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Dedicated to Professor Witold Roter on the occasion of his eightieth birthday

Abstract. The set E of Levi-Civita connections of left-invariant pseudo-Riemannian Ein-

stein metrics on a given semisimple Lie group always includes D, the Levi-Civita con-

nection of the Killing form. For the groups SU(l, j) (or SL(n, IR), or SL(n,C) or, if n

is even, SL(n/2, IH)), with 0 ≤ j ≤ l and j + l > 2 (or, n > 2), we explicitly describe

the connected component C of E , containing D. It turns out that C, a relatively-open

subset of E , is also an algebraic variety of real dimension 2lj (or, real/complex dimension

[n2/2] or, respectively, real dimension 4[n2/8]), forming a union of (j + 1)(j + 2)/2 (or,

[n/2] + 1 or, respectively, [n/4] + 1) orbits of the adjoint action. In the case of SU(n)

one has 2lj = 0, so that a positive-definite multiple of the Killing form is isolated among

suitably normalized left-invariant Riemannian Einstein metrics on SU(n).
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1. Introduction

The Killing form β of any semisimple real Lie group G is a bi-invariant pseu-

do-Riemannian Einstein metric on the underlying manifold of G. In the case of

compact simple groups G other than SU(2) and SO(3), D’Atri and Ziller [6]

proved, over three decades ago, the existence on G of at least one left-invariant

Riemannian Einstein metric which is not a multiple of β. Recently, Gibbons, Lü

and Pope [8] found six more such essentially different examples – two on SO(5)

and four on G2. In addition, among left-invariant Einstein metrics on G = SU(3),

they exhibited one which is indefinite.

This raises the more general question of

(∗) classifying left-invariant pseudo-Riemannian Einstein metrics on simple Lie groups.

For noncompact groups, question (∗) is in turn related to a conjecture of Alek-

seevsky [1], cf. [3, p. 190], according to which a noncompact homogeneous space

G/K may carry a nonflat G-invariant Riemannian Einstein metric only if K is a

maximal compact subgroup of G. If true, Alekseevsky’s conjecture, applied to a

noncompact simple group G and its trivial subgroup K, would imply that left-in-

variant Einstein metrics on G are all indefinite.

The Einstein condition is essential here, as opposed to mere negativity of

the Ricci curvature Rc: in fact, Leite and Dotti [13] constructed (non-Einstein)
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left-invariant Riemannian metrics with Rc < 0 on SL(n, IR), n ≥ 3. Also, all

noncompact Lie groups known to admit left-invariant Riemannian Einstein met-

rics are solvable. Heber [9] and Lauret [11] made substantial progress towards

understanding the moduli and properties of such metrics on solvable Lie groups.

Given a Lie group G with the Lie algebra g, let E denote the set of all

Einstein connections in g, by which we mean the Levi-Civita connections of left-in-

variant pseudo-Riemannian Einstein metrics on G. One may view E as a set of

bilinear operations g × g → g, that is, a subset of [g∗]⊗2⊗ g. If g is semisimple,

the Levi-Civita connection D = [ , ]/2 of the Killing form β is an element of E.
The present paper provides an initial step towards answering the question

stated above in (∗): for any simple Lie algebra g, we explicitly describe the con-

nected component C of E containing D. As C turns out to be a relatively open

subset of E, it also contains all Einstein connections sufficiently close to D.

We restrict much of our discussion to g that correspond to the groups

G = SL(n, IR), G = SL(n,C), G = SU(l, j), or (n even) G = SL(n/2, IH), (1.1)

with l ≥ j ≥ 0 and n = l+j ≥ 3 since, for all remaining simple Lie algebras, D is

isolated in E and C = {D}. (See Theorem 12.3.) Our main result, Theorem 22.2,

realizes C, for G in (1.1), as the bijective image of a well-understood algebraic

set in g under a specific nonhomogeneous quadratic mapping g → [g∗]⊗2⊗ g.

Theorem 22.2 also states that C itself is an algebraic set of dimension dIF over

IF, consisting of s orbits of the adjoint action, where (dIF, s) = ([n2/2], [n/2] + 1)

for G = SL(n, IF) and (dIR, s) = (2lj, (j + 1)(j + 2)/2) if G = SU(l, j), while

(dIR, s) = (4[n2/8], [n/4] + 1) when G = SL(n/2, IH).

As a consequence (Theorem 22.3), on SU(n), positive-definite multiples of

the Killing form are isolated among left-invariant Riemannian Einstein metrics.

This is a special case of a conjecture made by Böhm, Wang and Ziller [4, p. 683].

For the group G = SL(n,C) our argument leads to the following conclusion

(Theorem 22.4): all left-invariant pseudo-Riemannian Einstein metrics on G close

to multiples of the Killing form are real parts of holomorphic Einstein metrics, cf.

[12, p. 210], which also makes them Kähler-Norden metrics in the sense of [17].

2. Outline of the main argument

Let G be a real or complex semisimple Lie group, with the associated semisimple

Lie algebra g over IF = IR or IF = C. We study left-invariant connections on G,

which are also holomorphic when IF = C, as well as left-invariant metrics on G,

assuming the latter to be pseudo-Riemannian if IF = IR, and holomorphic (in the

sense of being C-bilinear, symmetric and nondegenerate) if IF = C.

In this section we skip the term ‘left-invariant’ and simply speak of connections
in g and metrics in g. An example of the latter is the Killing form β.
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All vector spaces under consideration are finite-dimensional. The spaces

T , Y, S , with S ⊂ Y

consist, respectively, of symmetric IF-bilinear forms g × g → IF (such as metrics

in g), arbitrary connections in g (treated as IF-bilinear operations g × g → g)

and, finally, the operations g × g → g in Y which are symmetric. Thus, β ∈ T
for the Killing form β, and D ∈ Y, where D = [ , ]/2 is the standard connection.

Our discussion focuses on the affine subspace D + S of Y formed by connections

∇ ∈ Y which are torsion-free, so that their skew-symmetric part is D. We refer

to any such ∇ = D + S, with S ∈ S, as a weakly-Einstein connection in g, if the

symmetric 2-tensor {∇·∇} defined in Section 9, is ∇-parallel, that is,

∇{∇·∇} = 0. (2.1)

Since g is semisimple, whenever ∇ happens to be the Levi-Civita connection of

a metric, its Ricci tensor is ρ∇ = −{∇·∇}. The set W of all weakly-Einstein

connections in g thus contains the set E of Einstein connections in g, defined here

to be the Levi-Civita connections ∇ of (left-invariant) Einstein metrics γ on G.

By the latter we mean, as usual, all γ with ρ∇= κγ for some κ ∈ IF.

For instance, D is an Einstein connection, being the Levi-Civita connection

of the Einstein metric β (the Killing form).

The converse “weakly-Einstein implies Einstein” of the implication “Einstein

implies weakly-Einstein” (E ⊂ W), generally false (Section 29), is true generically:

if ∇ ∈ W and {∇·∇} is nondegenerate, then ∇ ∈ E . (2.2)

In fact, ∇ then is the Levi-Civita connection of the metric {∇·∇}, with the Ricci

tensor ρ∇= −{∇·∇}.
Instead of Einstein metrics, we choose to look for weakly-Einstein connections

in g. By (2.2), the latter question is only slightly more general than the former. It

can, however, be phrased in much simpler algebraic terms: for H : S → S given by

H(S) = 4(D + S){(D + S)·(D + S)} (the left-hand side in (2.1) with ∇= D + S),

W = {∇ ∈ D + S : ∇{∇·∇} = 0} = D + H−1(0),

while H is a (nonhomogeneous) cubic polynomial mapping, due to the quadratic

dependence of {∇·∇} on ∇. We use β-index-raising to treat H as S-valued.

Enlarging the space of unknowns, we rewrite the cubic condition H(S) = 0

as a system of quadratic equations. Specifically (Remark 11.3), there exists

a bijective correspondence between W = D + H−1(0)

and the set of all (S, σ) ∈ S × T with K(S, σ) = (0, 0),
(2.3)

where K : S × T → S × T is a suitable nonhomogeneous quadratic mapping.
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Thus, since weakly-Einstein connections (elements of W) are precisely those

D + S for which S ∈ S and H(S) = 0,

the search for weakly Einstein connections D + S is reduced

to solving the equation K(S, σ) = (0, 0) for S ∈ S and σ ∈ T . (2.4)

From now on, g is assumed to be one of the simple Lie algebras

sl(n, IR), sl(n,C), su(l, j) with l ≥ j ≥ 0 and n = l + j ≥ 3, or sl(n/2, IH),

the last for even n only. As a first step towards constructing (S, σ) ∈ S ×T with

K(S, σ) = (0, 0), we set (S, σ) = (Dλ, ψ), where λ, ψ are certain special elements

of T and Dλ is the D-covariant derivative of λ (treated as an element of S via

β-index-raising). More precisely, we define in Section 16 some τa, θa, µa ∈ T , which

depend on a ∈ g, then choose λ = xτa+n2yθa+zµa and ψ = pτa+qθa+rµa+fβ

with (unknown) scalar parameters f, x, y, z, p, q, r. In other words,

(Dλ, ψ) = Ia[v] for the linear operator Ia : IF9→S×T given by

Ia[v] = (xDτa + n2yDθa + zDµa, pτa + qθa + rµa + fβ),
(2.5)

where v = (ξ, f, h, x, y, z, p, q, r) ∈ IF9. The variables ξ and h, not occurring in

the formula, become useful later. Note that, if v = (ξ, f, h, x, y, z, p, q, r),

Ib[v] = 0 whenever b = 0 and f = 0. (2.6)

To find a,v with K(Ia[v]) = (0, 0), we prove in Section 21 the fundamental formula

K(Ia[v]) − Ia[J(v)] − Ib[M(v)] ∈ N (2.7)

for any (a,v) ∈ g× IF9, where J,M are specific polynomial mappings IF9 → IF9.

(Remark 21.2 describes J and M, while (2.7) appears as (21.2) – (21.3).)

What N and ∈ in (2.7) stand for requires the following, more detailed

explanation. First, we treat the left-hand side of (2.7) as a polynomial function of

the variables (a, b,v) = (a, b, ξ, f, h, x, y, z, p, q, r) ∈ g× g× IF9 (2.8)

with values in S × T . This is achieved by replacing all occurrences of

a2 with ε−1(ha+ b) + ε−2ξ Id, which in turn leads to replacements of

tr a2 by nε−2ξ, and a3 by ε−1ba+ ε−2(h2 + ξ)a+ ε−2hb+ ε−3ξh Id.
(2.9)

(Here ε ∈ {1, i} is a parameter depending on g, cf. (16.1).) Although h still

remains quite artificial, ξ and b have now become more tangible.

Secondly, ∈ in (2.7) means that the function of (2.8) standing on the left-

hand side of (2.7) is itself an element of N (rather than taking values in N ).

Finally, N is the space of (S × T )-valued negligible functions on g× g× IF9.

Negligible (polynomial) functions on g× g× IF9, valued in various vector spaces,

are defined in Section 20; the proper class formed by them (in the sense of set
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theory) may be called an ideal, since one easily verifies that, applying a multi-

linear mapping to several polynomial functions on g × g × IF9, one of which is

negligible, we always obtain another negligible function. In addition,

negligible functions vanish at all (a, b,v) ∈ g× g× IF9 such that b = 0. (2.10)

One specific vector u = (ξ, f, h, x, y, z, p, q, r) ∈ IF9, given by formula (19.3), has

J(u) = 0 and ξ = h = 0. (2.11)

In Section 22 we use u to define a family C of Einstein connections by

C = D + πS({Ia[u] : a ∈ g and a2 = 0}), (2.12)

which appears as formula (22.3); πS : S × T → S is the Cartesian projection.

That every ∇= D + S ∈ C is a weakly-Einstein connection (or, equivalently,

K(S, σ) = (0, 0) for the corresponding (S, σ), cf. (2.3)) is immediate: by (2.9),

with ξ = h = 0 due to (2.11), the relation a2 = 0 in (2.12) gives b = 0. Now

(2.10) implies that the value of the left-hand side of (2.7) at (a, b,u) equals 0,

while Ib[M(v)] = 0 by (2.6), since the f-component of M(v) vanishes identically,

and Ia[J(u)] = 0 due to (2.11) and linearity of Ia. Thus, K(Ia[v]) = 0.

Furthermore, evaluating {∇·∇} and using (2.2) we now conclude that every

∇ ∈ C is in fact an Einstein connection.

The most important further step consists in showing, in Section 25, that

the set (2.12) of Einstein connections contains all real analytic curves

[0, δ) 3 t 7→ D + S(t) of weakly Einstein connections with S(0) = 0.
(2.13)

Assertion (2.13) easily implies the crucial part of our main result (Theorem 22.2):

the family (2.12) of Einstein connections contains all weakly Ein

stein connections sufficiently close to the standard connection D.
(2.14)

For g = su(n), (2.14) states that a positive-definite multiple of the Killing form is
isolated among suitably normalized left-invariant Riemannian Einstein metrics on SU(n).

The mechanism which reduces proving the inclusion in (2.14) to establishing

the analogous claim (2.13) for real-analytic curves is a version of Milnor’s curve-

selection lemma [15, p. 25], stated below as Corollary 4.2, and applicable in our

case since both C and W are algebraic sets.

The rest of this section is devoted to summarizing the proof of (2.13) given

in Section 25. The argument is based on the fundamental formula (2.7) along

with the following fact (Lemma 20.1(ii)): suppose that a vector-valued polynomial

function P of (2.8) is negligible and (2.8) are themselves C∞ functions of a variable

t ∈ [0, δ), with δ ∈ (0,∞), which turns P into a function of t, and k ≥ 1 is an

integer. In such a case, due to negligibility of P,

if a(0) = 0, ξ(0) = h(0) = 0, and jk−1[b] = 0, then jk[P ] = 0. (2.15)

Here jk[. . .] denotes the k-jet of . . . at t = 0.
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Fixing t 7→ S(t) in (2.13), we now realize a, b, ξ, f, h, x, y, z, p, q, r,v and σ

as real-analytic functions of t ∈ [0, δ). First, a natural surjective operator S → g

(see Remark 17.4), applied to S = S(t), yields a = a(t) ∈ g. To define σ(t) and

ξ(t) we use (2.3) for S = S(t) and the relation tr a2 = nε−2ξ in (2.9).

Our polynomial mapping J : IF9 → IF9 takes values in IF8, as its first com-

ponent is 0, while rank dJu = 8 at our point u with J(u) = 0. Consequently (cf.

Lemma 19.1(b)), a neighborhood of u in J−1(0) forms the graph of an IF8-val-

ued IF-analytic function ξ 7→ (f, h, x, y, z, p, q, r) of ξ that varies near 0 in IF,

with dh/dξ 6= 0 at ξ = 0. Since ξ already is a function of t ∈ [0, δ), so are now

f, h, x, y, z, p, q, r (with smaller δ), v = (ξ, f, h, x, y, z, p, q, r), and b, cf. (2.9).

Next, while proving Lemma 25.1, we establish the following claim:

for all t ∈ [0, δ) one has (S(t), σ(t)) = Ia(t)[v(t)] and b(t) = 0. (2.16)

This is done by using induction on k to show equality between k-jets jk[. . .] of

both sides at t = 0, for all k ≥ 0. In the induction step, assuming that jk−1[b] = 0,

we use (2.15), with P equal to the left-hand side of (2.7) (for a = a(t) and

v = v(t)) to conclude that jk[P ] = 0. However, our choice of v(t) guarantees

that J(v(t)) = 0. Thus, by linearity of Ia, (2.7) with jk[P ] = 0 amounts to

vanishing of the k jet of K(Ia[v]) − Ib[M(v)] at t = 0. (2.17)

(From now on we write a,v for a(t), v(t), etc.) Our quadratic mapping K is

the sum of homogeneous components L and K − L of degrees 1 and 2, cf.

Remark 11.3. As (S, σ) = 0 at t = 0, the k-jet jk[(K−L)(S, σ)] depends only on

jk−1[(S, σ)] = jk−1[Ia[v]], the last equality being the remaining part of the induc-

tive-step assumption in our ongoing proof of (2.16). Recalling that our hypothesis

about t 7→ S(t) in (2.13) reads K(S, σ) = (0, 0) for all t (see (2.4)), we thus have

jk[L(S, σ)] = jk[(L−K)(S, σ)] = jk[(L−K)(Ia[v])] and so, by (2.17),

jk[L((S, σ)− Ia[v])] = −jk[Ib[M(v)]]. (2.18)

Due to the fact that M takes values in a specific two-dimensional vector subspace

of IF9 (cf. Remark 21.2), one has Ib[M(v)] ∈ Ker L for all b ∈ g and v ∈ IF9.

However (as a consequence of Remark 11.3 and (12.5.b)), the image of L intersects

Ker L trivially, that is, L restricted to its own image must be injective. Thus, both

sides in (2.18) must vanish. Now, as M(u) 6= 0, the equality jk[Ib[M(v)]] = (0, 0)

easily implies that jk[b] = 0. Similarly, since (S, σ) − Ia[v] lies in the image

of L (see Remark 25.2), the injectivity property just mentioned, combined with

vanishing of the left-hand side in (2.18), yields jk[(S, σ)] = jk[Ia[v]], completing

the inductive step and, consequently, proving (2.16).

The induction argument, used above to show that b(t) = 0 in (2.16), would

obviously remain valid if the quantities involved, instead of being real-analytic

functions of t, were just formal power series in the variable t. The subsequent

conclusion that a2 = 0 for a = a(t) and every t, outlined in the next paragraph
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is, however, less straightforward in this regard, as it relies on certain rationality

and nonzero-derivative properties of h and ξ.

Specifically, vanishing of b = b(t) in (2.16) gives, by (2.9), a2 = ε−1ha +

ε−2ξ Id for a = a(t) which, unless a = 0, easily implies that h2 is a rational

multiple of ξ (see Lemma 24.1). Since h is an IF-analytic function of ξ (cf. the

lines preceding (2.16)), with dh/dξ 6= 0 = h at ξ = 0, while ξ is a real-analytic

function of t, the rationality conclusion just stated shows that ξ(t) = h(t) = 0

identically in t. (See the end of Section 25.) Thus, a = a(t) satisfies the condition

a2 = 0, while, as v = (ξ, f, h, x, y, z, p, q, r) is a function of ξ (Lemma 19.1(b)),

one also has v(t) = u for all t. By (2.16), this completes the proof of (2.13).

3. Linear-algebra preliminaries

In this section, vector spaces are always finite-dimensional. An inner-product space
over IF = IR or IF = C is a vector space over IF with a fixed IF-valued nondegen-

erate symmetric IF-bilinear form. When IF = IR, inner-product spaces are what

one usually calls pseudo-Euclidean spaces. Note that, except in Section 27, complex

inner products are not assumed sesquilinear.

For endomorphisms A, Ã of a vector space V over IF = IR or IF = C, let

(A, Ã) = tr AÃ. (3.1)

Clearly, ( , ) turns the endomorphism space End V into an inner-product space.

For endomorphisms A of a complex vector space, with trIF denoting the IF-trace,

trIRA = 2 Re trCA. (3.2)

Treating a complex vector space V as real and writing ( , )IF rather than ( , ) to

indicate the choice of the scalar field, we have, in EndCV, by (3.1) and (3.2),

( , )IR = 2 Re ( , )C. (3.3)

Let us define the adjoint ∆∗ of an operator ∆ between inner-product spaces in

the usual way, refer to an endomorphism ∆ of such a space S as self-adjoint if

∆∗ = ∆, and call a subspace S ′ of S nondegenerate if so is the restriction of the

inner product to S ′. For a self-adjoint endomorphism ∆ of an inner-product space

S, with [ ]⊥ denotung the orthogonal complement,

a) the image ∆(S) coincides with [Ker ∆]⊥, so that

b) S = [∆(S)]⊕Ker ∆ if Ker ∆ is nondegenerate.
(3.4)

Given subspaces S, S ′ of an inner-product space V,

S is nondegenerate if V = S ⊕ S ′ and S, S ′ are orthogonal to each other, (3.5)

since vectors in S, orthogonal to S, must be orthogonal to all of V.
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Let Φ be an endomorphism of an inner-product space S. Then

Φ∗= Φ if Φ is diagonalizable with mutually orthogonal eigenspaces;

Φ has nondegenerate eigenspaces if Φ∗= Φ and Φ is diagonalizable.
(3.6)

Cf. (3.5). Obviously, given an endomorphism ∆ of a vector space S,

if S = [∆(S)]⊕Ker ∆, then ∆ : ∆(S)→ ∆(S) is an isomorphism. (3.7)

Let there be given vector spaces S, T ,V, an integer k ≥ 1, and a bilinear mapping

B : S × T → V, along with C∞ curves S in S and σ in T , both parametrized

by t ∈ [0, δ), where δ ∈ (0,∞). If S(0) = 0 and σ(0) = 0, then the Leibniz rule

clearly implies that, whenever k ≥ 1,

jk[B(S, σ)] depends only on jk−1[S] and jk−1[σ]. (3.8)

Here and below we use the convention that, for such curves,

jk[. . .] denotes the k jet of . . . at t = 0. (3.9)

Remark 3.1. Due to invariance of the trace functional, an endomorphism Ã of a

vector space such that JÃJ−1 = ωÃ for some linear automorphism J and some

scalar ω 6= 1 is necessarily traceless. When ω = −1 and J is the multiplication

by i in the underlying real space of a complex vector space, this shows that the
real trace of a C-antilinear endomorphism always equals 0.

Remark 3.2. Denoting by 1, i, j,k the standard IR-basis of the quaternion field IH,

we identify the real subspace of IH spanned by 1 and i with C, which turns any

given vector space V over IH into a complex vector space. Then trCA ∈ IR for

all IH-linear endomorphisms A of V, as one sees applying Remark 3.1 and (3.2)

to Ã = iA, with ω = −1 and J acting via the IH-multiplication by j.

4. Milnor’s curve-selection lemma

Throughout this section, all vector spaces are finite-dimensional and real.

A subset of a vector space S is called algebraic if it equals F−1(0) for some

polynomial mapping F : S → V into a vector space V. By a semi-algebraic set in

S one means the intersection of an algebraic set with
⋂k

j=1 f
−1
j ((0,∞)), where

k ≥ 1 and f1, . . . , fk are polynomial functions S → IR. The intersection of two

semi-algebraic sets in S is semi-algebraic, while complements of algebraic subsets

of S constitute finite unions of semi-algebraic sets. Thus, whenever Z ⊂ S and

L ⊂ S are algebraic, one easily sees that

Zr L is a finite union of semi algebraic sets in S . (4.1)

The following result of Milnor [15, p. 25], known as the curve-selection lemma,

generalizes the earlier versions due to Bruhat and Cartan [5, Theorem 1], and

Wallace [19, Lemma 18.3]. Further details can be found in [16, p. 402].
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Theorem 4.1. Suppose that 0 lies in the closure of a semi-algebraic subset A of a vector
space S. Then there exists a real-analytic curve [0, δ) 3 t 7→ S(t) ∈ S, with δ ∈ (0,∞),
such that S(0) = 0 and S(t) ∈ A for all t ∈ (0, δ).

Proof. See [15, p. 25]. �

We will need this immediate consequence of Theorem 4.1:

Corollary 4.2. Let Z and L be algebraic sets in a vector space S. If L contains every
real-analytic curve [0, δ) 3 t 7→ S(t) ∈ S with S(0) = 0, lying entirely in Z , then L
also contains all points of Z sufficiently close to 0.

Proof. Otherwise, an obvious contradiction would arise from Theorem 4.1 applied

to A which is one of the semi-algebraic sets mentioned in (4.1). �

5. The curvature and Ricci tensors

We denote by R = R∇ the curvature tensor of a torsion-free C∞ connection ∇
on a manifold, using the sign convention

R(v, w)u = ∇w∇vu−∇v∇wu+∇[v,w]u for C∞ vector fields u, v, w. (5.1)

The Ricci tensor ρ = ρ∇ has the components Rjk = Rjsk
s. Repeated indices, here

and below, are to be summed over.
Any torsion-free C∞ connection ∇ satisfies the Bochner identity

ρ( · , w) = div∇w − d(divw) for every C∞ vector field w, (5.2)

cf. [3, pp. 57, 74, 166], Here divw = tr∇w, with ∇w treated as the endomorphism

of the tangent bundle acting on vector fields v by v 7→ ∇vw.

The coordinate form of (5.2), Rjkw
k = wk

,jk − wk
,kj , arises by contraction

in l = k from the Ricci identity w l
,jk − w l

,kj = Rjks
lws, which in turn is the

coordinate form of (5.1). Evaluated on a C∞ vector field v, (5.2) gives

ρ(v, w) = div[∇vw − (divw)v] + (div v) divw − (∇v,∇w), (5.3)

via differentiation by parts. For the meaning of (∇v,∇w), see (3.1).

By an Einstein metric on a manifold we mean any C∞ pseudo-Riemannian

metric γ with ρ = κγ for the Ricci tensor ρ of γ (that is, the Ricci tensor of

the Levi-Civita connection of γ) and some κ ∈ IR (the Einstein constant of γ).

One calls a torsion-free C∞ connection ∇ on an m-dimensional manifold

equiaffine if the connection induced by ∇ in the mth exterior power of the tangent

bundle is flat, that is, if the manifold locally admits ∇-parallel volume forms.

Equiaffinity of ∇ is equivalent to symmetry of its Ricci tensor ρ∇. This

well-known fact [18, III 4,5 and (5.8), pp. 144–145] is not used in our argument.

Remark 5.1. The whole discussion in this section remains valid for holomorphic

connections and holomorphic metrics on complex manifolds [12, pp. 210–211].
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Remark 5.2. Recall that the Levi-Civita connection of a C∞ or holomorphic met-

ric is the unique torsion-free connection making the metric parallel [12, p. 211].

6. Left-invariant connections on Lie groups

Let G be a real or complex Lie group. Its Lie algebra g, over IF = IR or IF = C,

is always identified with the space of left-invariant vector fields on G. In addition,

left-invariant connections on G are assumed holomorphic when IF = C. Similarly,

left-invariant metrics on G are by definition pseudo-Riemannian if IF = IR, and

holomorphic (in the sense of being C-bilinear, symmetric and nondegenerate) if

IF = C. Cf. also Remark 5.1.

Left-invariant connections ∇ on G, and left-invariant symmetric 2-tensor

fields τ on G (including metrics) are always treated as elements of Y = [g∗]⊗2⊗g

(or, of T = [g∗]�2), that is, as IF-bilinear operations ∇ : g×g→ g (or, respectively,

as symmetric IF-bilinear forms τ : g × g → IF). For v, w ∈ g, we then use the

traditional symbol ∇vw, rather than ∇(v, w), and denote by ∇v (or, by ∇w) the

IF-linear endomorphism of g sending w (or, respectively, v) to ∇vw.

A left-invariant torsion-free connection ∇ on G will be called unimodular if

some/any left-invariant real/complex volume form on G is ∇-parallel.

Unimodularity of ∇ clearly implies its equiaffinity (see the end of Section 5).

Lemma 6.1. Let ∇ be a left-invariant torsion-free connection on a real/complex Lie
group G with the Lie algebra g over IF = IR or IF = C.
(a) ∇ is unimodular if and only if tr∇v = 0 for all v ∈ g.
(b) ∇ is unimodular whenever there exists a nondegenerate left-invariant ∇-parallel

twice-covariant symmetric tensor field on G, that is, whenever ∇ is the Levi-Civita
connection of some left-invariant metric.

(c) If G is unimodular, then unimodularity of ∇ is equivalent to tracelessness of ∇w
for every w ∈ g, that is, to the condition divw = 0 for all w ∈ g.

(d) If both G and ∇ are unimodular, then the Ricci tensor ρ = ρ∇ is given by
ρ(v, w) = −(∇v,∇w) for v, w ∈ g, cf. (3.1). In particular, ρ is symmetric.

(e) If G is unimodular and the tensor ρ given by ρ(v, w) = −(∇v,∇w) is nonde-
generate and ∇-parallel, then ∇ is unimodular and ρ is its Ricci tensor.

Proof. Let m = dimIFg. For the connection ∇ induced by ∇ in the mth exterior

power, over IF, of the tangent bundle of G, and any basis e1, . . . , em of g, one

clearly has ∇v(e1 ∧ . . . ∧ em) = (tr∇v) e1 ∧ . . . ∧ em, which proves (a). To obtain

(b), note that, for an orthonormal basis e1, . . . , em, the m-vector e1 ∧ . . . ∧ em is

parallel due to its being uniquely determined, up to a sign, by the metric. Assertion

(c) follows in turn from (a), since unimodularity of G amounts to tracelessness

of Ad v for all v ∈ g, and Ad v = ∇v − ∇v as ∇ is torsion-free, while (d) is

obvious from (5.3), along with (c) applied to the left-invariant vector fields w and

∇vw − (divw)v. Finally, (e) is a consequence of (b), for the metric ρ, and (d). �
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Remark 6.2. By assigning, to any left-invariant Einstein metric with Einstein

constant 1 on a Lie group G, its Levi-Civita connection, we obtain a bijective

mapping between the set of such metrics and the set of all left-invariant torsion-free

connections ∇ on G having symmetric, nondegenerate, ∇-parallel Ricci tensors.

The inverse mapping sends ∇ to its Ricci tensor.

This is a trivial consequence of Remark 5.2.

Remark 6.3. We will use the fact that every semisimple Lie group is unimodular.

7. Some operations involving connections and 2-tensors

In this section, g is a fixed semisimple Lie algebra over IF = IR or IF = C.

As in the second paragraph of Section 6, we identify elements ∇ of the space

Y = [g∗]⊗2⊗ g with left-invariant connections on a Lie group G having the Lie

algebra g, writing ∇vw,∇v and ∇w instead of ∇(v, w), ∇(v, · ) and ∇( · , w), for

v, w ∈ g, so that ∇v,∇w : g→ g. We will repeatedly refer to the vector spaces

T = [g∗]�2, S = [g∗]�2⊗ g ⊂ Y = [g∗]⊗2⊗ g. (7.1)

Note that T ⊂ [g∗]⊗2 and S ⊂ [g∗]⊗2⊗ g consist of all IF-valued (or, respectively,

g-valued) symmetric IF-bilinear mappings defined on g× g.

Elements of T may, again, be thought of as twice-covariant symmetric tensor

fields on G, invariant under left translations. The symbols β and 〈 , 〉 both stand

for the IF-bilinear Killing form of g. Thus, β ∈ T and, with ( , ) as in (3.1),

β(v, w) = 〈v, w〉 = (Ad v, Adw) whenever v, w ∈ g. (7.2)

The IF-bilinear inner product β = 〈 , 〉 in g leads to an isomorphic identification

between bilinear forms σ on g and IF-linear endomorphisms Σ of g, with

σ(v, w) = 〈Σv, w〉 for any v, w ∈ g. (7.3)

Left-invariant connections on G which are torsion-free form an affine subspace of

[g∗]⊗2⊗ g, namely, the coset D + S, where D is the standard connection, with

2Dvw = [v, w], so that Dv = −Dv = Ad v/2. (7.4)

We define the contraction operator c : Y = [g∗]⊗2⊗ g→ g∗ by (c∇)w = tr∇w. In

view of Lemma 6.1(c) and Remark 6.3, for any ∇= D + S, where S ∈ S,

D + S is unimodular if and only if cS = 0. (7.5)

Tensor-calculus arguments, when needed, will use components relative to a fixed

basis e1, . . . , em of g, with m = dimIFg. Vectors v ∈ g, bilinear forms σ on g,

connections ∇ ∈ Y = [g∗]⊗2⊗ g, and symmetric operations S ∈ S are repre-

sented by the components v j, σjk, Γ l
jk and S l

jk = S l
kj characterized by v = v jej ,

σ(v, w) = σjkv
jwk, [∇vw]l = Γ l

jkv
jwk and [Svw]l = S l

jkv
jwk. Note the traditional

symbol Γ l
jk, rather than ∇l

jk. For the components D l
jk of D we have 2D l

jk = Cjk
l,
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where Cjk
l are the structure constants of g, with [v, w]l = Cjk

lv jwk or, equiv-

alently, [ej , ek] = Cjk
lel. The reciprocal tensor of the Killing form β has the

components β jk, forming the inverse matrix of [βjk]. We will raise and lower in-

dices with the aid of β jk and βjk, so that C j
k
l = β jsCsk

l, Cjkl = Cjk
sβsl, etc. If

an endomorphism Σ of g corresponds to σ via (7.3), its components will be writ-

ten as σk
j , and then [Σv]k = σk

j v
j, while σk

j = σjsβ
sk. Thus, for the contraction

operator c appearing in (7.5),

[c∇]j = Γ k
kj . (7.6)

Since the Killing form β is bi-invariant (that is, Ad-invariant), one has

(Ad v,Σ) = 0 whenever v ∈ g and Σ : g→ g is β self adjoint, (7.7)

due to skew-adjointness of Ad v, with ( , ) as in (3.1). For the same reason,

Cjkl is totally skew symmetric in j, k, l, (7.8)

which amounts to skew-symmetry of g× g× g 3 (v, w, u) 7→ β([v, w], u) ∈ IR.

8. Further operations

We continue using the same assumptions and notations as in Section 7.

The Killing form β = 〈 , 〉, being an IF-bilinear inner product in g, naturally

induces IF-bilinear inner products, also denoted by 〈 , 〉, in the spaces [g∗]⊗2 and

Y = [g∗]⊗2⊗ g. (Their nondegeneracy is obvious, since a β-orthonormal basis of

g gives rise to 〈 , 〉-orthonormal bases in the other two spaces.) Explicitly,

i) 〈σ, τ〉 = β jpβkqσjkτpq , ii) 〈∇, ∇̃〉 = β jpβkqβlrΓ
l

jkΓ̃
r

pq . (8.1)

for any σ, τ ∈ [g∗]⊗2 and ∇, ∇̃ ∈ Y = [g∗]⊗2⊗ g. Furthermore,

(S, 〈 , 〉) and (T , 〈 , 〉) are inner product spaces. (8.2)

In other words, S ⊂ Y and T ⊂ [g∗]⊗2 appearing in (7.1) are nondegenerate

subspaces, which one easily sees applying (3.5) to our S and S ′ = [g∗]∧2⊗ g, with

V = Y, or, respectively, to T instead of S, with S ′ = [g∗]∧2 and V = [g∗]⊗2.

For ∇ ∈ Y = [g∗]⊗2⊗ g, the ∇-gradient of any σ ∈ T is

S = ∇σ ∈ S, characterized by 〈Svw, u〉 = −σ(∇uv, w)− σ(v,∇uw). (8.3)

(Note that ∇σ differs only slightly from the ∇-covariant derivative of σ, from

which it arises via index-raising applied to the direction of differentiation.) Given

such ∇ and σ, we also define

∇̃= σ∇ ∈ S, by declaring ∇̃vw to be Σ(∇vw), for Σ with (7.3). (8.4)

Equivalently, 〈∇̃vw, u〉 = σ(∇vw, u) and, in terms of components,

a) S l
jk = −β lp(Γ r

pjσrk + Γ r
pkσjr) if S = ∇σ, b) Γ̃ l

jk = σ l
rΓ

r
jk if ∇̃= σ∇. (8.5)
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For D as in (7.4), and any σ ∈ T , (8.5.a) with S = Dσ and Γ l
jk = Cjk

l/2 gives,

by (7.8), 2S r
rk = −C l

l
rσrk − C j

k
rσjr = 0. Thus, from (7.6),

c(Dσ) = 0 whenever σ ∈ T . (8.6)

In view of the line following (7.8), the three definitions: (8.3) of ∇σ (applied to

∇= D), (7.4) of D, and (8.4) of σ∇ (applied to σ = τ and ∇= Dσ), imply that

for any σ, τ ∈ T and Σ,T related to them as in (7.3), since Σ is β-self-adjoint,

a) [Dσ]vv = [Σv, v], b) [τ(Dσ)]vv = T[Σv, v] (8.7)

whenever v ∈ g. The normalized β-curvature operator Ω : T → T is given by

[Ωσ](v, w) = 2(Ad v, (Adw)Σ) for v, w ∈ g, (8.8)

with ( , ) as in (3.1), any σ ∈ T , and Σ corresponding to σ via (7.3). We have

i) Ωβ = 2β, ii) [Ωσ]jk = 2Cjq
rCks

qσsr , iii) tr Ω = −dimIFg. (8.9)

In fact, (8.9.i) and (8.9.ii) are obvious from (7.2) and (8.8). To verify (8.9.iii), we

extend Ω : T → T to Ω̃ : [g∗]⊗2→ [g∗]⊗2 defined by the same formula (8.9.ii), so

that [Ω̃σ]jk = Z rs
jk σrs with Z rs

jk = 2Cjq
rCk

sq. Thus, tr Ω̃ = Z rs
rs = 0 (cf. (7.8)).

At the same time, Z rs
jk = Zsr

kj , so that Ω̃ leaves the subspace [g∗]∧2 invariant,

and acts on σ ∈ [g∗]∧2 via Z rs
jk σrs = (Z rs

jk − Z rs
kj )σrs/2 which, by the Jacobi

identity, gives Z rs
jk σrs = H rs

jk σrs for H rs
jk = 2CkjqC

sqr. Due to skew-symmetry of

H rs
jk in both j, k and r, s (see (7.8)), the trace of the restriction of Ω̃ to [g∗]∧2 is

obtained as the sum of H rs
rs over the pairs r, s with r < s. In terms of the ordinary

summing convention, this last trace equals H rs
rs/2 = CsrqC

sqr = βs
s = dimIFg, as

βjk = Cjq
pCkp

q by (7.2). Since tr Ω̃ = 0, (8.9.iii) follows.

The name used for Ω reflects the fact that, if one treats the Killing form

β as a left-invariant pseudo-Riemannian Einstein metric on a Lie group with the

Lie algebra g, then Ω is, up to a factor, the curvature operator of β, acting on

symmetric 2-tensors [7, Remark 1.4].

9. Two symmetric pairings

We continue the discussion of Sections 7 – 8. The symbol { · } denotes two T -val-

ued symmetric bilinear mappings defined on Y (and, respectively, on T ), charac-

terized by the corresponding T -valued homogeneous quadratic functions:

{∇·∇}(v, w) = (∇v,∇w), {σ·σ}(v, w) = ((Ad v)Σ, (Adw)Σ) (9.1)

for ∇ ∈ Y, σ ∈ T and v, w ∈ g, with Σ, ( , ) as in (7.3) and (3.1). Equivalently,

2{∇·∇̃}jk = Γ s
rj Γ̃

r
sk + Γ̃ s

rjΓ
r

sk , 2{σ·τ}jk =Cjr
pσr

q Cks
qτ sp +Cjr

pτ rq Cks
qσs

p (9.2)

whenever ∇, ∇̃ ∈ Y = [g∗]⊗2⊗ g and σ, τ ∈ T . By (8.8), for σ ∈ T ,

2{σ·β} = Ωσ. (9.3)
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Being symmetric, {σ·τ} is uniquely characterized by the requirement that

{σ·τ}(w,w) = ((Adw)Σ, (Adw)T) for all w ∈ g, (9.4)

with Σ,T as in (8.7.b). Lemma 6.1(d) and (9.1) imply that a left-invariant tor-

sion-free unimodular connection ∇= D + S, with S ∈ S, has the Ricci tensor

ρ∇ = −{∇·∇}, (9.5)

cf. Remark 6.3. Note that, due to (7.2), (7.4), (9.5), (7.8) and (8.7.a),

a) 4{D·D} = β, that is, βjk = Cpj
qCqk

p, b) 4ρD = −β, c) Dβ = 0. (9.6)

Finally, for the inner products in (8.2), any S ∈ S, and any σ ∈ T ,

a) 〈S,Dσ〉 = 2〈{D·S}, σ〉, b) {D·(Sβ)} = {D·S}. (9.7)

In fact, since S l
jk = S l

kj , σjk = σkj , 2D l
jk = Cjk

l, (8.1.ii), (8.5.a) and (7.8) give

〈S,Dσ〉 = −β jpβkqS l
jkClp

rσrq = −S l
jkCl

jrσk
r = S l

jkClr
jσkr = 2{D · S}krσkr =

2〈{D·S}, σ〉. For similar reasons, one has 4{D·(Sβ)}jk =−C p
j
q(S r

pqβrk+S r
pkβqr)−

C p
k
q(S r

pqβrj + S r
pjβqr). As a consequence of (7.8), the first and third of the four

resulting terms vanish, and the other two add up to Crj
pS r

pk+Crk
pS r

pj = 4{D·S}jk.

10. The Christoffel isomorphism

With the assumptions and notations as in the last three sections, let us introduce

the Christoffel isomorphism Φ : S → S by requiring that, whenever v, w, u ∈ g,

2〈u, S̃vw〉 = 〈v,Swu〉 + 〈w,Svu〉 − 〈u,Svw〉 for S̃ = ΦS. (10.1)

We give two more descriptions of Φ, one based on applying, to ∇= S and σ = β,

the definition (8.3) of the ∇-gradient, the other using components and (8.5.a):

i) 2ΦS = −Sβ − S, ii) 2(ΦS)ljk = β lp(S r
pjβrk + S r

pkβrj)− S l
jk . (10.2)

For yet another description of Φ, see Remark 10.2. If S ∈ S and σ ∈ T , then

a) Φ(Dσ) = −Dσ, b) Φ(Sσ) = −σS, (10.3)

as one sees combining (10.1) and the line following (7.8) with (8.7.a) or, respec-

tively, applying the definitions of ∇σ and σ∇ in (8.3) – (8.4) to ∇= S. Also,

a) Φ(Sβ) = −S, b) {D·(ΦS)} = −{D·S}. (10.4)

In fact, (10.4.a) is a special case of (10.3.b), for σ = β, while (10.2.i) and (9.7.b)

give 2{D·(ΦS)} = −{D·(Sβ)} − {D·S} = −2{D·S}, proving (10.4.b).

Note that Φ is actually an isomorphism, as a consequence of (10.4.a).

In the next lemma, Dλ, or Dχ or, respectively, (Dλ)ψ is given by (8.3)

with ∇ = D and σ = λ, or ∇ = D and σ = χ or, respectively, ∇ = Dλ and

σ = ψ. Similarly, ψ(Dλ) is defined as in (8.4) with σ = ψ and ∇= Dλ.

Lemma 10.1. If ψ, λ, χ ∈ T , for T in (7.1), and ψ(Dλ) = Dχ, then (Dλ)ψ = Dχ.
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Proof. From (10.3) with S = Dλ we get Φ[(Dλ)ψ −Dχ] = Dχ− ψ(Dλ). �

The operation T × T 3 (σ, τ) 7→ σ~ τ ∈ T is defined by requiring it to

correspond, under the identification in (7.3), to (Σ, Σ̃) 7→ (ΣΣ̃ + Σ̃Σ)/2 (one-

half of the anticommutator of β-self-adjoint linear endomorphisms of g). Thus,

β~σ = σ. Any nondegenerate γ ∈ T has an inverse γ−1 ∈ T with γ~γ−1 = β.

Every σ ∈ T satisfies the following relations, in which, once again, D, β

and Ω are the standard connection, Killing form, and normalized β-curvature

operator, with (7.4), (7.2) and (8.8), { · } stands for the two operations given by

(9.1) or (9.2), while ~ is defined as in the last paragraph:

a) (Dσ)β = Dσ,

b) 8{D·(Dσ)} = (Ω − 2 Id)σ,

c) 4{(Dσ)·(Dσ)} = {σ·σ} + [(Id− Ω)σ]~σ,
d) 4{(D + Dσ)·(D + Dσ)} = β − σ + {σ·σ}+ [(Ω− Id)σ]~ (β − σ).

(10.5)

In fact, (Dσ)β = Dσ since Φ[(Dσ)β ] = Φ(Dσ) by (10.4.a) (for S = Dσ) and

(10.3.a). Next, −8{D·(Dσ)}jk = Cpj
q(Cp

qrσ
r
k +Cp

krσ
r
q ) +Cpk

q(Cp
qrσ

r
j +Cp

jrσ
r
q )

due to (8.5.a) with Γ l
jk = D l

jk = Cjk
l/2 and (9.2). In view of (9.6.a) and (7.8), the

first and third of the resulting four terms are both equal to βjrσ
r
k = βkrσ

r
j = σjk,

and their sum is 2σjk. The other two terms are also equal and, by (8.9.ii), add up

to −[Ωσ]jk, which proves (10.5.b). Also, 8{(Dσ)·(Dσ)}jk equals

2(C q
p
rσrj + C q

j
rσpr)(C p

q
sσsk + C p

k
sσqs),

that is, 2C q
p
rC p

q
sσrjσsk − 2Crp

qCks
pσs

q σ
r
j − 2Csq

pCjr
qσr

p σ
s
k + 2Cjr

qσr
pCks

pσs
q =

2σs
j σsk− [Ωσ]rkσ

r
j − [Ωσ]sjσ

s
k +2{σ·σ}jk, cf. (9.2), (9.6.a), (7.4), (7.8), (8.5.a) and

(8.9.ii). This yields (10.5.c). Finally, (9.6.a) and (10.5.b) – (10.5.c) imply (10.5.d).

Next, for σ, τ ∈ T , applying (9.7.a) to S = Dτ we obtain, from (10.3.b),

4〈Dτ,Dσ〉 = 〈Ωτ − 2τ, σ〉. (10.6)

Remark 10.2. Another description of Φ, obvious from (10.1), reads: Φ is di-

agonalizable, has the eigenvalues 1/2 and −1, with the respective eigenspaces

consisting of those S ∈ S for which 〈u,Svw〉 is totally symmetric in u, v, w ∈ g

or, respectively, 〈u,Svw〉 summed cyclically over u, v, w ∈ g yields 0.

Remark 10.3. We identify nondegenerate elements of T with left-invariant pseu-

do-Riemannian metrics γ on G. According to Remark 5.2, the Levi-Civita con-

nection of any such γ is the unique ∇ = D + S, with S ∈ [g∗]�2⊗ g for which

∇γ = 0. Writing the last condition as Dγ + Sγ = 0, and using (10.3), we get

Dγ = −γS, that is, the classical Christoffel formula ∇= D+ S, for S = −γ−1(Dγ).
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11. Einstein and weakly-Einstein connections

We adopt the assumptions and notations of Sections 7 – 9, so that g is our fixed

semisimple Lie algebra over IF = IR or IF = C, associated with a real/complex Lie

group G, while [g∗]⊗2⊗ g is identified with the space of left-invariant connections

on G (assumed holomorphic if IF = C), and D + S is its affine subspace formed

by all ∇ ∈ [g∗]⊗2⊗ g which are torsion-free. Now, for E, U,W defined below,

E ⊂ U ⊂ W ⊂ D + S ⊂ [g∗]⊗2⊗ g. (11.1)

Here E denotes the set of Einstein connections in g, that is, of the Levi-Civita

connections of left-invariant Einstein metrics on G (again, assumed holomorphic

when IF = C). The subset W of D + S consists, in turn, of weakly-Einstein
connections in g, by which we mean all ∇ ∈ D + S such that the left-invariant

symmetric 2-tensor field {∇·∇} on G is ∇-parallel. Finally, U ⊂ D +S is formed

by those ∇ which are unimodular and have a ∇-parallel Ricci tensor.

The inclusions E ⊂ U ⊂ W follow from Lemma 6.1(b) and (9.5). Next, we

define a nonlinear mapping H : S → S and a linear endomorphism ∆ of S by

i) H(S) = 4(D + S){(D + S)·(D + S)}, ii) ∆S = 8D{D·S}+ Sβ, (11.2)

with S as in (7.1). According to (9.6.a), 4{D·D} = β, and hence

a) 4{(D + S)·(D + S)} = β + σ, where b) σ = 8{D·S}+ 4{S·S}. (11.3)

The operations used in (11.2.i) and (11.3.a) are the ∇-gradient, cf. (8.3), and the

first pairing in (9.1); thus, setting ∇= D + S, we have

H(S) = 4∇{∇·∇}, (11.4)

while for the Ricci tensor ρ∇ of ∇, one obtains, from (7.5), (9.5) and (11.3),

H(S) = −4∇ρ∇ and ρ∇ = −(β + σ)/4 if cS = 0 and ∇= D + S. (11.5)

By (11.2) – (11.3), H(S) = Dσ + Sσ + Sβ, so that, as Dβ = 0 in (9.6.c),

H(S) = ∆S + 4D{S·S}+ Sσ, with σ = 8{D·S}+ 4{S·S}. (11.6)

Consequently, ∆ equals the differential of H at 0, that is

dH0 = ∆, while H(0) = 0, (11.7)

since (11.6) expresses H(S) as ∆S plus some terms quadratic and cubic in S.

The sets U and W appearing in (11.1) can now be described as follows:

i) U = D + (Z ∩Ker c) = W ∩Ker c, and

ii) W = D + Z , where iii) Z = H−1(0),
(11.8)

as (11.4) yields (11.8.ii), while (11.8.ii), (7.5), Remark 6.3 and (9.5) give (11.8.i).

Lemma 11.1. With the assumptions and notations as in Sections 7 – 9, for any S ∈ S
and σ ∈ T , the following two conditions are equivalent:
(a) ∆S + 4D{S·S}+ Sσ = 0, while cS = 0 and σ = 8{D·S}+ 4{S·S},
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(b) ∇= D + S is a unimodular torsion-free connection in g and its Ricci tensor, given
by ρ = −(β + σ)/4, is ∇-parallel; consequently, ∇∈ U .

Proof. First, (a) implies (b), since (7.5) with cS = 0 gives unimodularity of ∇,

and (11.5) – (11.6) show that ρ = −(β+σ)/4 is ∇-parallel. Conversely, assuming

(b), we obtain (a) from (7.5), (9.5), (11.3) and (11.5) – (11.6). �

Lemma 11.2. For the inner-product spaces (8.2), and Φ,∆ as in (10.1), (11.2.ii),
(i) Φ,∆ as well as S 7→ Sβ and S 7→ D{D·S} are self-adjoint endomorphisms of S,
(ii) Ω : T → T defined by (8.8) is self-adjoint.

Proof. First, Φ is self-adjoint due to the first line of (3.6) and Remark 10.2; so

is the endomorphism S 7→ Sβ equal, by (10.2.i), to −2Φ − Id. The same follows

for the operator S 7→ D{D · S} obtained, up to a factor, as the composite of

S 7→ 2{D ·S} with its adjoint σ 7→ Dσ (see (9.7.a)). By (11.2.ii), the last two

conclusions give (i) for ∆. Finally, (8.1.i), (8.9.ii) and (7.8) imply symmetry of the

expression 〈Ωσ, τ〉 = 2τ jkCjqpCkr
qσpr in σ, τ ∈ T , proving (ii). �

Remark 11.3. The quadratic mapping K : S×T → S×T in Section 2 is given by

K(S, σ) = (∆S + 4D{S·S}+ Sσ, σ−8{D·S}−4{S·S}), and L(S, σ) = (∆S, σ). The

correspondence (2.3) sends D + S with H(S) = 0 to (S, σ), for σ as in (11.6).

12. The nondegeneracy condition

We continue the discussion of Sections 7 – 11. By (11.2.ii), (10.5.a) and (10.5.b),

∆(Dσ) = D[(Ω− Id)σ] whenever σ ∈ T . (12.1)

Using the Christoffel isomorphism Φ, given by (10.1), we obtain

Ker ∆ = {Dτ : τ ∈ Ker (Ω− Id)}. (12.2)

In fact, applying Φ, we see that, by (11.2.ii), (10.3.a) with σ = {D·S}, and (10.4.a),

∆S = 0 if and only if S = Dτ for τ = −8{D ·S}, which is in turn equivalent to

S = Dτ for τ = −8{D·(Dτ)}, and hence, in view of (10.5.b), amounts to S = Dτ

for some τ ∈ Ker (Ω− Id). From (12.2) we further conclude that

τ 7→ Dτ is a linear isomorphism Ker (Ω− Id) → Ker ∆, with

the inverse isomorphism Ker ∆ 3 S 7→ −8{D·S} ∈ Ker (Ω− Id),
(12.3)

since, by (12.2), τ 7→ Dτ maps Ker (Ω − Id) onto Ker ∆, while (10.5.b) implies

its injectivity and describes its inverse.

From now on we will assume the nondegeneracy condition: for Ω with (8.8),

Ker (Ω− Id) is a nondegenerate subspace of T (12.4)

in the sense of Section 3. This is no restriction of generality: (12.4) holds, by

Lemma 17.1(f), for the Lie algebras of the groups (1.1), while the remaining simple

Lie algebras have Ker (Ω−Id) = {0} (see Theorem 12.3), which again yields (12.4).
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Lemma 12.1. Condition (12.4) implies that

a) T = [(Ω− Id)(T )]⊕Ker (Ω− Id), b) S = [∆(S)]⊕Ker ∆,

c) ∆ : ∆(S)→ ∆(S) is an isomorphism.
(12.5)

Proof. Formula (10.6) for σ, τ ∈ Ker (Ω − Id) becomes 4〈Dτ,Dσ〉 = −〈τ, σ〉, so

that, by (12.3) and (12.4), Ker ∆ is a nondegenerate subspace of S. In view of

Lemma 11.2, ∆ : S → S and Ω− Id : T → T are self-adjoint. Nondegeneracy of

their kernels and (3.4.b) thus yield (12.5.a-b). Now (3.7) gives (12.5.c). �

We will use the symbol Π for both projection operators

a) Π : T → Ker (Ω− Id), b) Π : S → Ker ∆ (12.6)

arising, under the assumption (12.4), from the decompositions in (12.5.a-b).

Remark 12.2. For λ ∈ T we have D(Πλ) = Π(Dλ), the first (or, second) Π being

as in (12.6.a) (or, (12.6.b)). In fact, using (12.5.a) to write λ = τ + (Ω − Id)σ,

with τ ∈ Ker (Ω − Id) and σ ∈ T , we obtain, from (12.1), Dλ = Dτ + ∆(Dσ),

where Dτ = Π(Dλ) ∈ Ker ∆ by (12.2). Thus, Π(Dλ) = Dτ = D(Πλ).

Theorem 12.3. All simple Lie algebras other than the ones corresponding to (1.1)

with n = l + j ≥ 3 have Ker (Ω − Id) = {0}. For any semisimple Lie algebra with
Ker (Ω− Id) = {0}, the standard connection D is an isolated point in both W and E .

Proof. About the first claim, see [7, Remark 4.4]; the second one is obvious from

(11.8.ii) and (11.1) since, by (12.2) and (11.7), 0 is then isolated in H−1(0). �

13. The underlying real Lie algebras

Denoting by gIR the underlying real Lie algebra of a given semisimple complex Lie

algebra g with the Killing form β, we see that, by (7.2) and (3.3),

the Killing form of gIR equals 2 Reβ. (13.1)

Thus, gIR is semisimple as well. The following lemma and remarks use

the spaces TIR , SIR , YIR , the linear endomorphism ∆IR : SIR → SIR ,
{ · }IR : YIR× YIR→ TIR , and the projection ΠIR : SIR→ Ker ∆IR ,

(13.2)

the gIR-counterparts of T ,S,Y,∆, { · },Π in (7.1), (11.2.ii), (9.1), (12.6.b) for g.

Lemma 13.1. For the real space T ′ of all Hermitian sesquilinear forms g× g→ C,
(a) TIR = [Re T ] ⊕ [Re T ′ ], where the summands are IR-isomorphic images of T

and T ′ under the operator σ 7→ Reσ,
(b) Re T ′ ⊂ Ker ΩIR,
(c) ΩIR(Reσ) = Re (Ωσ) for all σ ∈ T , so that ΩIR leaves the summand Re T in-

variant and ΩIR : Re T → Re T corresponds, under the isomorphic identification
T → Re T in (a), to Ω : T → T ,



Indefinite Einstein metrics 19

(d) Ker (ΩIR− Id) is contained in the summand Re T , cf. (a), and arises as the image
of Ker (Ω− Id) ⊂ T under the isomorphism T 3 σ 7→ Reσ ∈ Re T .

Proof. If a C-linear endomorphism Σ of g is related to σ ∈ T via (7.3), taking

the real parts of both sides of (7.3), with 〈 , 〉 = β, we see that, by (13.1), the

same relation holds, in gIR, between Σ and 2 Reσ ∈ Re T . Now (8.8), its real-part

version, and (3.3) yield (c). Next, given σ ∈ T ′, let Σ : gIR → gIR be associated

with Reσ as in (7.3) for gIR and 2 Reβ instead of g and β. The IR-linear en-

domorphism gIR → gIR of multiplication by i is (Reβ)-self-adjoint, so that 0 =

Re [σ(iv, w)+σ(v, iw)] = 2 Reβ(Σiv+iΣv, w) for all v, w ∈ g, and Σ is C-antiline-

ar. As (8.8) and (3.3) imply that [ΩIR(Reσ)](v, w) equals 4 Re trC[(Ad v)(Adw)Σ],

the final clause of Remark 3.1 gives ΩIR(Reσ) = 0, proving (b). Finally, since any

σ ∈ T or σ ∈ T ′ is uniquely determined by its real part, (a) follows, while (d) is

a trivial consequence of (a), (b) and (c). �

Remark 13.2. One has 2∇(Reσ) = ∇σ if ∇ : g × g → g is a (complex-bilinear)

connection in a semisimple complex Lie algebra g and σ ∈ T , with ∇σ as in

(8.3), where ∇(Reσ) is analogously defined for gIR, so that Reσ ∈ TIR (notation

of Lemma 13.1) and ∇ is treated as a (real-bilinear) connection in gIR.

To see this, apply 2 Re to both sides in (8.3) and use (13.1) with β = 〈 , 〉.

Remark 13.3. Given g and gIR as above, let us use the notation of (13.2).

(i) The real part of a (holomorphic) metric γ in g is a (pseudo-Riemannian)

metric in gIR, and both metrics have the same Levi-Civita connection.

(ii) If ρ is the Ricci tensor of the Levi-Civita connection of a metric in g, then

∇ viewed as a connection in gIR has Ricci tensor 2 Re ρ.

(iii) The real part of every Einstein metric in g is an Einstein metric in gIR.

(iv) Every Einstein connection in g is also an Einstein connection in gIR.

(v) {∇·∇̃}IR = 2 Re {∇·∇̃} whenever ∇, ∇̃ ∈ Y ⊂ YIR.

(vi) Ker ∆IR = Ker ∆, so that any element S : gIR × gIR → gIR of Ker ∆IR,

originally assumed real-bilinear, must actually be complex-bilinear.

(vii) ∆ : S → S is the restriction of ∆IR : SIR → SIR to S ⊂ SIR.

(viii) If S ∈ SIR and ∆IRS ∈ S, then S ∈ S.

In fact, (i) is obvious from Remarks 5.2 and 13.2 (the latter for σ = γ); (ii) from

Lemma 6.1(d) combined with (3.3) (where the former can be applied in view of

Remark 6.3 and Lemma 6.1(b)); (iii) from (i) – (ii); (iv) from (i) and (iii); (v) from

(9.1) and (3.3). Next, elements of Ker ∆IR coincide, by (12.2) for gIR, with the

D-gradients Dτ , in gIR, of all τ ∈ Ker (ΩIR− Id). According to Lemma 13.1(d),

such τ are precisely the same as all Reσ for σ ∈ Ker (Ω− Id). As Remark 13.2

with ∇= D gives 2Dτ = 2D(Reσ) = Dσ, (vi) follows from (12.2). Furthermore,

(vii) is an immediate consequence of (11.2.ii), (v), (13.1) and Remark 13.2.



20 A. Derdzinski and Ś. R. Gal

Finally, let S ∈ SIR and ∆IRS ∈ S. By (12.5.b), ∆IRS − ∆S̃ ∈ Ker ∆ for

some S̃ ∈ S. From (vi) and (vii) one thus has ∆IR(S − S̃) ∈ Ker ∆IR. Applying

(12.5.b-c) to gIR rather than g, we now conclude that ∆IR(S − S̃) = 0, and so

S− S̃ ∈ Ker ∆IR = Ker ∆ ⊂ S (cf. (vi)). Hence S ∈ S.

14. Complexifications

All vector spaces (and Lie algebras) are assumed below to be finite-dimensional.

By a real form of a complex vector space (or, a complex Lie algebra) gC we

mean any real subspace (or, real Lie subalgebra) g ⊂ gC such that, as a real vector

space, gC = g⊕ ig. This is, in an obvious sense, equivalent to requiring that gC be

the vector-space (or, Lie-algebra) complexification of g. Whenever l + j = n,

sl(n, IR), su(l, j) and sl(n/2, IH) are real forms of sl(n,C), (14.1)

the last one for even n only. Here, by definition, sl(k, IH) consists of those IH-lin-

ear endomorphisms of IHk which are also C-traceless in the sense of Remark 3.2.

Thus, with g = sl(k, IH), and with gC ≈ sl(2k,C) denoting the Lie algebra of all

traceless C-linear endomorphisms of IHk, the (±1)-eigenspace decomposition of

gC under the involution a 7→ −JaJ, for J as in Remark 3.2, reads gC = g ⊕ ig.

(The components a, b ∈ g of any a + ib ∈ gC are indeed C-traceless, since so is

a+ ib, while the C-traces of a and b are real by Remark 3.2.)

The four Lie algebras appearing in (14.1) are subsets of gl(n,C). Any finite

product w of their elements is therefore a complex n× n matrix, and we denote

by trw its matrix trace. Hence, for a, b, w ∈ gl(n,C), one has the inner product

(a, b) as in (3.1), and the traceless part (w)0, with

i) (a, b) = tr ab, ii) (w)0 = w − (trw)Id/n. (14.2)

Given a real form g of an m-dimensional complex vector space gC,

any IR basis e1, . . . , em of g is at the same time a C basis of gC, (14.3)

leading, as in the lines following (7.5), to the corresponding components of

any C (bi)linear mapping from gC valued in C or gC. (14.4)

Remark 14.1. A mapping (14.4) is the unique C-(bi)linear extension of an IR-

valued or a g-valued mapping from g if and only if the former has the same

components as the latter relative to some/any pair of bases as in (14.3). We will

denote both mappings by the same symbol.

Example 14.2. For an IR-linear endomorphism Σ of g, its C-linear extension Σ

to gC, and a pair of bases of type (14.3),

the C trace of Σ : gC→ gC equals the IR trace of Σ : g→ g, (14.5)
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as both traces coincide with Σk
k, where Σej = Σk

j ek. In the case of Lie algebras,

the Killing form of gC is β : gC× gC → C, the C bilinear

extension to gC of the Killing form β : g× g→ IR of g,
(14.6)

since, due to (7.2), (3.1), and (14.5) applied to Σ = (Ad v)Adw, the latter Killing

form arises as the restriction of the former from gC to g. In addition, obviously,

the Lie bracket [ , ] : gC× gC → gC of gC is the unique

C bilinear extension of the Lie bracket [ , ] : g× g→ g.
(14.7)

We could also have derived (14.6) from (14.7) via Remark 14.1, using the compo-

nent formula βjk = Cpj
qCqk

p in (9.6.a) valid for both g and gC.

Let g be a real form of a complex Lie algebra gC. We denote by T C the

second complex symmetric power of the complex dual space of gC, that is, the

analog for gC of the space T associated with g as in (7.1). Our notation is

consistent with the fact that T C may be treated as the complexification of T . In

other words, T can be naturally identified with a real form of T C, so that

T ⊂ T C and T C = T ⊕ iT . (14.8)

Specifically, any τ ∈ T , which is a symmetric bilinear form τ : g × g → IR, is

identified with its C-bilinear extension τ : gC× gC → C. Thus, T ⊂ T C consists

of all symmetric C-bilinear forms τ : gC × gC → C for which τ(v, w) is real

whenever v, w ∈ g (or, equivalently, τjk ∈ IR in a basis of type (14.3)).

Lemma 14.3. For a real Lie algebra g and its complexification gC = g⊕ ig,

(i) g is semisimple if and only if so is gC.

Let g now be semisimple. Then

(ii) the analog for gC of Ω : T → T , given in g by (8.8), is the unique C-linear
extension Ω : T C→ T C of Ω to T C, cf. (14.8),

(iii) the operations { · },~ : T C× T C → T C defined for gC as in (9.1) and the lines
following Lemma 10.1 are the C-bilinear extensions of their counterparts in g.

Proof. By (14.6) and Remark 14.1, both Killing forms have the same components

βjk in bases of type (14.3), which yields (i). Assertions (ii) – (iii) are in turn

immediate from Remark 14.1, applied, instead of a basis e1, . . . , em of g, to the

basis of T = [g∗]�2 formed by suitable symmetric products of the basis of g∗ dual

to e1, . . . , em. The components in question are given by the equality [Ωσ]jk =

Z rs
jk σrs, two lines after (8.9), along with (9.2) and 2(σ~τ)jk = σjsτ

s
k + τjsσ

s
k . �
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15. Traces and Lie subalgebras

Let IF = IR or IF = C. For the linear endomorphism v 7→ uvw of gl(n, IF),

the gl(n, IF) trace of v 7→ uvw equals (tr u)trw, (15.1)

with any fixed u,w ∈ gl(n, IF). In fact, (tr u)trw is the sum of the diagonal terms

of the coefficient matrix uspw
r
q in the component expression (uvw)sq = uspv

p
rw

r
q .

Remark 15.1. Suppose that V is a vector space with dimIFV <∞.

(i) If A(V) ⊂ Ṽ for a linear endomorphism A : V → V and a subspace Ṽ ⊂ V,

then the V-trace of A equals the Ṽ-trace of its restriction to Ṽ.

(ii) Given a linear functional α ∈ V∗, and a vector w ∈ V, one clearly has

tr (α⊗ w) = α(w), where α⊗ w acts on v ∈ V by v 7→ α(v)w.

Remark 15.2. In the next two sections traces of linear endomorphisms A of

sl(n, IF), where IF = IR or IF = C, will be evaluated as follows:

(a) extend A to an endomorphism of gl(n, IF), valued in sl(n, IF),

(b) find the gl(n, IF)-trace of the latter, using either (15.1), or Remark 15.1(ii),

(c) note that, by Remark 15.1(i), this is the same as the sl(n, IF)-trace of A.

Lemma 15.3. If g is one of the four Lie algebras in (14.1), a, b ∈ g, while 〈 , 〉 and ( , )

are the Killing form and the inner product, with (7.2) and (14.2), then 〈a, b〉 = 2n(a, b).

Proof. Let a, b ∈ gl(n, IF), for IF = IR or IF = C. As (Ad a)Ad b sends any

v ∈ gl(n, IF) to v 7→ abv − avb− bva+ vba, its gl(n, IF)-trace equals, from (15.1),

2n(a, b)−2(tr a)tr b. By Remark 15.1(i), if a, b ∈ sl(n, IF), this is also the sl(n, IF)-

trace of (Ad a)Ad b, which proves our claim in the case where g = sl(n, IF).

Our assertion for g = su(l, j) and g = sl(n/2, IH) now follows from (14.6)

applied to either choice of g and to gC = sl(n,C), cf. (14.1). �

16. The special linear and pseudo-unitary Lie algebras

In this and the following sections, (g, IF, ε) will always be one of the triples

(sl(n, IR), IR, 1), (sl(n,C),C, 1), (sl(n,C),C, i), with n ≥ 2,

(su(l, j), IR, i) and, for even n ≥ 2 only, (sl(n/2, IH), IR, 1),
(16.1)

formed by a simple Lie algebra g over IF = IR or IF = C (see (14.1)), the scalar

field IF itself, and a fixed scalar ε ∈ IF, equal to 1 or i. Here j, l are fixed integers

with l ≥ j ≥ 0 and l + j = n. As before, β = 〈 , 〉 denotes the IF-bilinear Killing

form of g, defined by (7.2), so that β ∈ T for the space T in (7.1).

With any a, b ∈ g we associate elements τa, θa,b, µa,b of T , related as in (7.3)

to the IF-linear endomorphisms of g sending each v ∈ g, respectively, to

ε(av + va)0 , ε2[(a, v)b+ (b, v)a]/(2n) and ε2(avb+ bva)0/2, (16.2)

where ( , ) and the traceless part ( )0 are as in (14.2).



Indefinite Einstein metrics 23

Note that the values (16.2) all lie in g due to our choice of ε. In addition,

the operators assigning these values to v are easily seen to be self-adjoint for the

inner product (14.2.i). Their self-adjointness relative to the Killing form β of g

is now immediate from Lemma 15.3. Next, whenever a ∈ g, we set

c = ε(a2)0 , d = ε2(a3)0 , θa = θa,a , µa = µa,a , ξ = ε2(a, a)/n, (16.3)

with (a, a) = tr a2. Thus, in the sense of (16.2) and the lines preceding it,

τa corresponds to v 7→ ε(av + va)0 , β to Id,

θa to v 7→ ε2(a, v)a/n, and µa to v 7→ ε2(ava)0 .
(16.4)

In proofs of some equalities involving θa,b and µa,b we may assume that b = a, as

the dependence of θa,b and µa,b on a, b is bilinear and symmetric. (16.5)

Also, if ξ (in (16.3)) and ε(a, c)/n stand for the corresponding multiples of Id,

i) εa2 = c+ ε−1ξ, ii) ε2a3 = d+ ε(a, c)/n, with (a, c) = tr ac. (16.6)

Using (8.8), where we may set v = w, (8.9.i) and (16.3) – (16.4), the three steps

of Remark 15.2, formula (16.6.i), and then Lemma 15.3, we obtain, for a ∈ g,

n2Ωθa = τc − 2µa + 2ξβ, Ωµa = −2θa , Ωτa = τa , Ωβ = 2β. (16.7)

More precisely, we just proved (16.7) for the first three triples in (16.1). It follows,

however, that (16.7) is satisfied by the other two triples as well. In fact, according

to (14.1), relations (14.6), (14.8) and assertions (ii) – (iii) in Lemma 14.3 hold for

g = su(l, j) or g = sl(n/2, IH), and gC = sl(n,C). Lemma 14.3(ii), combined with

Remark 16.1 below, now shows that the Ω-images of τa, θa,b, µa,b in su(l, j) or

sl(n/2, IH) coincide with their Ω-images in sl(n,C).

Note that, if x, y, z ∈ IF and λ = xτa + n2yθa + zµa, (16.7) yields

(Id − Ω)λ = (n2y + 2z)θa + (2y + z)µa − 2ξyβ − yτc . (16.8)

Remark 16.1. By (14.6), the elements τa, θa,b, µa,b of T C associated with the

triple (sl(n,C),C, i), or (sl(n,C),C, 1), are the unique C-bilinear extensions of

τa, θa,b, µa,b defined for (su(l, j), IR, i) or, respectively, for (sl(n/2, IH), IR, 1). Thus,

τa, θa,b, µa,b lie in the real form T ⊂ T C appearing in (14.8).

17. The curvature spectra of the Lie algebras in (16.1)

Whenever (g, IF, ε) is one of the triples (16.1), n = l + j ≥ 2, and a, b ∈ g,

(i) n〈τa, τa〉 = 2ε2(n2− 4)(a, a), with 〈 , 〉, τa, ( , ) as in (8.1.i), (16.4), (14.2.i),

(ii) for n ≥ 3 the operator g 3 a 7→ τa ∈ T is injective,

(iii) for n = 2 one has τa = 0 and 2θa,b = µa,b + ε2(a, b)β/2, cf. (16.2) and (7.2).
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In fact, if g = sl(n, IF), (i) follows from the three steps of Remark 15.2, as 〈τa, τa〉
is the trace of the endomorphism of g sending v to ε2(a(av+va)0+(av+va)0a)0,

that is, to ε2 times a2v+va2+2ava−4[(a, v)a+(a2, v)Id]/n. For the other choices

of g, (i) is obvious from (14.1) and Remark 16.1, combined with (14.5) since, again,

〈τa, τa〉 equals the trace of the square of the endomorphism corresponding to τa
in (16.4). Next, the operator in (ii) is injective: by (i), it pulls some symmetric

bilinear form in T back to the nondegenerate form ( , ) in g, cf. Lemma 15.3.

Finally, proving (iii) amounts, for reasons of symmetry as in (16.5), to showing

that a2 is a multiple of Id and 2θa = µa + ε2(a, a)β/2. This is easily verified if

a is the diagonal matrix diag(1,−1). The case of arbitrary a is now immediate

as matrices conjugate to multiples of diag(1,−1) form a dense subset of sl(2, IF),

consisting of all traceless matrices with two distinct eigenvalues.

The next lemma, proved here for the reader’s convenience, may also be easily

derived from a result of Meyberg [14], describing the spectrum of Ω in complex

simple Lie algebras. For more details, see [7, Theorem 4.1 and the Appendix].

Lemma 17.1. If (g, IF, ε) is one of the triples (16.1) and n = l + j ≥ 2, then the
endomorphism Ω of T = [g∗]�2defined by (8.8) is diagonalizable and has the following
ordered system spec[Ω] of eigenvalues and mult[Ω] of the corresponding multiplicities.

(a) spec[Ω] = (−1, 2) and mult[Ω] = (5, 1), when n = 2,
(b) spec[Ω] = (−2/3, 1, 2) and mult[Ω] = (27, 8, 1) when n = 3,
(c) spec[Ω] = (−2/n, 2/n, 1, 2) and mult[Ω] = (d−, d+, n2− 1, 1) for n ≥ 4, where

d± = n2(n∓ 3)(n± 1)/4.

Furthermore, with the Killing form β, and τa as in (16.4),

(d) for n ≥ 3, the assignment a 7→ τa is a linear isomorphism g→ Ker (Ω− Id),
(e) Ker (Ω− 2 Id) = IFβ,
(f) Ker (Ω− Id) is a nondegenerate subspace of T , that is, (12.4) holds.

Proof. We define ι±a,b ∈ T by ι±a,b = nθa,b∓µa,b−(n∓2)−1τe−[n(n∓1)]−1ε2(a, b)β,

where e = ε(ab+ ba)0/2. (Notation of (16.2) – (16.4); if n = 2, only ι−a,b is defined

and, from (iii) above, ι−a,b = 4θa,b − ε2(a, b)β.) Now (16.5), (16.3) and (16.7) give

n2Ωθa,b = τe − 2µa,b + 2ε2(a, b)β/n and Ωµa,b = −2θa,b, so that

Ωι±a,b = ±2ι±a,b/n, Ωτe = τe , Ωβ = 2β for n ≥ 3,

Ωι−a,b = −ι−a,b and Ωβ = 2β for n = 2.
(17.1)

The elements θa,b span T = [g∗]�2, since θa,b is a multiple of the symmetric

product (a, · )�(b, · ). As 2nθa,b = ι+a,b+ι−a,b+2n(n2−4)−1τe+2(n2−1)−1ε2(a, b)β

(if n ≥ 3) or 4θa,b = ι−a,b + ε2(a, b)β (if n = 2), (17.1) yields

T = V++ V−+ V + IFβ for n ≥ 3, T = V−+ IFβ for n = 2,

V± ⊂ Ker (Ω∓ 2 Id/n), V ⊂ Ker (Ω− Id), IFβ ⊂ Ker (Ω− 2 Id),
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where V± (or, V) is the subspace of T spanned by all ι±a,b (or, respectively, by all

τa). Since the eigenvalues in question are mutually distinct, Ω is diagonalizable

and the above inclusions are equalities. Now (d) – (f) are obvious from (ii) above

and the second part of (3.6), while tr Ω = 1 − n2, cf. (8.9.iii) and (14.1), which

uniquely determines the correct multiplicities (with d− = 0 for n = 3). �

Remark 17.2. Lemmas 17.1 and 13.1(b)-(c) easily imply that, for the underlying

real Lie algebra gIR of g = sl(n,C), the operator ΩIR (notation of (13.2)) has

the eigenvalues listed in (a) – (c) above, with twice the multiplicities of (a) – (c),

plus the eigenvalue 0 with the multiplicity (n2− 1)2. By Lemma 13.1(a)-(c), the

eigenspaces for the eigenvalues 2 and 1 are IR-isomorphic images of those in (e)

and (f) above under the operator σ 7→ Reσ.

Remark 17.3. Let (g, IF, ε) be one of the triples (16.1), with n = l+ j ≥ 3. Then,

by (12.3) and Lemma 17.1(d), the composite operator

a 7→ τa = τ 7→ Dτ is a linear isomorphism g→ Ker (Ω− Id)→ Ker ∆.

This is also true for g = sl(n,C) treated as a real Lie algebra gIR, with Dτa
denoting the D-gradient, in the complex Lie algebra g, of the (complex-bilinear)

symmetric tensor τa. In fact, Ker ∆IR = Ker ∆ by Remark 13.3(vi).

Remark 17.4. The surjective operator S → g, mentioned immediately after (2.15),

is obtained as the composite of the projection Π : S → Ker ∆ in (12.6.b) followed

by the inverse Ker ∆→ g of the isomorphism in Remark 17.3.

18. Multiplication tables

In this section (g, IF, ε) is always one of the triples (16.1), with n = l+ j ≥ 3, and

a denotes an arbitrary element of g. We use the notation of (16.2) – (16.4).

For ~ and { · } defined in the lines following Lemma 10.1 and in (9.4),

τa~τa = τc + 2(ξβ + µa − 2θa), θa~ θa = ξθa ,

µa~µa = ξτc + ξ2β + µc − θc , τa~ θa = 2θa,c ,

τa~µa = ξτa + 2µa,c − 2θa,c , θa~µa = θa,d ,

β~τa = τa , β~θa = θa , β~µa = µa ,

(18.1)

as one easily verifies with the aid of (16.2) – (16.4) and (16.6). Also (see below),

{τa·τa} = ξβ + µa − 2θa , {µa·µa} = ξµa − θc ,
2{τa·µa} = ξτa − 4θa,c , {θa·θa} = 0,

2n2{τa·θa} = τd − ξτa − 2µa,c + 2ε2(a, c)β/n,

n2{θa·µa} = µa,d − ξτc − ξ2β − µc + ε2(a, c)τa/(2n).

(18.2)

If g = sl(n, IF), (18.2) is immediate from (16.2) – (16.4) and (16.6). Specifi-

cally, we use the three steps of Remark 15.2 and Lemma 15.3. Remark 16.1 and



26 A. Derdzinski and Ś. R. Gal

Lemma 14.3(iii) now show that (18.2) holds for the remaining triples (su(l, j), IR, i)

and (sl(n/2, IH), IR, 1) in (16.1) as well.

Furthermore, (16.4) and (8.7.a) trivially imply that, for all v ∈ g,

[Dτa]vv = ε[a, v2 ], n[Dθa]vv = ε2[(a, v)a, v], [Dµa]vv = ε2[a, vav]. (18.3)

From (18.3), (16.3) – (16.4), (8.7.b) and (16.6.i) one in turn obtains

τa(Dτa) = Dτc , θa(Dτa) = θa(Dθa) = θa(Dµa) = 0,

n[τa(Dθa)]vv = ε2[(a, v)c, v], [τa(Dµa)]vv = ε2[c, vav],

[µa(Dτa) + D(ξτa)]vv = ε2(cv2a− av2c),
n[µa(Dθa) + D(ξθa)]vv = ε3(a, v)(cva− avc),
[µa(Dµa) + D(ξµa)]vv = ε3(cvava− avavc).

(18.4)

Lemma 18.1. For (g, IF, ε) as in (16.1), n = l+j ≥ 3, setting χa = 2µa−n2θa+2ξβ+

(n2+ 4)(n2− 4)−1τc and φa = 2n2θa−n2µa− 4ξβ− 4n2(n2− 4)−1τc , in the notation
of (8.8) and (16.2) – (16.4), we have, if x, y, z ∈ IF and λ = xτa + n2yθa + zµa,

(i) (n2− 4)θa = τc + (Ω− Id)χa and (n2− 4)µa = −2τc + (Ω− Id)φa,
(ii) χa, φa ∈ (Ω− Id)(T ),
(iii) Πτa = τa , (n2− 4)Πθa = τc , (n2− 4)Πµa = −2τc , Πβ = 0,
(iv) (n2− 4)(Πλ− τa) = (n2− 4)(x− 1)τa + (n2y − 2z)τc ,

Π being the direct-sum projection in (12.6.a), well-defined in view of Lemma 17.1(f).

Proof. Assertion (i) is a trivial consequence of (16.7), while (iii) is immediate from

(i) and (16.7), as Ω : T → T is self-adjoint (Lemma 11.2(ii)). Now (iv) is obvious,

and (iii) gives Πχa = Πφa = 0, proving (ii). �

19. Some relevant algebraic sets in the nine-dimensional space

Equations (19.1) – (19.2) discussed below, depending on an integer parameter n,

are quite important in our argument. Namely, as we will show in the proof of

Lemma 25.1, for the Lie algebras g appearing in (16.1) with n = l + j ≥ 3, any

real-analytic curve of weakly-Einstein connections emanating from the standard

connection D is naturally mapped into the solution set of (19.1) – (19.2) in IF9, in

such a way that the image of D is the point (19.3). The rationality conclusion of

Lemma 24.1 then implies that the latter mapping must be constant. This means

that the real-analytic curves in question all lie in a specific family C of Einstein

connections, described by formula (22.3) in Section 22.
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Lemma 19.1. For IF = IR or IF = C and any integer n ≥ 3, the conditions

i) f − (2y + x2 + ξz2)ξ = 0,

ii) U + (y + xp)h = 0,

iii) (n2− 4)(x− 1) + (n2y − 2z)h = 0,

iv) V − n2y − 2z = 0,

v) W− 2y − z = 0,

vi) p+ x− 2ξxz − hξz2− hy = 0,

vii) q + n2(L+ 2)y − V + 2z = 0,

viii) r + (L+ 2)z −W+ 2y = 0,

(19.1)

imposed on the nonuple (ξ, f, h, x, y, z, p, q, r) ∈ IF9, where we have set

L = f + hp− ξr,
U = 2ξxz + hξz2− ξxr + xf ,

V = n2Ly + 2n2(2ξz + hx+ h2z)y

+ n4ξy2− 2x2 + 2(ξz − hx)z,

W = Lz + x2 + ξz2 + h2z2 + 2hxz,

(19.2)

constitute a system of eight polynomial equations in nine unknowns.
(a) A solution of (19.1), for which (L,U, V,W ) = (0, 0,−2, 1), is given by

ξ = f = h = 0, x = −p = 1, q = −n2y =
4n2

n2− 4
, z = −r =

n2+ 4

n2− 4
. (19.3)

(b) Solutions of (19.1) lying near (19.3) form the graph of an IF-analytic curve

ξ 7→ (f, h, x, y, z, p, q, r) ∈ IF8, with dh/dξ = 4 at ξ = 0, (19.4)

where ξ ranges over a neighborhood of 0 in IF.

Proof. First, (a) is obvious. Secondly, one easily verifies that

1 0 0 0 0 0 0 0

∗ n2/(4−n2) 0 0 0 0 0 0

∗ ∗ n2− 4 0 0 0 0 0

∗ ∗ ∗ −n2 −2 0 0 0

∗ ∗ ∗ −2 −1 0 0 0

∗ ∗ ∗ ∗ ∗ 1 0 0

∗ ∗ ∗ ∗ ∗ ∗ 1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 1


(19.5)

is the Jacobian matrix at the point (19.3) of the mapping IF8 → IF8 sending

(f, h, x, y, z, p, q, r) to the octuple formed by the left-hand sides in (19.1), in which

ξ has been replaced by 0. (Each row of (19.5) thus represents the differential of the

corresponding left-hand side written as a combination of df, dh, dx, dy, dz, dp, dq

and dr, while asterisks stand for various irrelevant entries.) Replacing the fourth

row in (19.5) by the fourth row minus twice the fifth row, we obtain a triangular

matrix with nonzero diagonal entries, so that (19.5) is nonsigular and the existence



28 A. Derdzinski and Ś. R. Gal

of the curve required in (b), except for the specific value of dh/dξ, is immediate

from the implicit mapping theorem.

To evaluate dh/dξ at ξ = 0, we may treat f, h, x, y, z, p, q and r, restricted

to the graph of the curve in (19.4), as functions of ξ. Applying ( , )′ = d/dξ

to (19.1.i), (19.1.ii) and the second line in (19.2), one sees that, at the point

(ξ, f, h, x, y, z, p, q, r) given by (19.3), f ′ = 2y + 1, U ′ = (1 − y)h′, and U ′ =

2z − r + f ′. (We have used the fact that ξ = h = f = 0 and x = −p = 1.) Thus,

(1− y)h′= U ′= 2z − r + f ′= 2z − r + 2y + 1, and so h′= 4. �

Remark 19.2. For later reference, note that, by (19.1.iv) – (19.1.v),

V−2W = (n2−4)y, n2W−2V = (n2−4)z, (n2+4)V−4n2W = (n2−4)(n2y−2z).

20. Negligible polynomials

Given one of the triples (16.1), for n = l + j ≥ 3, and a vector space V with

dimIFV <∞, we define a V-valued negligible polynomial function of the variables

a, b ∈ g and (ξ, f, h, x, y, z, p, q, r) ∈ IF9, (20.1)

to be any mapping g×g× IF9 → V expressible as a sum of terms, each of which is

multilinear in (a, b, . . . ), or (b, b, . . . ), or (ξ, b, . . . ), or (h, b, . . . ), with the dots

standing for any finite number of arguments from the list a, b, ξ, f, h, x, y, z, p, q, r,

possibly with repetitions. In the case of two mappings E, Ẽ : g× g× IF9 → V,

we write E ≈ Ẽ when E − Ẽ is negligible. (20.2)

Lemma 20.1. For E, Ẽ : g× g× IF9 → V as above, suppose that E ≈ Ẽ.

(i) We have E = Ẽ at any (a, b, ξ, f, h, x, y, z, p, q, r) with b = 0.
(ii) Let (a, b, ξ, f, h, x, y, z, p, q, r) be C∞ functions of a variable t ∈ [0, δ), where

δ ∈ (0,∞). If a(0) = 0 as well as ξ(0) = h(0) = 0 and jk−1[b] = 0 for an
integer k ≥ 1, in the notation of (3.9), then jk[E ] = jk[Ẽ ].

Proof. This is obvious from the definition of negligibility and the Leibniz rule. �

In our discussion, negligible polynomials arise as follows. Choosing (g, IF, ε)

to be one of the triples (16.1), with n = l+j ≥ 3, and using the notation of (16.2) –

(16.4), we introduce the variables (20.1) consisting of an arbitrary element a of

g, the coefficients f, x, y, z, p, q, r of two arbitrary linear combinations

i) λ = xτa + n2yθa + zµa , ii) ψ = pτa + qθa + rµa + fβ , (20.3)

the scalar ξ = ε2(a, a)/n as in (16.3), where (a, a) = tr a2, an additional scalar

variable h ∈ IF, and b ∈ g given by

b = c − ha, so that c = ha + b, (20.4)

where c = ε(a2)0 stands for the traceless part of εa2, as in (14.2.ii) and (16.3).
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Expressions such as λ and ψ in (20.3), along with their Ω-images, ~-prod-

ucts and { · }-products (which we may evaluate using (16.7), (18.1) and (18.2)),

then become functions of the variables (20.1), and so do c and d in (16.3). Due

to functional-dependence relations among our variables (20.1), there is a built-

in ambiguity of such a representation, which we do not attempt to remove. For

instance, one may treat (a, a) as a function of a alone, or write it as nε−2ξ.

Similarly, c = ε(a2)0 equals both εa2− ε−1ξ and ha+ b, cf. (16.6.i) and (20.4).

With ≈ and λ as in (20.2) and (20.3.i), we now have

i) τc~λ ≈ hτa~λ, hτc ≈ h2τa , ξτc ≈ ξhτa , ε2(a, c)/n ≈ ξh,
ii) µc ≈ h2µa , θc ≈ h2θa , θa,c ≈ hθa , µa,c ≈ hµa .

(20.5)

Namely, (20.5.i) is obvious as τc−hτa = τb by (20.4), and (a, c)−h(a, a) = (a, b),

while (20.5.ii) follows from (20.4) and (16.3). Furthermore,

d ≈ (h2 + ξ)a. (20.6)

In fact, (16.6.i) implies that ε2a3 = ε(εa2)a = εca+ ξa and, as a consequence of

(16.6.ii), d = εca+ ξa− ε(a, c)/n. Replacing c here by ha+ b, and the resulting

occurrence of εa2 by ha+ b+ ε−1ξ, which is allowed due to (16.6.i) and (20.4), we

see that d− (h2 + ξ)a = εba+ hb− ε(a, b)/n due to the equality ξ = ε2(a, a)/n,

which yields (20.6). Now (20.6) gives

τd ≈ (h2 + ξ)τa , θa,d ≈ (h2 + ξ)θa , µa,d ≈ (h2 + ξ)µa . (20.7)

Lemma 20.2. If (g, IF, ε) is one of the triples (16.1), and n = l + j ≥ 3, then

τa~τa = τc + 2(ξβ + µa − 2θa), θa~ θa = ξθa ,

µa~µa ≈ ξhτa + ξ2β + h2(µa − θa), τa~ θa ≈ 2hθa ,

τa~µa ≈ ξτa + 2h(µa − θa), θa~µa ≈ (h2 + ξ)θa ,

β~τa = τa , β~θa = θa , β~µa = µa ,

with the dependence on the variables (20.1) described above. Similarly,

{τa·τa} = ξβ + µa − 2θa , {µa·µa} ≈ ξµa − h2θa ,
2{τa·µa} ≈ ξτa − 4hθa , {θa·θa} = 0,

2n2{τa·θa} ≈ h2τa − 2hµa + 2ξhβ,

n2{θa·µa} ≈ ξµa − ξ2β − ξhτa/2.

Proof. This is immediate from (20.5) – (20.7) combined with (18.1) – (18.2). �

Lemma 20.3. Under the hypotheses of Lemma 20.2, for L,U, V,W given by (19.2),

4{(Dλ)·(Dλ)} ≈ (U −Lx+ hxp)τa + (V − n2Ly)θa + (W−Lz)µa + (x2 + ξz2)ξβ,

where λ = xτa + n2yθa + zµa, as in (20.3).

Proof. The second part of Lemma 20.2 yields

{λ·λ} ≈ (h2xy + ξxz − hξyz)τa − [2x2 + (hz + 4x)hz]θa
+ (x2 + ξz2− 2hxy + 2ξyz)µa + (x2 + 2hxy − 2ξyz)ξβ.
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By (16.8), (Id − Ω)λ = (n2y + 2z)θa + (2y + z)µa − 2ξyβ − yτc. Replacing yτc
with hyτa, cf. (20.5.i), we get, from (20.5.i) and the first part of Lemma 20.2,

[(Id− Ω)λ]~λ ≈ (ξxz + hξyz − h2xy + hξz2)τa
+ [V − n2Ly + 2x2 + (hz + 4x)hz]θa
+ [h2z2 + 2(hxy + hxz − ξyz)]µa + (ξz2 + 2ξyz − 2hxy)ξβ .

In view of (10.5.c), 4{(Dλ)·(Dλ)} = {λ·λ}+ [(Id− Ω)λ]~λ, as required. �

21. The first crucial step in the argument

The following result will be used both to verify that the family C defined by

formula (22.3) of Section 22 actually consists of Einstein connections, and to prove,

later in Section 25, that C contains every real-analytic curve of weakly-Einstein

connections emanating from D.

Theorem 21.1. With the assumptions and notations as in Lemmas 20.2 and 20.3,

4D{(Dλ)·(Dλ)}+ (Dλ)ψ ≈ D(Uτa + hxpτa + Vθa +Wµa + xpτb ), (21.1)

while for M = ∆(Dλ) + 4D{(Dλ)·(Dλ)}+ (Dλ)ψ we have

M ≈ D[Uτa + (y + xp)hτa + (y + xp)τb ]

+ D[(V − n2y − 2z)θa + (W− 2y − z)µa],
(21.2)

and, setting ζ = ψ − 8{D·(Dλ)} − 4{(Dλ)·(Dλ)}, we obtain

ζ ≈ (p+ x− 2ξxz − hξz2− hy)τa + [q + n2(L+ 2)y − V + 2z]θa
+ [r + (L+ 2)z −W+ 2y]µa + [f − (2y + x2 + ξz2)ξ]β − yτb .

(21.3)

Proof. Replacing c in (18.4) with ha+ b (see (20.4)) we have, from (18.3),

τa(Dτa) = D(hτa) + Dτb , τa(Dθa) ≈ D(hθa), τa(Dµa) ≈ D(hµa),

θa(Dτa) = θa(Dθa) = θa(Dµa) = 0,

µa(Dτa) ≈ −D(ξτa), µa(Dθa) ≈ −D(ξθa), µa(Dµa) ≈ −D(ξµa),

β(Dτa) = Dτa , β(Dθa) = Dθa , β(Dµa) = Dµa ,

(21.4)

the last line being obvious from (8.4) since σ = β corresponds via (7.3) to Σ = Id.

If one were to treat ≈ as equality ignore the “correction term” Dτb , the D-images

of τa, θa, µa, and of their combination λ, would lie in the eigenspace, for the eigen-

value h, 0,−ξ or 1, of the operator S → S sending S, respectively, to τaS, θaS, µaS

or βS. Thus, up to such an equivalence, Dλ lies in the eigenspace of the operator

S 7→ ψS = (pτa +qθa +rµa +fβ)S for the combined eigenvalue L given by (19.2).

Restoring the correction term, we now have ψ(Dλ) ≈ D(Lλ+ xpτb ), and so

(Dλ)ψ ≈ D(Lλ+ xpτb ),

since Lemma 10.1 and its proof remain valid for ≈ equivalences instead of equal-

ities. Hence (21.1) is immediate from Lemma 20.3, with Dβ = 0 by (9.6.c).

Relation (21.2) is in turn a trivial consequence of (21.1) and formula (12.1) for
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σ = λ, combined with (16.8) and (20.4). Finally, as (10.5.b) yields −8{D·(Dλ)} =

λ+(Id− Ω)λ, (21.3) easily follows from (20.3), (20.4), (16.8) and Lemma 20.3. �

Remark 21.2. The polynomial mappings J,M of Section 2 are defined as follows.

For v = (ξ, f, h, x, y, z, p, q, r) ∈ IF9, the first component of J(v) is 0, and the

other eight components are the left-hand sides of (i), (iii), (ii) and (iv) – (viii) in

(19.1), with (19.2), while M(v) = (0, 0, 0, y + xp, 0, 0,−y, 0, 0).

22. The main results

Given a real (or, complex) Lie group G with the Lie algebra g, we again refer

to the Levi-Civita connections of left-invariant Einstein metrics on G as Einstein

connections in g. The metrics themselves are pseudo-Riemannian or, respectively,

holomorphic; β and D = [ , ]/2 stand for the Killing form, with (7.2), and its Levi-

Civita connection; and Dλ is defined as in (8.3) or, equivalently, (8.7.a). The more

general classes of unimodular torsion-free connections with parallel Ricci tensor,

and weakly-Einstein connections, were introduced in Section 11.

Whenever (g, IF, ε) is one of the triples (16.1), with n = l+j, while ξ, h ∈ IF,

the scalar ε−1ξ denotes a multiple of Id, and a ∈ g, one clearly has

εa2 = ha+ ε−1ξ (22.1)

if and only if ξ = ε2(a, a)/n and c = ha, where c = ε(a2)0. (Notation of (16.3).)

Theorem 22.1. Let (g, IF, ε) be one of (16.1), n = l + j ≥ 3. If λ, ψ are given by
(20.3) for ξ, f, h, x, y, z, p, q, r ∈ IF satisfying (19.1) with (19.2), except (19.1.iii), while
a ∈ g and (22.1) holds, then ∇= D + Dλ is a weakly-Einstein, as well as unimodular,
torsion-free connection in g with the ∇-parallel Ricci tensor ρ∇= −(β + ψ)/4.

Proof. By (20.4), the assumption (22.1), that is, c = ha, gives b = 0, and so, in

view of Lemma 20.1(i), ≈ equivalences are actually equalities. Applied to (21.2)

and (21.3), this yields M = 0 and ζ = 0, since the right-hand sides of (21.2) and

(21.3) vanish as a consequence of (19.1) (while (19.1.iii) is not used). Combined

with the definitions of M and ζ in Theorem 21.1, the relations M = 0 and ζ = 0

state that, by (8.6), condition (a) of Lemma 11.1 holds for S = Dλ and σ = ψ.

Since (b) in Lemma 11.1 is equivalent to (a), our claim follows, cf. (11.1). �

Under the assumption c = ha (that is, (22.1)) made in Theorem 22.1,

(19.1.iii) holds if and only if Πλ = τa , where λ = xτa + n2yθa + zµa , (22.2)

as one sees using Lemma 18.1(iv). The dependence of τa (or, θa and µa) on a is,

by (16.4), homogeneous linear (or, respectively, quadratic). Consequently, λ and

ψ in (20.3), along with ∇ and ρ∇, will remain unchanged if we replace a with a

nonzero multiple, and at the same time suitably rescale f, x, y, z, p, q and r. Thus,

(19.1.iii) is a normalizing condition, which can always be realized by rescaling, as



32 A. Derdzinski and Ś. R. Gal

long as Πλ 6= 0 (or, equivalently, (n2− 4)x+ (n2y − 2z)h 6= 0), while the system

(19.1) without equation (19.1.iii) is rescaling-invariant.

In terms of the inclusions E ⊂ U ⊂ W, cf. (11.1), all connections obtained in

Theorem 22.1 lie in U , and hence in W but, as shown below in Section 29, they

need not be Einstein connections (elements of E).

However, Einstein connections do arise in a special case of Theorem 22.1,

which is the first part of the main result of this paper, stated as follows.

Theorem 22.2. Suppose that (g, IF, ε) is one of the triples (16.1):

(sl(n, IR), IR, 1), (sl(n,C),C, 1), (sl(n,C),C, i), (su(l, j), IR, i), (sl(n/2, IH), IR, 1),

with n = l + j ≥ 3, and τa, θa, µa are defined by (16.4). Then the set

C = D + L for L = {Dηa : a ∈ g and a2 = 0},
where ηa = τa − (n2− 4)−1[4n2θa − (n2+ 4)µa],

(22.3)

consists of Einstein connections in g. If β denotes the Killing form, with (7.2),

(i) every ∇ ∈ C has the nondegenerate ∇-parallel Ricci tensor ρ∇= (ηa− β)/4,
(ii) the assignment a 7→ D + Dηa maps P = {a ∈ g : a2 = 0} bijectively onto C,
(iii) the inverse of the bijection in (ii) is ∇ 7→ a for a ∈ g uniquely characterized by

Π(∇−D) = Dτa, with Π as in (12.6.b).

Finally, for the set C in (22.3), and W given by (11.1),

(iv) C is an algebraic set in Y = [g∗]⊗2⊗ g, and hence a closed subset of Y ,
(v) C is relatively open in the set E of all Einstein connections, and in W ,

(vi) C forms a connected component of both E and W ,
(vii) dimIFC = [n2/2] for g = sl(n, IF), while dimIRC = 2lj when g = su(l, j), and

dimIRC = 4[n2/8] if g = sl(n/2, IH),
(viii) for the three choices of g in (vii), C is a union of [n/2]+1, or of (j+1)(j+2)/2,

or, respectively, of [n/4] + 1 adjoint-action orbits.

Explicitly, for ∇= D + Dηa and v, w ∈ g, we have

2∇vw = [v, w] + ε[a, vw + wv + Ea
vw], where

(n2− 4)Ea
vw = (n2+ 4)ε(vaw + wav) − 4nε(tr av)w − 4nε(tr aw)v.

(22.4)

Theorem 22.3. A fixed positive-definite multiple of the Killing form is isolated in the set
of suitably normalized left-invariant Riemannian Einstein metrics on SU(n), n ≥ 3.

Theorem 22.3 settles a rather narrow special case of Böhm, Wang and Ziller’s

Finiteness Conjecture [4, p. 683].

It is not known whether the Killing form of SU(n), for n ≥ 3, represents an

isolated point of the moduli space of all Riemannian Einstein metrics on SU(n)

modulo diffeomorphisms and scaling. Cf. [10, Theorem 1.2].

Theorem 22.4. The conclusions of Theorem 22.2 remain valid for sl(n,C) treated as a
real Lie algebra, except that the the formula in (i) now reads ρ∇= 2 Re (ηa− β)/4.
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In other words, C is a connected component of the set of all real Einstein connections
in sl(n,C), and similarly for weakly-Einstein connections. In particular, all weakly-Ein-
stein connections in the underlying real Lie algebra of sl(n,C), sufficiently close to D,
are necessarily holomorphic, that is, constitute C-bilinear mappings g× g→ g.

The conclusion in the final paragraph of the Introduction easily follows from

Theorem 22.4. See also Remark 13.3.

The proof of Theorem 22.2 will be given later, in Sections 23 and 28. For

proofs of Theorems 22.3 and 22.4, see Sections 26 and 28.

23. Proof of Theorem 22.2, first part

In this section we verify all claims made in Theorem 22.2 except (v) – (viii).

The hypotheses of Theorem 22.1 are clearly satisfied by any a ∈ g such that

a2 = 0 and the nonuple (ξ, f, h, x, y, z, p, q, r) with (19.3). Since (20.3) then yields

λ = −ψ = ηa, Theorem 22.1 implies that C with (22.3) consists of torsion-free

connections ∇ having the ∇-parallel Ricci tensor given by the formula in (i).

As a2 = 0 and ξ = h = 0, (16.3) and (20.4) yield c = b = 0. According to

Lemma 20.1(i), ≈ equivalences in the first part of Lemma 20.2 now become equal-

ities: τa~τa = 2(µa − 2θa) and θa~θa = µa~µa = τa~θa = τa~µa = θa~µa = 0.

All three-factor ~-products of linear combinations of τa, θa, µa must therefore van-

ish. In particular, Σ3 = 0 for the endomorphism Σ of g corresponding to σ = ηa
via (7.3), and so 0 is the only eigenvalue of Σ. Consequently, −1 is the only eigen-

value of Σ−Id, and the Ricci tensor ρ∇= (ηa−β)/4 is nondegenerate, as required

in (i). Since ρ∇ is ∇-parallel, ∇ is its Levi-Civita connection (Remark 5.2). Thus,

ρ∇ is an Einstein metric, which shows that C consists of Einstein connections.

Let ∇ ∈ C. As (19.1.iii) holds, (22.2) yields Πηa = τa and so, from Re-

mark 12.2, Π(Dηa) = Dτa. (Again, since ξ, f, h, x, y, z, p, q and r are given by

(19.3), λ = xτa + n2yθa + zµa coincides with ηa.) This proves assertions (ii) –

(iii): ∇ ∈ Y = [g∗]⊗2⊗ g is an element of C if and only if

∇= D + Dηa and a2 = 0, (23.1)

where a ∈ g is uniquely characterized by Π(∇− D) = Dτa, that is, by being the

image of Π(∇−D) under the inverse of the isomorphism in Remark 17.3.

Now (iv) follows as well, since (23.1) is a system of (nonhomogeneous) qua-

dratic equations imposed on ∇.

Finally, the explicit expression (22.4) is immediate from (7.4), (18.3) com-

bined with symmetry of Dηa (due to (8.3) applied to ∇= D), and (3.1).

24. The rationality condition

The use of Theorem 22.1 to construct examples of weakly-Einstein connections

other than D requires not just finding ξ, f, h, x, y, z, p, q, r ∈ IF that satisfy (19.1),
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but also realizing the assumption (22.1) with a 6= 0. This leads to the following

additional restriction.

Lemma 24.1. If (g, IF, ε) are as in (16.1) and n = l+ j ≥ 3, while ξ, h ∈ IF and there
exists a ∈ gr {0} satisfying (22.1), then

n+n−h2 = (n+− n−)2ξ for some integers n±≥ 1 with n++ n− = n. (24.1)

Proof. For a treated as a complex matrix, (22.1) gives (εa−h/2)2 = ω2, where ω

is a complex square root of ξ+ h2/4. We may assume that ω 6= 0, since otherwise

εa−h/2 is nilpotent, and therefore traceless, giving h = 0, and ξ = ε2(a, a)/n = 0,

which implies (24.1). Now Cn is the direct sum of Ker (εa∓ ω − h/2), the eigen-

spaces of a. Their dimensions n± are positive, or else a 6= 0 would be a traceless

multiple of Id. Also, 0 = tr εa = n+(ω+h/2)−n−(ω−h/2) = (n+− n−)ω+nh/2,

that is, ω = nh/[2(n−− n+)]. As ω2 = ξ + h2/4, this yields ξ + h2/4 = ω2 =

n2h2/[2(n+− n−)]2, completing the proof. �

25. Real-analytic curves through 0 in H−1(0)

As before, in this section (g, IF, ε) is one of the triples (16.1), n = l + j ≥ 3,

and T ,S are the spaces (7.1), while H : S → S is given by (11.2.i). Recall that

torsion-free connections ∇ in g form the affine space D + S, and so ∇= D + S,

where S : g× g→ g is IF-bilinear and symmetric.

The following lemma provides the second crucial step in our argument: the

conclusion that, for the sets C and W appearing in (22.3) and (11.1), C contains

all real-analytic curves in W, emanating from D.

Lemma 25.1. Every real-analytic curve [0, δ) 3 t 7→ D + S(t) ∈ D + S, consisting of
left-invariant torsion-free connections in g with H(S(t)) = 0 and S(0) = 0, lies entirely
in the set C = D + L of Einstein connections, defined by (22.3). This remains true for

the underlying real Lie algebra gIR of g = sl(n,C), (25.1)

with C-bilinear Dηa in (22.3), even though S(t) are only assumed IR-bilinear.

Proof. For such a curve t 7→ S(t), let σ = σ(t) ∈ T and a = a(t) ∈ g be defined

by (11.3.b) and ΠS = Dτa, where S = S(t) and Π is the projection (12.6.b).

(See Remark 17.3.) Besides S, σ and a, we introduce another curve parametrized

by t ∈ [0, δ), namely, c = c(t) ∈ g, with (16.3), plus nine IF-valued real-analytic

functions of t, which are ξ = ε2(a, a)/n, for (a, a) = tr a2, and f, h, x, y, z, p, q, r,

depending on ξ (and hence on t, with smaller δ) via (19.4). We also use λ = λ(t)

and ψ = ψ(t) given by (20.3), with our f, h, x, y, z, p, q, r and a = a(t). For all t,

i) −∆S = 4D{S·S} + Sσ,

ii) σ = 8{D·S} + 4{S·S},
iii) S − Dλ ∈ ∆(S).

(25.2)
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In fact, as H(S(t)) = 0, (11.6) gives (25.2.i-ii). Our ξ, f, h, x, y, z, p, q, r satisfy

(19.1), including (19.1.iii), so that, from (22.2), Πλ = τa, and hence Π(Dλ) = Dτa
(see Remark 12.2). However, our choice of a is characterized by ΠS = Dτa. Thus,

Π(S−Dλ) = 0, which yields (25.2.iii).

We now proceed to show that, for b = c− ha, at every t ∈ [0, δ),

i) b = 0, ii) S = Dλ, iii) σ = ψ. (25.3)

[In case (25.1), S = S(t) and σ are IR-bilinear, and (25.2) needs to be rewritten

so as to use the notation of (13.2). However, a ∈ g = sl(n,C), and ξ (equal to

ε2(a, a)/n), as well as f, h, x, y, z, p, q, r are complex numbers. Consequently, λ, ψ

are C-bilinear (since so are their ingredients τa, θa, µa, β), and (25.3.iii) must be

replaced with σ = 2 Re ψ.]

To prove (25.3), we establish, by induction on k ≥ 0, the equalities

i) jk[b] = 0, ii) jk[S] = jk[Dλ], iii) jk[σ] = jk[ψ] (25.4)

of k-jets at t = 0 (notation of (3.9)). First, our “initial condition” S(0) = 0 and

the above definitions of a, c, σ, λ, ψ, ξ and h give, by (19.3),

S(0) = 0, a(0) = c(0) = 0, σ(0) = λ(0) = ψ(0) = 0, ξ(0) = h(0) = 0. (25.5)

Thus, (25.4) holds for k = 0. Assume now that k ≥ 1 and

i) jk−1[b] = 0, ii) jk−1[S] = jk−1[Dλ], iii) jk−1[σ] = jk−1[ψ]. (25.6)

As S(0) = 0 and σ(0) = 0 (see (25.5)), combining (3.8), for B(S, S̃) = {S · S̃} or

B(S, σ) = Sσ, with (25.6.ii) – (25.6.iii), we obtain

jk[{S·S}] = jk[{(Dλ)·(Dλ)}], jk[Sσ] = jk[(Dλ)ψ]. (25.7)

However, by Lemma 20.1(ii), (25.5) and (25.6.i), the ≈ equivalences in Theo-

rem 21.1 imply equalities of k-jets at t = 0. Since the left-hand sides in (19.1) all

vanish due to our choice of f, h, x, y, z, p, q and r, (21.1) and (21.3) thus yield

i) [4D{(Dλ)·(Dλ)}+ (Dλ)ψ](k)

= D[Uτa + hxpτa + Vθa +Wµa + xpτb ](k),

ii) [ζ ](k) = −[yτb ](k) ,

(25.8)

where [. . .](k) denotes the kth derivative of . . . at t = 0.

[In case (25.1), we leave formula (25.8) unchanged, as its ingredients all refer

to g, and modify (25.4) – (25.7) as follows. In (25.4), (25.6) and (25.7), 2 Re ψ

should appear, rather than ψ. In the first equality of (25.7), { · }IR has to be used

instead of { · }, while the “multiplications” should be replaced by their gIR coun-

terparts (and ψ by 2 Re ψ). Since Dλ is C-bilinear, Remarks 13.2 and 13.3(v)

allow us to rewrite the modified right-hand sides in (25.7) as 2jk[Re{(Dλ)·(Dλ)}]
and jk[(Dλ)ψ], with both operations now referring to the complex Lie algebra g.]

From (25.7) and (25.2.i) we get −∆[S](k) = 4D[{(Dλ)·(Dλ)}](k)+[(Dλ)ψ ](k),

so that, by (25.8.i), ∆[S](k) = −D[Uτa + hxpτa + Vθa + Wµa + xpτb ](k). Next,
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(12.1) and (16.8) give −∆(Dλ) = D[(n2y + 2z)θa + (2y + z)µa − hyτa − yτb ], as

Dβ = 0, cf. (9.6.c), and c may be replaced with ha+b. Adding the former equality

to [. . .](k) of the latter, and using equations (ii), (iv), (v) in (19.1), we obtain

∆[S − Dλ](k) = −[(y + xp)τb ](k). Both sides here must vanish as a consequence

of (12.5.b), since one lies in ∆(S) and the other, due to (12.2), in Ker ∆. The

resulting relation [(y + xp)τb ](k) = 0, along with (25.6.i) and the fact that, by

(19.3), y + xp 6= 0 at t = 0, yields (25.4.i). Vanishing of ∆[S − Dλ](k) implies

in turn that [S − Dλ](k) = 0, as ∆ is injective on ∆(S) (see (12.5.c)), while

[S − Dλ](k) ∈ ∆(S) according to (25.2.iii). Now (25.4.ii) follows from (25.6.ii).

Finally, (25.4.i) and (25.8.ii) give [ζ ](k) = 0. The definition of ζ in Theorem 21.1,

combined with the equality [σ](k) = [8{D·(Dλ)}+4{(Dλ)·(Dλ)}](k) (obvious from

(25.2.ii) and (25.4.ii)), shows that [σ](k) = [ψ](k). Thus, (25.4.iii) is immediate

from (25.6.iii), completing the induction step, and proving (25.3).

[In case (25.1), the last paragraph requires only minor changes. The right-

hand side of the formula in the first line is C-bilinear, since so is Dλ, even if

2 Re ψ is used instead of ψ. (See Remarks 13.2 and 13.3(v).) Thus, applying

Remark 13.3(viii) to the left-hand side, which now reads −∆IR[S](k), we conclude

that [S](k) is C-bilinear, and Remark 13.3(vii) allows us to replace ∆IR with ∆.

Also, 2 Re must precede the right-hand sides of the last two equalities.]

Our fixed real-analytic curve [0, δ) 3 t 7→ S(t) ∈ S with S(0) = 0, lying

entirely in H−1(0), thus satisfies relations (25.3), in which all summands and

factors, along with ξ = (a, a)/n, are scalar or vector-valued real-analytic functions

of the variable t. It now follows that ξ vanishes identically in [0, δ). In fact,

otherwise, for some δ ′ ∈ (0, δ), one would have hξ 6= 0 at all t ∈ (0, δ ′ ] and

h2/ξ → 0 as t → 0 since, by (19.3) – (19.4), h is an analytic function of the

variable ξ with h = 0 6= dh/dξ at ξ = 0, while ξ = 0 at t = 0 according to

(25.5). Consequently, h2/ξ would be nonconstant. Yet it must be constant: by

(24.1), its values are all rational. The resulting contradiction proves that ξ = 0

identically. (Note that (25.3.i) implies (22.1), and so Lemma 24.1 may be applied

here to a = a(t), for any t ∈ (0, δ ′ ].)

Since ξ = 0 on [0, δ), the functions h, x, y, z, p, q, r and f, depending on t

via ξ, are all constant and their values are given by (19.3). Thus, (25.3.ii) amounts

to S = Dηa for all t, as in (22.3), with a2 = 0, completing the proof. �

Remark 25.2. Here is why (S, σ)− Ia[v] lies in the image of L (as claimed in the

lines following (2.18), with S, σ, a,v depending on t). By (2.5), (S, σ) − Ia[v] =

(S−Dλ, σ− ψ), while L(S, σ) = (∆S, σ) (see Remark 11.3), and S−Dλ ∈ ∆(S)

in view of (25.2.iii).

26. Proof of Theorem 22.3

We have the following consequence of Lemma 25.1.



Indefinite Einstein metrics 37

Corollary 26.1. Under the assumptions listed at the beginning of Section 25, the set
C = D + L of Einstein connections in g, defined by (22.3), contains all weakly-Einstein
connections sufficiently close to D. This is the case for gIR in (25.1) as well.

Proof. By (11.8.ii), weakly-Einstein connections in g form the set D + Z, where

Z = H−1(0). Lemma 25.1 states that the hypotheses, and hence the conclusion,

of Corollary 4.2 are satisfied by L in (22.3) and Z, both of which are algebraic

sets due to Theorem 22.2(iv) and the definition (11.2.i) of H. �

Theorem 22.3 is now immediate. First, Corollary 26.1 applied to the triple

(su(l, j), IR, i) in (16.1) implies that all Einstein connections sufficiently close to

D lie in C. Secondly, for j = 0 and l = n ≥ 3 one has C = {D}, as 0 is the

only element a ∈ su(n) with a2 = 0. In other words, the Levi-Civita connection

D of the Killing form β is isolated among Levi-Civita connections of left-invar-

iant Riemannian Einstein metrics on SU(n). Rephrased in terms of metrics (see

Remark 6.2), this amounts to Theorem 22.3.

27. Complex Witt bases

The following lemma uses Witt’s theorem [2, Chapter 13] to evaluate the dimen-

sions of some Lie algebras and manifolds.

Lemma 27.1. Let e1, . . . , ek be a basis of a totally null complex subspace V in the
space Cn endowed with the standard sesquilinear Hermitian inner product 〈 , 〉 of the
sign pattern formed by l pluses and j minuses, where l ≥ j ≥ k.

(a) Cn has a basis e1, . . . , ek, ê1, . . . , êk, u2k+1, . . . , un containing e1, . . . , ek such
that, for all p, q, r, s in the appropriate ranges, 〈er, es〉 = 〈êr, ês〉 = 〈er, up〉 =

〈êr, up〉 = 0, 〈er, ês〉 = δrs , 〈up, up〉 ∈ {1,−1}, and 〈up, uq〉 = 0 if p 6= q.
(b) dim h = k2 for the Lie algebra h consisting of all a ∈ su(l, j) with a(Cn) ⊂ V.
(c) Every a ∈ su(l, j) with a2 = 0 is SU(l, j)-conjugate to ta, for all t ∈ (0,∞), so

that 0 lies in the closure of the SU(l, j)-orbit of a.
(d) dim k = (n− k)2 + 2k2− 1 for the Lie algebra k = {a ∈ su(l, j) : a(V) ⊂ V}.
(e) The set Nl,j,k of all k-dimensional totally null complex subspaces of Cn is a man-

ifold, dim Nl,j,k = (2n− 3k)k, and the action of SU(l, j) on Nl,j,k is transitive.
(f) Elements a ∈ su(l, j) with a2 = 0 form exactly (j + 1)(j + 2)/2 SU(l, j)-con-

jugacy classes, classified by the values of rank a ∈ {0, 1, . . . , j} and the positive
index ind+a of the Hermitian form i〈a( · ), · 〉, with ind+a ∈ {0, 1, . . . , rank a}.

Proof. Since 〈 , 〉 descends to a (nondegenerate) Hermitian inner product in V⊥/V,

we may choose u2k+1, . . . , un representing an orthonormal basis of V⊥/V, and then

define ẽ1, . . . , ẽk ∈ Cn by requiring 〈 · , ẽ1〉 . . . , 〈 · , ẽk〉 to be the first k elements

of basis of [Cn ]∗ dual to a basis for which e1, . . . , ek, u2k+1, . . . , un are the initial

n− k vectors. Setting êr = ẽr −
∑k

s=1〈ẽr, ẽs〉es/2, we obtain (a).
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Skew-adjointness of a ∈ h, combined with the relation a(Cn) ⊂ V, gives

V⊥ ⊂ Ker a. Thus, elements a of h are characterized by

aer = aup = 0, aêr =
∑k

s=1Xrses , where X = [Xrs] ∈ u(k), (27.1)

the requirement that the k × k matrix with the entries Xrs be skew-Hermiti-

an expressing here skew-adjointness of a ∈ h. (As a(Cn) ⊂ V ⊂ V⊥ ⊂ Ker a,

Remark 15.1(i) implies that a is traceless.) Since dim u(k) = k2, (b) follows.

Given a ∈ su(l, j) with a2 = 0, the image a(Cn) is totally null. Thus,

e1, . . . , ek span a(Cn) for k = rank a and some basis as in (a), (27.2)

which yields (27.1) with some X. Replacing each er by t−1/2er and êr by t1/2êr
we obtain a new basis with (27.2), in which X now represents ta, proving (c).

Next, a ∈ k if and only if a has, in the basis with (a), the block matrix form X Y T

0 H −Y ∗
0 0 −X∗

 .
Here T = −T ∗ ∈ u(k) and H = −H∗ ∈ u(l − k, j − k), while ( )∗ denotes three

versions of the Hermitian transpose. The zero submatrices reflect the inclusions

a(V) ⊂ V and a(V⊥) ⊂ V⊥ (the latter due to skew-adjointness of a). This gives

the formula in (d), with X,Y, T,H and tracelessness of a (which is a separate

condition) contributing 2k2, 2(n− 2k)k, k2, (n− 2k)2 and −1 to the total.

Transitivity in (e) is obvious from (a). Thus, Nl,j,k is a manifold. By (d),

dim Nl,j,k = dim SU(l, j)− dim k = n2− 1− [(n− k)2 + 2k2− 1], as claimed in (e).

Finally, given a ∈ su(l, j) with a2 = 0, the image a(Cn) is totally null.

We thus have (27.2), and hence (27.1) for some X. Another basis as in (27.2)

arises when all er and êr are replaced by e′r and ê′r, where e′r =
∑k

s=1Wrses
and ê′r =

∑k
s=1 Zrsês for any invertible complex k × k matrix Z and its inverse

conjugate transpose W. The matrix playing the role of X in (27.1) for a and

the new basis is ZXZ∗, where Z∗ = W−1 is the conjugate transpose of Z. Since

X ∈ u(k) is orthonormally diagonalizable, a suitable choice of Z ∈ u(k) will

render ZXZ∗ diagonal, with imaginary entries. Furthermore, rescaling each er
and êr as in the line following (27.2), with t > 0 possibly depending on r, allows

us to assume that the imaginary diagonal entries are all ±i or 0. Combined with

transitivity in (e), this gives (f). �

Remark 27.2. The analog of (f) in Lemma 27.1 for SL(n, IF) (where IF is IR,C

or IH), rather than SU(l, j), is simpler: elements a of sl(n, IF) with a2 = 0 form

[n/2] + 1 SL(n, IF)-conjugacy classes, classified by the value of rank a, ranging

over {0, 1, . . . , j}. In fact, if k = rank a, a basis

ae1, . . . , aek, e1, . . . , ek, u2k+1, . . . , un , (27.3)

where ae1, . . . , aek, u2k+1, . . . , un span Ker a, gives a a canonical matrix form.
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Remark 27.3. Assertion (c) of Lemma 27.1 remains valid if one replaces SU(l, j)

with any of the other groups in (1.1). To see this, one may use, instead of (27.3),

the basis tae1, . . . , taek, e1, . . . , ek, u2k+1, . . . , un.

Condition (c) in Lemma 27.1 is also an immediate consequence of (f) (and

similarly for SU(l, j)). We state it separately for easy reference.

28. Proofs of Theorem 22.2, second part, and Theorem 22.4

By (11.1), C ⊂ E ⊂ W ⊂ D + S, which reduces proving Theorem 22.2(v) to

establishing relative openness of C in W or, equivalently, showing that every

point D + S of C has a neighborhood in the affine space D + S which does not

intersect WrC. To this end let us suppose that, on the contrary, some D + S ∈ C
is the limit as k → ∞ of a sequence D + Sk in W r C. By Remark 27.3, any

neighborhood of D contains an adjoint-action image of D + S and, with it, the

images of D + Sk for all large k. Thus, some sequence in W r C converges to D,

which contradicts Corollary 26.1.

The set C, being connected (since so is the cone P = {a ∈ g : a2 = 0}),
as well as closed and relatively open in both E and W (by (iv) – (v)), must

be a connected component of both, which proves (vi). Assertion (viii) is in turn

immediate from Lemma 27.1(f) and Remark 27.2.

All of the above remains valid for the underlying real Lie algebra of sl(n,C).

The next result trivially implies (vii) in Theorem 22.2, as well as Theo-

rem 22.4; for the latter, we also use Remark 13.3(ii)-(iv), the final clause of Corol-

lary 26.1, and the preceding one-line paragraph.

In the remainder of this section (g, IF, ε) denotes one of the triples (16.1), for

n = l+ j ≥ 3. All manifolds and mappings are assumed IF-analytic, with the term

‘real/complex’ indicating the appropriate choice between IF = IR or IF = C. The

symbol [ ] stands for the integer part, and Grnk for the real/complex Grassmann

manifold of all k-dimensional real/complex vector subspaces of IFn.

The polynomial bijective correspondence in Theorem 22.2(ii) reduces the

description of C to determining the structure of the cone P = {a ∈ g : a2 = 0}.
We achieve the latter by providing the following nonsingular model for P.

Theorem 28.1. There exist a connected IF-analytic manifold M with an open dense
subset M′, and an IF-analytic mapping Q : M → g, such that Q(M) = P and
Q sends M′ diffeomorphically onto a real/complex submanifold of g contained in P,
while dimIFM = [n2/2] for g = sl(n, IF) and dimIRM = 2lj, if g = su(l, j), or
dimIRM = 4[n2/8], if g = sl(n/2, IH).

Proof. For triples other than sl(n/2, IH), IR, 1), we define the integer k by k =

[n/2] if g = sl(n, IF) and k = j if g = su(l, j). As j ≤ l, in the latter case k is

the maximum dimension of a totally null complex subspace in Cn endowed with

the sesquilinear inner product mentioned in Lemma 27.1.
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Let B denote the compact connected IF-analytic manifold formed by all

(V,V ′) ∈ Grnk × Grnn−k such that V ⊂ V ′ and, for g = su(l, j) only, V ′ is the

orthogonal complement of the complex totally null subspace V. Thus, when g =

sl(n, IF) and n is odd, B is an IFPn−k−1 bundle over Grnk , with the bundle

projection (V,V ′) 7→ V and the fibre P(V ′/V) over V ∈ Grnk . For g = sl(n, IF)

and even n, we may identify B with Grnk , as V = V ′. Similarly, V uniquely

determines V ′ if g = su(l, j), which leads to the identification B = Nl,j,j , with

dim Nl,j,k = (2l−j)j (as n = l+j, cf. Lemma 27.1(e)). Consequently, depending on

whether g = sl(n, IF) and n is even, or g = sl(n, IF) and n is odd, or g = su(l, j),

dimIFB = k2, or dimIFB = (k + 2)k, or dimIRB = (2l− j)j. (28.1)

We denote by M the total space of the real/complex vector bundle over B with

the fibre F over any (V,V ′) ∈ B consisting of all a ∈ g such that the image of a

as a linear endomorphism of IRn or Cn is contained in V, and its kernel contains

V ′. As the inclusion V ⊂ V ′ then gives a2 = 0, an obvious surjective mapping

Q : M → P is defined by requiring the Q-image of a fibre element a at any

(V,V ′) ∈ B to be a itself. In all cases, dimIFF = k2. In fact, if g = sl(n, IF), one

may view F as the space of all linear operators IFn/V ′→ V, while for g = su(l, j)

we can use Lemma 27.1(b).

The vector bundle just described is an IF-analytic subbundle of the trivial

bundle with the fibre g over B, since it is the kernel of the obvious IF-analytic

bundle morphism, the rank of which is constant as dimIFF= k2. Thus, the manifold

M and the mapping Q :M→ g are both IF-analytic, while the dimension clause

follows if one adds dimIFF= k2 to the dimensions in (28.1).

Let us now choose the open subset M′ of M to be the total space of a

(non-vector) subbundle of the bundle M, the fibre of which over any (V,V ′) ∈ B
is the subset of the fibre of M formed by those a that, in addition, have the

maximum rank k. The diffeomorphic property of Q on M′ is then obvious, with

the inverse mapping Q(M′) → M′ sending any maximum-rank a to the fibre

element a at the point (V,V ′) ∈ B which is the image-kernel pair of a.

For the remaining triple sl(n/2, IH), IR, 1), one sets k = [n/4] and repeats

the above definitions M and F verbatim, while that of B is modified: the con-

stituents V,V ′ of any (V,V ′) ∈ B are, in addition, required to be quaternionic

subspaces of IHn/2 ≈ Cn. The argument used to prove (28.1), with IF and n re-

placed by IH and n/2, now shows that the “quaternionic” dimension of B equals

k2 or (k+ 2)k, depending on whether n/2 is even or odd. Adding to either value

dimIHF= k2, we obtain [n2/8], so that dimIRM = 4[n2/8]. Finally, the discussion

of the last paragraph applies to this case without any changes. �
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29. Non-Einstein examples

Not all weakly-Einstein connections arising in Theorem 22.1 are Einstein connec-

tions. For instance, the nonuple (ξ, f, h, x, y, z, p, q, r), where

ξ = (z + 1)/z2, h = 0, x = 1, y = −z, p = (z + 2)/z,

q = −n2(z + 2), r = z + 2, f = (z + 1)(2− z)/z2, (29.1)

will satisfy (19.1) with (L,U, V,W ) = (−2(z + 1)/z, 0, (2 − n2)z,−z) in (19.2),

if one chooses z = −(n2− 2)/(n2− 1). In fact, all equalities in (19.1) except

(19.1.iv), and the values of L,U,W, are easily verified by treating z as arbitrary

and substituting n2y + 2z for V in (19.1.vii). We then also have L + 2 = −2/z

and z + 1 = 1/(n2− 1). Since h = 0 < ξ in (29.1), the assumption (22.1) in

Theorem 22.1 amounts to requiring that (εa)2 be a specific positive multiple of

Id. Such a ∈ g exists for any triple (16.1) as long as n = l + j is even.

Consequently, (29.1) with z = −(n2− 2)/(n2− 1) and any even n ≥ 3

gives rise, via Theorem 22.1, to examples of unimodular connections ∇ such that

∇ρ∇ = 0. They are not, however, Einstein connections, since −4ρ∇ = β + ψ is

degenerate and nonzero. Namely, as explained below, a lies in the nullspace of

β + ψ (and a 6= 0 by (22.1) with h = 0 6= ξ), while 〈β, β + ψ〉 6= 0.

Specifically, since τa(a, · ) = 〈2c, · 〉, θa(a, · ) = 〈ξa, · 〉, and µa(a, · ) = 〈d, · 〉
by (16.3), using the three steps of Remark 15.2 to evaluate traces, we get

the images of a under the endomorphisms (16.4) are 2c, a, ξa, d,

and the traces of the endomorphisms (16.4) equal 0, n2− 1, ξ, −ξ. (29.2)

Therefore a, if nonzero, is an eigenvector, for the eigenvalue 2hp+ξq+(h2+ξ)r+

f+1, of the linear endomorphism of g corresponding to −4ρ∇ via (7.3), while the

trace of that endomorphism is 〈β, β + ψ〉 = (n2− 1)q + (r− f )ξ, with 〈 , 〉 as in

(8.1.i). The claim concerning the eigenvalue is obvious here from (29.2), along with

the equalities b = 0 and d = (h2 + ξ)a, immediate from the assumption c = ha

(that is, (22.1)) and (20.4) or, respectively, from (20.6) and Lemma 20.1(i).

The above conclusions about the eigenvalue and trace apply to −4ρ∇= β+ψ

for all connections ∇ arising from Theorem 22.1. In the special case (29.1), with

z treated as arbitrary, the eigenvalue equals (z+ 2)[1− (n2− 1)(z+ 1)]/z2, and so

it is 0 due to our choice of z. Similarly, the trace is (n2− 1)− (n2+ 1)(z+ 1) 6= 0.
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