowed
with a Riemannian metric.
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In addition to the data (5.1), let us fix a C∞ diffeomorphism I◦ 3 τ 7→ r ∈ (0, ∞)
such that dr/dτ = ar/Q, and a “base point” τ∗ ∈ I. We choose τ∗ to be the mid-
point of I, which is just an arbitrary normalization. See Remark 5.2.

Let the symbol V stand for the vertical distribution Ker dπ on the total space of
the bundle (also denoted by L), π : L → Σ being the bundle projection. From
now on the norm function r : L → [0, ∞) of ( , ) is treated, simultaneously, as an
independent variable ranging over [0, ∞), so that our fixed diffeomorphism τ 7→ r
turns τ, and hence Q as well, into a function L→ IR.

Next we define a Riemannian metric g on M′ = L r Σ, where Σ is identi-
fied with the zero section, by g = (τ∗ − γ)−1(τ − γ)h or g = h on H, g =
(ar)−2Q Re( , ) on V, and g(H,V) = {0}. Tensors on Σ are denoted by the same
symbols as their pullbacks to M′, so that γ stands here for γ ◦ π and h for π∗h.
On H, the first formula is to be used in the π-preimage of the set in Σ on which
γ 6= ∞, and the second one on its complement. Note that C∞-differentiability of the
algebraic operations in IRP1, wherever they are permitted (cf. Remark 2.5) implies
that g is of class C∞.

Obviously, (M′, g) is an almost Hermitian manifold for the almost complex struc-
ture J obtained by requiring that the subbundles V and H of TM′ be J-invariant
and, for any x ∈ M′, the restriction of Jx to Vx, or Hx, coincide with the complex
structure of the fibre Lπ(x) or, respectively, with the dπx-pullback of the complex
structure of Σ.

Let M be the CP1 bundle over Σ resulting from the projective compactification
of L. Our g, τ and J then have C∞ extensions to a metric, function, and almost
complex structure on M denoted, again, by g, τ and J. In fact, such extensions
exist for the distributions V and H. Our claim thus follows since, according to the
conclusion made in [5, §5] for m = 1, both the function τ restricted to the subset
Ly r {0} of a single fibre of Ly of L and the metric (ar)−2Q Re( , ) on Ly r {0}
can be smoothly extended to the Riemann-sphere compactification of Ly.

For the section v of the vertical distribution V on L which, restricted to each fibre
of L, equals a times the radial (identity) vector field on the fibre, one easily verifies
that dv = Q d/dτ, both sides being viewed as operators acting on C∞ functions of
τ. Thus, v equals the g-gradient ∇τ of τ, and g(v, v) = Q.

From now on the symbols w, w′ will stand both for any two C∞ vector fields in
Σ and, simultaneously, for their horizontal lifts to L (which themselves are just the
π-projectable horizontal vector fields on L). We also define a vector field u on L

by u = iv (multiplication by i in each fibre), so that, for our J, and w as above,
Jv = u, while Jw has the same meaning in L as in Σ. With ∇ and D denoting the
Levi-Civita connections of g and h, one has, on a dense open subset of M′,

(5.2)

∇vv = −∇uu = ψv, ∇v u = ∇uv = ψu,
∇vw = ∇wv = φw, ∇uw = ∇w u = φ Jw,
Q∇ww′ = QDww′ − φ[g(w, w′)v + g(Jw, w′)u]

+ (τ∗ − γ)−1(τ − τ∗)φ[h(Dγ, w)w′+ h(Dγ, w′)w− h(w, w′)Dγ]
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for ψ, φ : M′ → IR given by 2ψ = dQ/dτ and 2φ = (τ − γ)−1Q. The dense open
set in question is the union of the π-preimages of two subsets in Σ, which are: the
γ-preimage of IR = IRP1 r {∞}, cf. Remark 2.5; and the interior of the γ-preimage
of ∞. On the former set, Dγ denotes the h-gradient of γ treated as a real-valued
function; on the latter, we set Dγ = 0.

In fact, the connection ∇ defined by (5.2) is clearly compatible with g and tor-
sion-free, since v, u commute both with each other and with the horizontal lifts
w, w′, while the vertical component of [w, w′ ] is a−1Ω(w, w′)u, cf. [4, formula (3.6)].

Also, J commutes with ∇v,∇u, all ∇w, and ∇v. These commutation relations are
obvious from (5.2), possibly except [J,∇w]w′ = 0, which follows, as (5.2) yields

[J,∇w]w′ = [(τ∗ − γ)Q]−1(τ − τ∗)φ [Ξ(Jw, w′, JDγ)− Ξ(w, w′, Dγ)],

with Ξ(w, w′, w′′) = h(Jw, w′)w′′+ h(Jw′, w′′)w + h(Jw′′, w)w′. Skew-symmetry of
Ξ and two-dimensionality of Σ now give Ξ(w, w′, w′′) = 0.

The conclusions of the last paragraph amount to ∇J = 0 and [J,∇v] = 0. The
former equality means that g is a Kähler metric; the latter states that v = ∇τ is
real-holomorphic, which makes τ a (nonconstant) Killing potential on the Kähler
manifold (M, g), cf. Section 3. Also, τ has a geodesic gradient in view of the first
line in (5.2). Note that ∆τ = tr∇v = 2φ + 2ψ, and so

(5.3) ∆τ = (τ − γ)−1Q + dQ/dτ.

Remark 5.1. By (5.3) and Remark 3.3, our τ is a special Kähler-Ricci potential on
(M, g) if and only if γ is constant. When γ is constant, our construction becomes
that of [5, §5] for m = 2, τ0 = τmin , and either ε = 0 with an undefined constant c
(when γ = ∞), or ε = ±1 with c ∈ IR = IRP1 r {∞} equal to the value of γ (if
γ 6= ∞); in the latter case, our h is 2|τ∗− c| times the metric denoted by h in [5].

Remark 5.2. The “base point” τ∗ is not a geometric invariant of the triple (M, g, τ)
constructed above, and one may choose it to be a different constant, or even a func-
tion τ̃∗ : Σ → IR, as long as τ 6= γ 6= τ̃∗ everywhere in M, so that the definition
of g makes sense. (Again, we treat τ, γ and τ̃∗ as functions M → IR.) The re-
sulting metric g will then remain unchanged, provided that we replace h with h̃,
equal to (τ∗ − γ)−1(τ̃∗ − γ)h on the subset of Σ on which γ 6= ∞, and to h on its
complement. (Condition (vii) for τ̃∗ and h̃ will still hold, with the same H and Ω.)

More generally, we can relax conditions (iii) – (v), while keeping (ii), (vi) and (vii),
so that Σ need not be compact, Q is defined and positive on an open interval, and
γ, τ∗ : Σ → IRP1. The construction then yields a triple (M, g, τ) with the same
properties, except compactness of M, where M now is any connected component
of the open set in Lr Σ defined by requiring that τ 6= γ 6= τ∗ and that the values
of the norm function r lie in the resulting new range.

The following result provides a classification of compact Kähler surfaces with
nonconstant Killing potentials which have geodesic gradients yet are not special
Kähler-Ricci potentials.
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Theorem 5.3. Let τ be a nonconstant Killing potential with a geodesic gradient on a
compact Kähler surface (M, g). If τ is not a special Kähler-Ricci potential on (M, g),
then, up to a biholomorphic isometry, the triple (M, g, τ) arises from the above construction
applied to some data (5.1) satisfying (i) – (vii), such that γ : Σ→ IRP1r I is nonconstant.

A proof of Theorem 5.3 is given in Sections 11 and 12. First, however, Theorem 5.3
will be used, in Section 6, to derive a more general conclusion.

6. A MORE GENERAL CLASSIFICATION RESULT

Compact Kähler manifolds of all complex dimensions m ≥ 2, admitting special
Kähler-Ricci potentials, have been completely described in [5, Theorem 16.3]. They
form two types, referred to in [5] as Class 1 and Class 2, the universal models of
which were constructed in [5, §5] and, respectively, [5, §6].

Class 1, for m = 2, is obtained as in Section 5, from data (5.1) with (i) – (vii), such
that the mapping γ : Σ→ IRP1 r I is constant. For details, see Remark 5.1.

Class 2, in complex dimension 2, arises from a modified version of the construc-
tion in Section 5, in which γ is still constant, but instead of lying in IRP1 r I, it is
assumed to one of the endpoints of I, and a ∈ IR, rather than being positive, is
nonzero, with the sign such that (τ∗ − γ)a > 0. The choice of other data in (5.1)
is less general than in Section 5: (Σ, h) and L, ( , ),H are, respectively, CP2 with
2(τ∗ − γ)/a times the Fubini-Study metric, and the tautological bundle over CP2

with its standard fibre metric and connection (both invariant under the full isome-
try group). The metric g on M′ = LrΣ, defined as before, still has a C∞ extension
to a tensor field on the total space L and, further, on the projective compactification
of L. Along the zero section Σ ⊂ L, however, this extension fails to be positive
definite, as τ = γ on Σ. One removes the resulting degeneracy of g by blowing
down the zero section, which results in replacing the projective compactification of
L with CP2.

Using the result of [5], one can now generalize Theorem 5.3 a follows.

Theorem 6.1. Up to biholomorphic isometries, every triple (M, g, τ) formed by a com-
pact Kähler surface (M, g) and a nonconstant Killing potential τ with a geodesic gradient
on (M, g, τ) is either obtained as in Section 5 from some data (5.1) with (i) – (vii), or arises
from the above construction of Class 2 special Kähler-Ricci potentials on M = CP2.

Proof. If τ is (or, is not) a special Kähler-Ricci potential, our claim follows from
Theorem 5.3 or, respectively, [5, Theorem 16.3].

7. ONE-JETS OF GEODESIC VECTOR FIELDS AT THEIR ZEROS

As a first step toward the proof of Theorem 5.3, we now proceed to establish one
general property of geodesic vector fields, defined in Section 4.

Remark 7.1. If ε > 0 and a curve [0, ε] 3 t 7→ v(t) ∈ V in a normed vector space
V with dim V < ∞ is differentiable at t = 0, while v(0) = 0 6= w, where w = v̇(0)
and v̇ = dv/dt, then v(t)/|v(t)| → w/|w| as t → 0+. (In fact, v(t)/t → v̇(0) = w
as t→ 0+. Thus, |v(t)|/t→ |w| and v(t)/|v(t)| = [v(t)/t][|v(t)|/t]−1 → w/|w|.)
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Lemma 7.2. Let v be a geodesic vector field on a manifold M with a fixed connection
∇. If y ∈ M and vy = 0, then, for E = [∇v]y : TyM→ TyM and some a ∈ IR, we have
E2 = aE, that is, one of the following two cases occurs:

(i) E is diagonalizable, and either it is a multiple of the identity, or it has exactly two
distinct eigenvalues, one of which is zero.

(ii) E is not diagonalizable and E2 = 0.

Proof. We may assume that E 6= 0 and identify a neighborhood of y in M with
a neighborhood U of 0 in a vector space V, so that y corresponds to 0. This
turns ∇ into a connection in TU. As v = 0 at the point 0, the operator E is
now the differential at 0 of v viewed as a mapping U → V. We also fix a vector
subspace V′ ⊂ V of dimension rank E such that E maps V′ isomorphically onto
the image E(V), and choose a linear projection P : V→ E(V). In view of the inverse
mapping theorem, there exists a neighborhood U′ of 0 in V′ such that U′⊂ U and
Π = P ◦ v : U′ → U′′ is a diffeomorphism onto a neighborhood U′′ of 0 in E(V).
Thus, Π(0) = 0 and dΠ0 equals E restricted to V′.

Given any nonzero vector w ∈ E(V), let ε > 0 be such that tw ∈ U′′ for all
t ∈ [0, ε]. We set x(t) = Π−1(tw) if t ∈ [0, ε]. Thus, v(x(t)) 6= 0 for t ∈ (0, ε],
as Pv(x(t)) = Π(x(t)) = tw 6= 0. We may now set u(t) = v(x(t))/|v(x(t))|, if
0 < t ≤ ε, using a fixed norm | | in V, so that u(t) → w/|w| as t → 0+ according
to Remark 7.1, and an equality of the form (4.1) holds at each x(t), t ∈ (0, ε], with
some function ψ (defined only at points where v 6= 0). Dividing both sides of that
equality by |v(x(t))| and setting a(t) = ψ(x(t)), we obtain [∇u(t)v]x(t) = a(t)u(t).
Consequently, a(t) has a limit aw as t → 0+ and, taking the limits of both sides of
the last relation, we get [∇wv]0 = aww, that is, Ew = aww. Every w ∈ E(V)r {0} is
thus an eigenvector of E for some eigenvalue aw, which is only possible if a = aw
does not depend on w. Hence E(V) ⊂ Ker (E − a) or, equivalently, E2 − aE =
(E− a)E = 0. If a 6= 0, the subspaces Ker E and Ker (E− a) must, for dimensional
reasons, be the summands in a direct-sum decomposition of V. This leads to case
(i). Hence, if E is not diagonalizable, we have a = 0, and (ii) follows.

8. MORSE -BOTT FUNCTIONS WITH GEODESIC GRADIENTS

A Morse-Bott function on a manifold M is a C∞ function τ : M → IR such that
the connected components of the set of critical points of τ are mutually isolated
submanifolds of M (called the critical manifolds of τ), and the rank of the Hessian of
τ at every critical point x is the codimension of the critical manifold containing x.

Example 8.1. All Killing potentials are Morse-Bott functions, and their critical
manifolds are totally geodesic complex submanifolds of the ambient Kähler mani-
fold. This is a well-known consequence of Remark 3.1(b) and Kobayashi’s result [7]
mentioned in Remark 2.1. Cf. also [5, Example 11.1 and Remark 2.3(iii-c,d)].

Remark 8.2. The standard examples of Morse-Bott functions are provided by ho-
mogeneous quadratic polynomials on finite-dimensional real vector spaces. The
conclusion about the squared-norm function in Remark 2.2 now implies that τ of
Example 4.2(d) is a Morse-Bott function.
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The next remark and lemma use the symbols Exp⊥ and N εΣ defined in Section 2.

Remark 8.3. Given a critical manifold Σ of a Morse-Bott function τ on a mani-
fold M and a point y ∈ Σ, there exist a neighborhood Σ′ of y in Σ and ε ∈ (0, ∞)

such that the domain of Exp⊥ contains N εΣ′ and Exp⊥ maps N εΣ′ diffeomorphic-
ally onto a neighborhood U of y in M, while ∇τ 6= 0 everywhere in U r Σ′.

This is immediate from the inverse mapping theorem applied to Exp⊥ and the
definition of a critical manifold.

Lemma 8.4. Let y ∈ Σ, for a critical manifold Σ of a nonconstant Morse-Bott function
τ with a geodesic gradient on a Riemannian manifold (M, g).

(i) The Hessian ∇dτ at y has exactly one nonzero eigenvalue a.
(ii) The eigenspace corresponding to a in (i) is the normal space NyΣ of Σ at y.

(iii) For every sufficiently small ε ∈ (0, ∞) there exists a neighborhood U of y in M
such that the underlying one-dimensional manifolds of the maximal integral curves
of the restriction of v = ∇τ to U r Σ coincide with the length ε open geodesic
segments emanating from Σ ∩U and normal to Σ.

(iv) The gradient v = ∇τ is tangent to every nonconstant geodesic [0, b) 3 t 7→ x(t)
with x(0) = y and ẋ(0) ∈ NyΣ, where b ∈ (0, ∞], and the set of t ∈ [0, b) for
which vx(t) = 0 is discrete.

Proof. Case (ii) in Lemma 7.2 for v = ∇τ is excluded by self-adjointness of B =
[∇v]y. Now (i) and (ii) are immediate from Lemma 7.2(i) and the rank condition in
the definition of a Morse-Bott function. Note that B 6= 0, for otherwise Σ would
be both a submanifold of codimension 0 and a closed subset of M, which is not
possible as Σ 6= M.

Assertion (iii) is a trivial consequence of Remark 8.3, since (ii) and [5, Lemma 8.2]
imply that ∇τ is tangent to all sufficiently short geodesic segments normal to Σ.

For b and x(t) as in (iv), let tsup be the supremum of t′ ∈ (0, b) such that v is
tangent to the geodesic segment [0, t′ ] 3 t 7→ x(t) and the set of t ∈ [0, t′ ] with
vx(t) = 0 is finite. By (iii), tsup > 0.

Suppose now that tsup < b. The word ‘supremum’ then can be replaced with
‘maximum’ since, whether v 6= 0 or v = 0 at the point x(tsup), the parameter
values t ∈ [0, tsup) with vx(t) = 0 cannot form a strictly increasing sequence that
converges to tsup. (In the former case this follows from continuity of v, in the latter
from (iii) applied to y′ = x(tsup) and the critical manifold containing y′, rather than
y and Σ.) Next, maximality of tsup gives v = 0 at y′. Applying (iii), again, to
y′ instead of y, we see that v is tangent to some segment [0, t′ ] 3 t 7→ x(t) with
t′ > tsup. The resulting contradiction shows that tsup = b, completing the proof.

Remark 8.5. For (M, g), τ, Σ, and y satisfying the hypotheses of Lemma 8.4, and
any unit-speed geodesic t 7→ x(t) such that x(0) = y and ẋ(0) ∈ NyΣ, writing
τ̇(t) = d[τ(x(t))]/dt, we get, from Lemma 8.4(ii),

(8.1) τ̇(0) = 0 6= τ̈(0) = a, with a as in Lemma 8.4(i).
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9. AN IRP1-VALUED INVARIANT

Any nonconstant Killing potential with a geodesic gradient on a Kähler surface
(M, g) naturally gives rise to a C∞ mapping γ : M→ IRP1, described in Lemma 9.1
below. We begin by introducing some notations.

In the remainder of the paper, except Section 10, τ is always assumed to be a
nonconstant Killing potential with a geodesic gradient on a Kähler manifold (M, g)
of complex dimension m ≥ 2. We write

(9.1) v = ∇τ , u = Jv, Q = g(v, v).

The open set M′ ⊂ M on which v 6= 0 is connected and dense in M, cf. [5, Re-
mark 2.3(ii)]. On M′ one has the distributions V = Span(v, u) and H = V⊥. At
any point of M′, nonzero vectors in V are eigenvectors of ∇v for the eigenvalue
function ψ appearing in (4.1). Furthermore,

(9.2)
a) 2ψ = dQ/dτ, b) dvτ = Q, c) dvQ = 2ψQ,
d) g(v, v) = g(u, u) = Q, g(v, u) = 0,

where (9.2.a) makes sense in view of the line following (4.2). In fact, (9.1) yields
(9.2.b) and (9.2.d), while (2.2), (4.1) and (9.1) give dQ = 2ψ dτ, so that (9.2.a) and
(9.2.c) follow.

If m = 2, nonzero vectors in H are also eigenvectors of ∇v, for the eigenvalue
function φ given by 2φ = ∆τ − 2ψ. Thus,

(9.3) i) ∆τ = 2(ψ + φ), ii) |∇v|2 = 2(ψ2 + φ2).

(The vector-bundle morphism ∇v : TM → TM is complex-linear and Hermitian
at every point; see Section 3.) Since ∆τ = div v, (3.1) combined with (4.1) implies,
whenever m ≥ 2, that dv ∆τ = 2(dvψ + ψ∆τ − |∇v|2). Consequently, by (9.3),

(9.4) dv φ = 2(ψ− φ)φ if m = 2.

Lemma 9.1. For any nonconstant Killing potential τ with a geodesic gradient on a Käh-
ler surface (M, g), there exists a unique C∞ mapping γ : M → IRP1 such that, with the
conventions of Remark 2.5, γ = τ −Q/(∆τ − 2ψ) on M′. In addition,

(a) At every point x ∈ M, the vectors vx and ux lie in Ker dγx.
(b) γ is constant along every geodesic issuing from a critical manifold Σ of τ in a direc-

tion normal to Σ, cf. Example 8.1.
(c) γ is constant on M if and only if τ is a special Kähler-Ricci potential.

Proof. We begin by establishing (a) and (c) for M′ rather than M. Clearly, (a) holds
if x lies in the interior of the set on which γ = ∞. On the set where γ 6= ∞, treating
γ = τ − Q/(2φ) as a real-valued function, we clearly have duγ = 0 since u is a
Killing field and duτ = 0 by (9.1) combined with (9.2.d), while dvγ = 0 due to
(9.2.b), (9.2.c) and (9.4). As the union of the two open sets is dense in M′, (a) on M′

follows.
To prove (c) on M′, assume first that γ : M′ → IRP1 is constant. Both when

γ = ∞ (and so ∆τ = 2ψ), and when γ 6= ∞, this implies that ∆τ is, locally in M′,
a function of τ, since so are Q and ψ by (4.2) and (9.2.a). In view of Remark 3.3, τ
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then is a special Kähler-Ricci potential. On the other hand, if τ is a special Kähler-
Ricci potential, we either have φ = 0 identically on M′, or φ 6= 0 everywhere in M′

[4, Lemma 12.5]. As γ = τ−Q/(2φ), in the former case γ = ∞, and in the latter γ
is a real constant [4, Lemma 12.5], which yields (c).

We now show that γ : M′→ IRP1 has a C∞ extension to M. To this end, let Σ be
the critical manifold of τ containing a given point y ∈ M r M′, cf. Example 8.1. For
Σ′, ε and U chosen as in Remark 8.3, U r Σ′ is a bundle over Σ′ with fibres which
are even-dimensional (Example 8.1), and hence connected, punctured balls. By (a)
for v along with Lemma 8.4(iv), the C∞ mapping γ : U r Σ′→ IRP1 is constant on
each fibre, so that it has an obvious C∞ extension to U, as required.

Finally, Lemma 8.4(iv) and (a) for v imply (b).

For (M, g) and τ constructed in Section 5, γ used in the construction, when
viewed as a mapping M → IRP1, coincides with γ defined in Lemma 9.1. This is
clear from (5.2), (5.3) and (9.2.a).

We will show later (Lemma 11.3) that, if M in Lemma 9.1 is compact, the values
of γ lie in IRP1 r I◦, where I◦ = (τmin, τmax). Identifying IRP1 r I◦ with an interval
in IR, we may then treat γ as real-valued invariant. However, such an adjustment
is not possible in general, since γ : M→ IRP1 is surjective for some nonconstant Kil-
ling potentials τ with geodesic gradients on (noncompact) Kähler surfaces (M, g).
An example arises when one modifies the construction in Section 5, as described in
the second paragraph of Remark 5.2. Specifically, let Σ = C, and so Σ = U+∪U−,
where the open set U± is defined by the condition ±Re z < 1 imposed on z ∈ C.
We choose γ : C→ IRP1 to be a surjective mapping such that γ = ∞ on the closure
K of U+∩U−, while γ restricted to CrK is real-valued and has no critical points,
and, finally, neither γ : U+ → IRP1 nor γ : U− → IRP1 is surjective. (For instance,
γ with the above properties may be a function of Re z.) We now select base points
τ±∗ ∈ IR r γ(U±), any metric h on Σ = C, and any a ∈ (0, ∞). The 2-form Ω on
Σ equal to −a(τ±∗ − γ)−1ω(h) on U± is well defined, since both expressions yield
Ω = 0 on U+ ∩ U−. Being closed, Ω is exact, and so it the curvature form of a
Hermitian connection in the trivial complex line bundle L over Σ, with the bundle
projection still denoted by π : L→ Σ. We now define a metric g on an open subset
M± of the line bundle L± = π−1(U±) over U± as in Remark 5.2, using τ±∗ and the
same function Q of the variable τ in both cases. As the two metrics agree on the
intersection π−1(U+∩U−), they together form a metric g on M = M+∪M−, thus
giving rise to a triple (M, g, τ) for which γ : M→ IRP1 is surjective.

Remark 9.2. For later reference, note that, under the hypotheses made in the lines
preceding (9.1), if m = 2, the V component [w, w′ ]V, relative to the decomposition
TM′ = H⊕ V, of the Lie bracket of any two sections w, w′ of H is given by

(9.5) Q[w, w′ ]V = −2φg(Jw, w′)u.

If, in addition, w, w′ commute with both v and u, then

(9.6) dv[φg(w, w′)/Q] = du[φg(w, w′)/Q] = 0.
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Both equalities follow since φ is the eigenvalue function of ∇v in H, and so

(9.7) g(∇wv, w′) = φg(w, w′), g(∇wu, w′) = g(J∇wv, w′) = φg(Jw, w′)

for sections w, w′ of H. Hence, as g(v,∇ww′) = −g(∇wv, w′) and g(u,∇ww′) =
−g(∇wu, w′), we have g(v,∇ww′) = −φg(w, w′) and g(u,∇ww′) = −φg(Jw, w′).
Skew-symmetrized in w, w′, this gives (9.5) due to symmetry of g(w, w′) and skew-
symmetry of g(Jw, w′) in w, w′. For the same reasons of (skew)-symmetry, as-
suming that w, w′ commute with v, u, we obtain dv[g(w, w′)] = 2φg(w, w′) and
du[g(w, w′)] = 0 in view of (9.7) and the Leibniz rule. Now (9.2.c) and (9.4) yield
(9.6).

Remark 9.3. Let τ be a nonconstant Killing potential with a geodesic gradient on
a Kähler surface (M, g). If Σ is a critical manifold of τ, cf. Example 8.1, and y ∈ Σ,
then the covariant derivative [∇u]y : TyM→ TyM of the Killing field u = J(∇τ) at
y has the kernel TyΣ, and acts as the operator aJy in the normal space NyΣ, where
a is the unique nonzero eigenvalue of ∇dτ at y, cf. Lemma 8.4(i)–(ii).

In fact, ∇dτ corresponds via g to ∇v, for v = ∇τ, while ∇u = J ◦ ∇v.

10. MORSE -BOTT FUNCTIONS ON COMPACT MANIFOLDS

We now consider Morse-Bott functions τ with geodesic gradients such that

(10.1) all critical manifolds of τ are of codimensions greater than 1.

In view of Example 8.1, given a function τ on a Kähler manifold (M, g),

(10.2) condition (10.1) holds whenever τ is a nonconstant Killing potential.

Lemma 10.1. If the Hessian of a Morse-Bott function τ on a compact manifold is semi-
definite at every critical point, and all critical manifolds are of codimensions k > 1, then

(a) τ has exactly two critical manifolds, which are its maximum and minimum levels,
(b) all levels of τ are connected.

Proof. See [5, Proposition 11.4].

Theorem 10.2. Suppose that τ is a Morse-Bott function with a geodesic gradient on a
compact Riemannian manifold (M, g) and all critical manifolds of τ have codimensions
greater than 1. Let us also set I = [τmin, τmax] and I◦ = (τmin, τmax). Then

(i) Q = g(∇τ,∇τ) is a C∞ function of τ, in the sense of Remark 3.2,
(ii) for y, a as in Lemma 8.4(i), and τ 7→ Q as in (i), dQ/dτ at y equals 2a,

(iii) for the function τ 7→ Q in (i), the integral λ of Q−1/2 over I is finite,
(iv) λ in (iii) is the distance between the minimum and maximum levels of τ,
(v) the assignment τ 7→ s, characterized by ds/dτ = Q−1/2 and s = 0 at τ = τmin , is

a homeomorphism I→ [0, λ] which maps I◦ diffeomorphically onto (0, λ),
(vi) s in (v) equals the distance from the minimum level of τ, when treated, due to its

dependence on τ, as a function s : M→ IR.

Proof. Let Σ and Σ∗ be the minimum and maximum levels of τ.
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By (4.2), Q restricted to the open set M′ where dτ 6= 0 is, locally, a C∞ function
of τ. The word ‘locally’ can be dropped in view of Lemma 10.1(b). The resulting C∞

function I◦ 3 τ 7→ Q has a continuous extension to I, equal to 0 at the endpoints.
Next, let us fix a parametrization [0, δ] 3 t 7→ x(t) of a shortest geodesic segment

Γ joining Σ to Σ∗, with x(0) ∈ Σ. By (8.1), the infimum t′ of those t ∈ (0, δ)
for which τ̇(t) = 0 lies in (0, δ]. As v = ∇τ is tangent to Γ (Lemma 8.4(iv)),
and τ̇ = g(v, ẋ) vanishes at t = t′, at x(t′) we must also have v = 0, and hence
τ = τmax. (The fact that τ(x(t)) is an increasing function of t ∈ (0, t′) excludes
the only other possibility left open by Lemma 10.1(a), namely, τ = τmin.) The dis-
tance-minimizing property of Γ now implies that t′ = δ, and so vx(t) 6= 0 whenever
t ∈ (0, δ), that is, the open-interval restriction (0, δ) 3 t 7→ x(t) is a reparametrized
integral curve of the gradient v = ∇τ. Thus, λ in (iii) is finite, as it equals the length
of Γ (see Remark 4.6), which proves (iii) and (iv). Assertion (v) is in turn obvious
from (iii). Finally, let us fix x ∈ M′. According to Remark 4.6 and (iii), the length
of the maximal integral curve of v through x is finite, and so its underlying one-
dimensional manifold C has limit endpoints ymin and ymax (Remark 2.4), at which
τ = τmin and τ = τmax due to maximality of C and Lemma 10.1(a). By Remark 4.6,
the length of C is λ. Hence, in view of (iv), Γ = C ∪ {ymin, ymax} is a distance-min-
imizing geodesic segment. Consequently, the same is true of the subsegment Γ ′ of
Γ joining ymin to x, which is also the shortest geodesic segment joining Σ to x. The
distance between Σ and x is therefore given by the length formula in Remark 4.6,
applied to Γ ′, and (vi) follows.

For (−ε, ε) 3 t 7→ x(t) as in Remark 8.5, with ε ∈ (0, ∞) chosen sufficiently small,
|t| equals dist(Σ, x(t)) (or, dist(Σ∗, x(t))), cf. Remark 2.2 and Lemma 10.1(a). Thus,
by (vi), |t| is the value of s : M→ IR or, respectively, λ− s : M→ IR, at x(t). (Note
that replacing τ by τ∗− τ, where τ∗ is the midpoint of I, causes τmin to be switched
with τmax, and s with λ− s.) The homeomorphic correspondence between s and
τ in (v) now implies that τ(x(t)) is an even C∞ function of t, and, due to the al-
ready-established dependence of Q on τ, the same is true of Q(x(t)). Evenness of
both functions and the relation τ̇(0) = 0 6= τ̈(0) (cf. (8.1)) are well-known to imply
that Q restricted to some neighborhood of τmin (or, τmax) in I is a C∞ function of
τ. See, for instance, [5, the last nine lines in §9]. Thus, the extension of Q from I◦ to
I is of class C∞, which proves (i).

Finally, dQ/dτ = 2ψ on I◦, and, consequently, on I, since dQ = 2ψ dτ by (2.2)
and (4.1). Again, let us choose a geodesic t 7→ x(t) as in Remark 8.5. Then v is
tangent to it (Lemma 8.4(iv)) and so, by (4.1), ẋ is, at every t, an eigenvector of
∇dτ (that is, of ∇v) for the eigenvalue ψ = [∇dτ](ẋ, ẋ) = τ̈. Now (8.1) implies
(ii).

The next lemma uses the notations of Remark 2.2 and λ defined in Theorem 10.2.

Lemma 10.3. Let Σ and Σ∗ be the minimum and maximum levels of a nonconstant
Morse-Bott function τ with a geodesic gradient and (10.1) on a compact Riemannian mani-
fold (M, g). Then Exp⊥ maps NλΣ diffeomorphically onto Bλ(Σ), and Bλ(Σ) = MrΣ∗.

Proof. That Bλ(Σ) = MrΣ∗ is obvious from assertions (v) and (vi) in Theorem 10.2.
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Let M′ ⊂ M be the open set given by v 6= 0, where v = ∇τ. If x ∈ M′, the
geodesic segment [0, 1] 3 t 7→ x(t) of length dist(Σ, x), such that x(0) = x and
ẋ(0) is a negative multiple of vx, is also a shortest segment connecting x to Σ. In
fact, choosing a shortest segment Γ connecting x to Σ, we see that it is normal to
Σ, and so v is tangent to it (Lemma 8.4(iv)); as the diffeomorphism I◦ → (0, λ)
in Theorem 10.2(v) is strictly increasing, on Γ r Σ the gradient v = ∇τ must, by
Theorem 10.2(vi), point away from Σ and toward x. Thus, both geodesic segments
satisfy the same initial conditions at x.

Let the mapping H : M′→ TM send any x ∈ M′ to the vector −ẋ(1) tangent to
M at x(1), for t 7→ x(t) associated with x as in the last paragraph. Since x(1) ∈ Σ
and ẋ(1) is normal to Σ (see above), H takes values in the subset NλΣ r Σ of
TM. Our claim now follows, since H ◦ Exp⊥ and Exp⊥ ◦ H are easily seen to be
the identity mappings of NλΣ r Σ and M′ = Bλ(Σ)r Σ, while, if ε ∈ (0, ∞) is
sufficiently small, Exp⊥ : N εΣ→ Bε(Σ) is a diffeomorphism (Remark 2.2).

11. PROOF OF THEOREM 5.3, FIRST PART

In this section we construct the required data (5.1) for any triple (M, g, τ) satisfy-
ing the assumptions of Theorem 5.3, and verify conditions (i) – (vi) in Section 5.

Lemma 11.1. Let a nonconstant Killing potential τ on a complete Kähler manifold
(M, g) have a geodesic gradient. Then

(i) at every critical point of τ, the Hessian ∇dτ has exactly one nonzero eigenvalue, the
absolute value of which is the same for all critical points,

(ii) if the set of critical points of τ is nonempty, the flow of the Killing vector field u =
J(∇τ) is periodic.

Proof. Obvious from Lemma 8.4(i) (cf. Example 8.1) and [5, Corollary 10.3].

Lemma 11.2. If τ is a nonconstant Killing potential with a geodesic gradient on a
compact Kähler manifold (M, g), then, for some a ∈ (0, ∞),

(a) τmax and τmin are the only critical values of τ,
(b) the τ-preimages of τmax and τmin are compact complex submanifolds of M,
(c) Q = g(∇τ,∇τ) is a C∞ function of τ, as defined in Remark 3.2,
(d) the values of dQ/dτ at τ = τmin and τ = τmax are 2a and −2a.

Proof. Assertions (a) and (b) are immediate consequences of Lemma 10.1 combined
with Example 8.1 and (10.2); (c) and (d) similarly follow from Theorem 10.2(i)–(ii)
and the absolute-value clause in Lemma 11.1(i).

Lemma 11.3. Given a nonconstant Killing potential τ with a geodesic gradient on a
compact Kähler surface (M, g), let us set I = [τmin, τmax] and I◦ = (τmin, τmax).

(i) All values of γ : M→ IRP1, defined in Lemma 9.1, lie in IRP1 r I◦.
(ii) If τ is not a special Kähler-Ricci potential, then

(a) the maximum and minimum levels of τ both have complex dimension 1,
(b) the values of γ all lie in IRP1 r I.
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Proof. First, let γ(y) ∈ I◦ at some y ∈ M. By Theorem 10.2(v)–(vi), which can
be used here in view of Example 8.1 and (10.2), dist(Σ, y) ≤ λ, for the minimum
level Σ of τ. Hence y lies on a geodesic segment Γ of length λ emanating from
Σ and normal to Σ. Due to injectivity of Exp⊥ on NλΣ (Lemma 10.3), Γ also
provides a shortest connection between Σ and any point of Γ. Therefore, the func-
tion s of Theorem 10.2(vi), restricted to Γ, serves as an arc-length parameter for
Γ. Theorem 10.2(v) (or, Lemma 9.1(b)) implies now that the τ-image of Γ is I
(or, respectively, that γ is constant on I). Thus, Γ contains a point x at which
γ(x) = τ(x) ∈ I◦ and, consequently, Q(x) > 0 (cf. Lemma 11.2(a) and (9.1)). The
equality γ(x) = τ(x) contradicts in turn the definition of γ, proving (i).

Next, if some critical manifold of τ (cf. Example 8.1) consisted of a single point,
the Hopf-Rinow theorem and Lemma 9.1(b) would imply that γ is constant on M,
thus making τ a special Kähler-Ricci potential (Lemma 9.1(c)). This implies (ii–a).

Finally, if γ(y) = τmin or γ(y) = τmax at some y ∈ M, we may assume that y is a
critical point of τ and γ(y) = τ(y), which is achieved by choosing Γ as above and
replacing y with an endpoint of Γ. In view of (i), τ 6= γ everywhere in the open set
M′ ⊂ M on which dτ 6= 0. A fixed geodesic t 7→ x(t) having the properties listed
in Remark 8.5, for our y, and the equality 2φ = Q/(τ− γ) on M′ (immediate from
the definition of γ in Lemma 9.1) now allow us to evaluate 2φ(y) via l’Hospital’s
rule, with Q and τ − γ both vanishing at y = x(0) due to (9.1). Consequently,
2φ(y) is the limit, as t → 0, of Q̇/(τ̇ − γ̇) = (dvQ)/(dvτ − dvγ), where we have
used the ‘dot’ notation of Remark 8.5 and the fact that, since v = ∇τ is tangent to
the geodesic (Lemma 8.4(iv)) and nonzero at x(t) for t 6= 0 close to 0 (Remark 8.3),
d/dt equals a specific function of the variable t 6= 0 times dv. From (9.2.b), (9.2.c)
and Lemma 9.1(a) we now obtain 2φ(y) = 2ψ(y). The two eigenvalues of the Hess-
ian ∇dτ at y thus coincide, and so, according to Lemma 8.4(i)–(ii), TyM is the
normal space at y of the critical manifold Σ of τ containing y. Hence Σ = {y}
and, by (a), τ is a special Kähler-Ricci potential, which yields (ii–b).

For (M, g, τ) as in Theorem 5.3, we now define the data (5.1) by choosing: a
and I 3 τ 7→ Q, where I = [τmin, τmax], as in Lemma 11.2(c)–(d); Σ to be the
minimum level of τ, with γ : Σ → IRP1 obtained by restricting to Σ the mapping
γ introduced in Lemma 9.1, and with the metric h on Σ given by

(11.1) h = (τmin− γ)−1(τ∗ − γ)g,

τ∗ ∈ I being the midpoint; the normal bundle L of Σ with the Hermitian fibre
metric ( , ), the real part of which is g (that is, g restricted to L); and, finally,
the horizontal distribution H of the normal connection in L. Lemmas 11.2(c)–(d)
and 11.3(ii) state that these objects satisfy conditions (i) – (vii) in Section 5 except for
the equality Ω = −a(τ∗ − γ)−1ω(h), which will be established in the next section.

12. PROOF OF THEOREM 5.3, SECOND PART

Using the data (5.1) just constructed for the given triple (M, g, τ), we also choose,
as in Section 5, a C∞ diffeomorphism (τmin, τmax) 3 τ 7→ r ∈ (0, ∞) with dr/dτ =
ar/Q. Its inverse now gives rise to the composite r 7→ τ 7→ s, for τ 7→ s as in
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Theorem 10.2(v), allowing us to treat s as a function of r and write s = σ(r), so
that r 7→ σ(r) is a diffeomorphism (0, ∞)→ (0, λ). This in turn leads to a fibre-pre-
serving diffeomorphism θ : NΣrΣ→ NλΣrΣ of punctured-disk bundles, which
sends a vector w 6= 0 normal to Σ at any point to σ(r)w/r, where r = |w| is the
g-norm of w. For later reference, note that, according to Theorem 10.2(v),

(12.1) d[σ(r)]/dr = (ar)−1Q1/2 and σ(0) = 0, while s = σ(r).

By Lemma 10.3, Example 8.1 and (10.2), F = Exp⊥ ◦ θ maps NΣ r Σ diffeomor-
phically onto the open submanifold M′ ⊂ M on which dτ 6= 0.

We now show that F is a biholomorphic isometry of NΣrΣ ⊂ NΣ = L, with the
complex structure and metric obtained as in Section 5 from the data (5.1), onto our
(M′, g), and that it sends the Killing potential with a geodesic gradient, described
in Section 5, onto our τ. The proof, split into three lemmas, closely follows the
argument in [5, §§15–16].

To minimize confusion, the hatted symbols M̂, M̂′, V̂, Ĥ, ĝ, Ĵ, v̂, û stand for for the
objects constructed in Section 5 from our data (and from τ 7→ r chosen above),
which in Section 5 appeared as M, M′,V,H, g, J, v, u. For M, M′,V,H, g, v, J, u, the
meaning is now the same as in Section 9: they are associated with (M, g) and the
function τ : M → IR. However, τ, r and s, in their original form, are used not only
for the independent variables ranging over I◦, (0, ∞) and (0, λ), but, along with Q
and γ, also denote mappings defined on both manifolds M′ and M̂′. Similarly, Σ
is treated as a submanifold both of M (the minimum level of τ) and of L = NΣ
(the zero section). Again, π : L→ Σ is the bundle projection.

Lemma 12.1. The diffeomorphism F : M̂′ → M′ sends the functions s, τ, Q and the
mapping γ defined on M̂′ to their analogs on M′, and the vector field v̂ to v.

Proof. In the case of γ this is clear from Lemma 9.1(b), since F restricted to Σ is the
identity mapping.

Because of how we defined ĝ on V̂ in Section 5, given y ∈ Σ, (12.1) implies
that a line segment of gy-length r emanating from 0 in the normal space NyΣ
has the ĝ-length σ(r), which is at the same time the gy-length of the segment’s
image under θ. That image is also a segment in NyΣ issuing from 0, and so Exp⊥

sends it to a geodesic segment of g-length σ(r) in (M, g), normal to Σ at y. Since
Theorem 10.2(vi) applies to both (M, g, τ) and (M̂, ĝ, τ), our claim about s follows
from the distance-minimizing clause of Remark 2.2.

As the homeomorphic correspondence I → [0, λ] of Theorem 10.2(v) holds in
both (M, g, τ) and (M̂, ĝ, τ), the same now follows for τ and Q. Finally, we just
saw that F sends line segments emanating from 0 in the normal spaces of Σ to
normal g-geodesics issuing from Σ. Since v̂ is tangent to the former (by definition),
and v = ∇τ to the latter (cf. Example 8.1 and Lemma 8.4(iv)), the F-image of v̂
is the product of a function and v. That the function in question equals 1 is in
turn obvious from the normalizing condition (9.2.b), valid in both (M, g, τ) and
(M̂, ĝ, τ), along with our assertion, already established for τ and Q.
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Lemma 12.2. The F-images of û and V̂ are, respectively, u and V, while ĝ and Ĵ
restricted to V̂ correspond under F to g and J on V.

Proof. Obviously, θ preserves û, that is, the θ-image of û is the restriction of û to
NλΣ r Σ. As u is a Killing field, Remarks 2.1 and 9.3 combined with the definition
of û (cf. Section 5) imply in turn that Exp⊥ sends û to u. Hence so does F.

The rest of our assertion is now obvious from Lemma 12.1, since in both (M, g, τ)
and (M̂, ĝ, τ) we have the relations (9.2.d) and V = Span(v, u) or, respectively,
their hatted versions.

Lemma 12.3. The assertion of Lemma 12.2 remains true also when V̂ and V are re-
placed by Ĥ and H, while the data (5.1) constructed in Section 11 satisfy condition (vii) of
Section 5.

Proof. Let us fix a g-unit vector field t 7→ w(t) ∈ Ny(t)Σ, normal to Σ, defined
along a curve t 7→ y(t) ∈ Σ, and parallel relative to the normal connection in L =
NΣ. Since Σ is totally geodesic in (M, g) (see Example 8.1), the last condition
reads ∇ẏw = 0, where ∇ is the Levi-Civita connection of g. The variable t ranges
over some given open interval (b, c). For any t ∈ (b, c) and s ∈ (0, λ), we define
x(t, s) ∈ M to be the F-image of rw(t) treated as an element of M̂′, for the unique
r ∈ (0, ∞) with s = σ(r). Thus, by the definition of F, we obtain a mapping

(12.2) (b, c)× (0, λ) 3 (t, s) 7→ x(t, s) = expy(t) sw(t) ∈ M.

We will use subscripts for its partial derivatives xt, xs, and their partial covariant
derivatives xts, xss, etc. All such derivatives are sections of the pullback of TM un-
der the mapping (12.2). The subscript-style partial (or, partial covariant) derivatives
also make sense for functions (or, respectively, vector fields) on M, which amounts
to differentiating the latter objects along each of the curves given by (12.2) with fixed
s or fixed t. More details can be found in [5, §14].

Writing 〈 , 〉 instead of g( , ), and denoting by | | the g-norm, we now have

(a) xs = Q−1/2v, |v| = |u| = Q1/2,
(b) 〈u, xt〉s = 2〈u, xst〉,
(c) 〈u, xt〉s = 2〈u, xt〉ψQ−1/2,
(d) Qs = 2ψQ1/2.

Although equalities (a) – (d) all appear in [5, p. 101], they have to be established here
independently, as [5] makes a stronger assumption about τ. However, the argument
is the same as in [5].

First, (9.2.d) implies the second part of (a), and the first part then follows: by (12.2)
and Lemma 12.1, v equals a positive function times xs, and |xs| = 1. Furthermore,
u is a Killing field, so that 〈ut, xs〉 = 〈[∇u]xt, xs〉 = −〈us, xt〉, while 〈u, xst〉 =
−〈ut, xs〉, as (a) and (9.2.d) give 〈u, xs〉 = 0. Consequently, 〈u, xt〉s = 〈u, xst〉 +
〈u, xts〉, which yields (b), since ∇ is torsion-free, and so xts = xst. The relations
just established and (a) also show that 〈u, xt〉s/2 = 〈u, xst〉 = −〈ut, xs〉 = 〈us, xt〉 =
〈[∇u]xs, xt〉 = Q−1/2〈∇vu, xt〉, which proves (c), as ∇vu = ∇v(Jv) = J∇vv = ψ Jv =
ψu by (9.1) and (4.1). Finally, (d) is obvious from (9.2.c) and (a).
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By (c) and (d), [〈u, xt〉/Q]s = 0. Hence 〈u, xt〉/Q is constant as a function of s.
To show that 〈u, xt〉/Q = 0, we take the limit of 〈u, xt〉/Q as s → 0, that is (cf.
Theorem 10.2(v)), as τ → τmin. We may use l’Hospital’s rule, since the numerator
and denominator both vanish at τ = τmin due to (9.1) and the fact that (12.2) has
an obvious C∞ extension to (b, c)× [0, λ). Now (b), (d) and (a) give 〈u, xt〉s/Qs =
〈u, xst〉Q−1/2/ψ = 〈u/|u|, xst〉/ψ. The last expression tends to 0 as s → 0 since
ψ = a 6= 0 at τ = τmin due to Lemma 11.2(d) and (9.2.a), while xst at s = 0 equals
∇ẏw, and so xst→ 0 as s→ 0.

Consequently, 〈u, xt〉 = 0, while 〈v, xt〉 = 0 in view of (a) and the generalized
Gauss lemma [6, p. 26]. Therefore, H is the F-image of Ĥ.

Combined with the assertion about u in Lemma 12.2 and (9.5), this yields the
formula for Ω required by condition (vii) of Section 5, since, given sections ŵ, ŵ′ of
Ĥ, the V̂ component of [ŵ, ŵ′ ] is a−1Ω(ŵ, ŵ′)û, cf. [4, formula (3.6)].

For fixed t ∈ (b, c), let ŵ be the Ĥ-horizontal lift to π−1(Σ′)r Σ′ of a vector
field on a neighborhood Σ′ of y(t) in Σ, having the value ẏ(t) at y(t). As we
just showed, the F-image of ŵ is a section w of H, defined on F(π−1(Σ′)r Σ′).
Since ŵ obviously commutes with v̂ and û, Lemmas 12.1 and 12.2 imply that w
commutes with v and u, while, by (12.2), wx(t,s) = xt(t, s) for all s ∈ (0, λ) and
our fixed t. Therefore (a) and (9.6) give [φg(xt, xt)/Q]s = 0. Thus, since Q/(2φ) =
τ−γ (see Lemma 9.1), 〈xt, xt〉/(τ−γ) is constant as a function of s, that is, equal to
its value at s = 0. In other words, writing y, ẏ, γ, τ instead of y(t), ẏ(t), γ(y(t)) and
τ(x(t, s)), we have 〈xt, xt〉 = (τmin− γ)−1(τ − γ)〈ẏ, ẏ〉, both if γ(y(t)) 6= ∞, and
when γ(y(t)) = ∞ (provided that, in the latter case, one lets (τmin− γ)−1(τ − γ)
stand for 1). In view of (11.1), with g now denoted by 〈 , 〉, the definition of ĝ in
Section 5 thus shows that 〈xt, xt〉 at (t, s) equals ĝ(ŵ, ŵ) at F−1(x(t, s)), proving
our claim about ĝ and g.

Finally, since dimIRΣ = 2, both ĝ and g, restricted to Ĥ and H, determine Ĵ on
Ĥ and J on H uniquely up to a sign. Hence F sends Ĵ on Ĥ to J on H, with the
plus sign due to the fact that F = Id on Σ (which is tangent to both Ĥ and H).

According to Lemmas 12.1 – 12.3, F is a biholomorphic isometry of (M̂′, ĝ) onto
(M′, g), sending the Killing potential τ on (M̂′, ĝ) to τ on (M′, g). Lemma 2.3 now
implies that F has an extension M′→ M, which proves Theorem 5.3.

APPENDIX. KILLING FIELDS WITH ZEROS

The following fact, although not needed for our argument, helps explain how
Killing potentials fit into the general landscape of Kähler geometry.

Kobayashi [8, p. 95, Corollary 4.5] observed that, due to a result of Lichnerowicz
[10], gradients of Killing potentials on a compact Kähler manifold are in a one-to-
one correspondence, provided by J, with Killing fields which have zeros:

Theorem A.1. A vector field v on a compact Kähler manifold (M, g) is the gradient of
a Killing potential if and only if Jv is a Killing field with zeros.

Consequently, for any Killing field u on a compact Kähler manifold with non-
zero Euler characteristic, Ju is the gradient of a Killing potential. On the other
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hand, nontrivial parallel vector fields on flat complex tori are examples of Killing
fields u such that Ju is a geodesic vector field, but not a gradient.

For the reader’s convenience, a proof of Theorem A.1 is given below.
First, for any vector fields u and w on a Kähler manifold (M, g),

(1.1)
i) tr J [R(u, w)] = 2 Ric(u, Jw),

ii) |£u J|2 = tr (A + A∗)A + du tr A + div[(JA∗J − A)u],

where A∗ is the (pointwise) adjoint of A = ∇u : TM → TM, cf. the lines following
(2.1), |B|2 = tr BB∗/2 for endomorphisms B of TM, and the left-hand side of (1.1.i)
denotes the (real) trace of the composition of J : TM → TM with the curvature
operator R(u, w) : TM→ TM, sending any vector field v to R(u, w)v.

In fact, as ∇J = 0, the Levi-Civita connection ∇ is a connection in the complex
vector bundle TM. For any vector fields u, w on M, the vector-bundle morphism
R(u, w) : TM → TM is thus complex-linear (commutes with J). At every point,
the commuting morphisms R(u, w) and J are skew-adjoint, and so their compos-
ite is self-adjoint. Hence Rklsp Jp

q = Rklqp Jp
s , which, contracted against gks, gives

Rlk Jk
q = Rkql

s Jk
s . However, due to skew-adjointness of J and the first Bianchi iden-

tity, 2Rkql
s Jk

s − Rlqk
s Jk

s = (Rkql
s − Rs

qlk − Rlqk
s)Jk

s = (Rkql
s + Rlkq

s + Rqlk
s)Jk

s = 0.
Now (1.1.i) follows if one transvects the last two equalities with wqu l.

Next, £u J = [J, A] for A = ∇u (see Section 3), and so |£u J|2 = tr [J, A][J, A]∗/2 =
tr JAJA∗+ tr AA∗. Subtracting from this the right-hand side in (1.1.ii), we obtain
the sum of two expressions: tr JAJA∗− div(JA∗Ju) and divAu − tr A2 − du tr A.
The first expression, Jp

q uq
,k Jk

s up,
s− (Jp

q uq Jk
s up,

s),k, clearly equals −Jp
q uq Jk

s up,
s
k which,

due to skew-adjointness of J and the Ricci identity, is the same as one-half of Jp
q uq

times Jk
s (up,k

s − up,
s
k) = Jk

s Rs
kplu l. The second expression is (u juk

, j),k − u j
,kuk

, j −
u juk

,kj = u j(uk
, jk − uk

,kj) = Ric(u, u), since uk
, jk − uk

,kj = Rjkuk by (2.1.b). Now
(1.1.i) with w = −Ju yields (1.1.ii).

Secondly, given a Killing field u on a compact Riemannian manifold (M, g) and
a vector field w on M, suppose that the 1-form α = 〈w, · 〉 is harmonic. Then
(1.2)

a) the function 〈u, w〉 is constant, b) the 1 form 〈Jw, · 〉 is harmonic,
c) the vector field u is real holomorphic,

where 〈 , 〉 stands for g( , ) and, in (1.2.b-c), (M, g) is a (compact) Kähler manifold.
In fact, the flow of u acts trivially in cohomology and preserves harmonicity of

1-forms, so that £uα = 0 or, equivalently, [u, w] = 0. For any vector field v, the
Leibniz rule, skew-adjointness of ∇u, and self-adjointness of ∇w give dv〈u, w〉 =
〈∇vu, w〉+ 〈u,∇vw〉 = −〈∇wu, v〉+ 〈v,∇uw〉 = 〈v, [u, w]〉 = 0, proving (1.2.a).

As for (1.2.b), it follows since the Hodge Laplacian div ◦ d + d ◦ div acting on
1-forms equals ∆− Ric (and so it commutes with J, as both ∆ and Ric do). Here
∆ is the rough Laplacian, and the coordinate form of this equality, (β j,k − βk, j)

,k +

βk,
k

j = β j,k
k − Rk

j βk, with β denoting any 1-form, amounts to Rk
j βk = βk, j

k − βk,
k

j,
that is, the Bochner identity (2.1.b) for β = 〈v, · 〉. Finally, integration over M,
applied to (1.1.ii) with A∗ = −A and tr A = 0, yields (1.2.c).
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Proof of Theorem A.1. The ‘only if’ part is provided by Remark 3.1(b). Conversely,
suppose that u = Jv is a Killing field with zeros. By (1.2.c), J and ∇u = J∇v are
commuting skew-adjoint morphisms TM → TM, so that their composite J∇u =
−∇v is self-adjoint. In other words, the 1-form β = 〈v, · 〉 is closed. The harmonic-
exact Hodge decomposition of β amounts to an L2-orthogonal decomposition v =
w +∇τ with some function τ and some vector field w such that the 1-form α =
〈w, · 〉 is harmonic. As u has zeros, (1.2.a-b) give 〈v, w〉 = −〈Ju, w〉 = 〈u, Jw〉 = 0.
Thus, w is L2-orthogonal to ∇τ, to v = w +∇τ, and hence also to itself, so that
w = 0 and v = ∇τ, as required.

Added in Proof. Gideon Maschler pointed out to the author that functions with
geodesic gradients are often called transnormal [12, 11].

Acknowledgement. The author thanks the referee for suggesting additions aimed
at making the paper more understandable to non-experts. These additions—Ap-
pendix A and Section 6—include the present, explicit form of Theorem 6.1.

REFERENCES

[1] E. CALABI, Extremal Kähler metrics, in: “Seminar on Differential Geometry”, S. T. Yau (ed.),
Annals of Math. Studies 102, Princeton Univ. Press, Princeton, NJ, 1982, 259–290.
MR0645743 (83i:53088)

[2] H.-D. CAO, Existence of gradient Kähler-Ricci solitons, in: “Elliptic and Parabolic Methods in
Geometry, Minneapolis, MN, 1994”, A.K. Peters, Wellesley, MA, 1996, 1–16.
MR1417944 (98a:53058)

[3] A. DERDZINSKI, Special biconformal changes of Kähler surface metrics, Monatsh. Math. 167 (2012),
431–448. http://dx.doi.org/10.1007/s00605-011-0345-x. MR2961292

[4] A. DERDZINSKI AND G. MASCHLER, Local classification of conformally-Einstein Kähler metrics in
higher dimensions, Proc. London Math. Soc. (3) 87 (2003), 779–819.
http://dx.doi.org/10.1112/S0024611503014175. MR2005883 (2004i:53051)

[5] A. DERDZINSKI AND G. MASCHLER, Special Kähler-Ricci potentials on compact Kähler manifolds, J.
reine angew. Math. 593 (2006), 73–116. http://dx.doi.org/10.1515/CRELLE.2006.030.
MR2227140 (2007b:53150)

[6] A. GRAY, Tubes, Progress in Mathematics, vol. 221, Birkhäuser Verlag, Basel, 2004, ISBN: 3-7643-
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