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Abstract

Compact pseudo-Riemannian manifolds that have parallel Weyl tensor without be-
ing conformally flat or locally symmetric are known to exist in infinitely many
dimensions greater than 4. We prove some general topological properties of such
manifolds, namely, vanishing of the Euler characteristic and real Pontryagin classes,
and infiniteness of the fundamental group. We also show that, in the Lorentzian case,
each of them is at least 5-dimensional and admits a two-fold cover which is a bundle
over the circle.

Key words: parallel Weyl tensor, conformally symmetric manifold
MSC: 53C50

Introduction

One calls a pseudo-Riemannian manifold (M, g) of dimension n ≥ 4 confor-
mally symmetric [5] if its Weyl conformal tensor is parallel, and essentially
conformally symmetric if, in addition, (M, g) is neither conformally flat nor
locally symmetric. All essentially conformally symmetric manifolds have in-
definite metrics [8, Theorem 2].

The Weyl conformal tensor is one of the three irreducible components of the
curvature tensor under the action of the pseudo-orthogonal group, the other
two corresponding to the scalar curvature and traceless Ricci tensor. This
puts conformally symmetric manifolds on par with two other classes, formed
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by manifolds with constant scalar curvature and, respectively, parallel Ricci
tensor, including Einstein spaces.

The local structure of essentially conformally symmetric pseudo-Riemannian
metrics is fully understood [11]; they realize any prescribed indefinite signa-
ture in every dimension n ≥ 4. They are also known to exist on some com-
pact manifolds diffeomorphic to torus bundles over the circle [10], where they
represent all indefinite metric signatures in all dimensions n ≥ 5 such that
n ≡ 5 (mod 3). Consequently, there arises a natural question of characterizing
the compact manifolds that admit such metrics.

The present paper provides a step toward an answer by establishing some
necessary conditions. Our first result, except for the claim about π1M , is
derived in Section 3 from the Chern-Weil formulae. Infiniteness of π1M is
proved in Section 11: we argue there that, if M were simply connected, it
would be a bundle over S2 with a fibre covered by Rn−2, which is impossible
for topological reasons.

Theorem A Let a manifold M of dimension n ≥ 4 admit an essentially con-
formally symmetric pseudo-Riemannian metric. The real Pontryagin classes
pi(M) ∈ H4i(M,R) then vanish for all i ≥ 1, If, in addition, M is compact,
then it has zero Euler characteristic, and its fundamental group is infinite.

Applied to manifolds M which are both compact and orientable, the assertion
about pi(M) in Theorem A leads to a similar conclusion about the Pontryagin
numbers, including the signature of M .

As mentioned above, compact essentially conformally symmetric Lorentzian
manifolds exist in infinitely many dimensions n, starting from n = 5, while
noncompact ones exist in every dimension n ≥ 4. Our next two results deal
with their topological structure in the compact case and with dimension 4.

Theorem B Let (M, g) be a compact essentially conformally symmetric Lo-
rentzian manifold. Then some two-fold covering manifold M of M is the
total space of a C∞ bundle over the circle, the fibre of which admits a flat
torsionfree connection with a nonzero parallel vector field.

Theorem C Every four-dimensional essentially conformally symmetric Lo-
rentzian manifold is noncompact.

The fibration M → S1 in Theorem B has an explicit geometric description.
Namely, its fibres are the preimages in M of the leaves of a parallel dis-
tribution D⊥ on (M, g), which is the orthogonal complement of the Olszak
distribution D, defined, in any conformally symmetric manifold, by declaring
the sections of D to be the vector fields u such that, for all vector fields v, v ′,
one has ξ ∧ Ω = 0, where ξ = g(u, · ) and Ω = W (v, v ′, · , · ). (By W we
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denote the Weyl tensor; thus, Ω is a differential 2-form.) Olszak introduced
the distribution D in a more general situation [16], and showed that, on an
essentially conformally symmetric manifold, D is a null parallel distribution
of dimension 1 or 2. See Lemma 2.2(i). Olszak’s paper [16] may be difficult
to obtain; however, a proof of the result just mentioned can also be found in
[11, Appendix I].

We derive Theorems B and C in Sections 5 and 9 from the following result,
proved in Section 4:

Theorem D For every essentially conformally symmetric Lorentzian mani-
fold, the Olszak distribution D is one-dimensional. Passing to a two-fold cov-
ering manifold, if necessary, we may assume that D is trivial as a real line
bundle, and then D is spanned by a global parallel vector field.

1 Preliminaries

Throughout this paper, all manifolds and bundles, along with sections and
connections, are assumed to be of class C∞. Manifolds (including fibres of
bundles) are, by definition, connected. A mapping is always a C∞ mapping
betweeen manifolds.

Remark 1.1 A surjective submersion π : M → P such that the sets π−1(y),
y ∈ P , are all compact can always be factored as M → Q → P , with a
locally trivial fibration M → Q having compact (connected) fibres, and a
finite covering projection Q→ P .

Namely, π itself is a locally trivial fibration, except that each fibre π−1(y),
rather than being connected (and hence a manifold in our sense), may in
general have some finite set Qy of connected components. This well-known
fact becomes clear if one uses the holonomy of any “nonlinear connection”
(a distribution in M complementary to the fibres). We now define Q and
Q→ P by Q =

⋃
y∈P ({y} ×Qy) and (y,N) 7→ y.

Lemma 1.2 Suppose that a closed 1-form ξ on a compact manifold M is
nonzero everywhere and, for some function φ : M → R which is nonzero
somewhere, the form φξ is exact. Then M is the total space of a bundle over
the circle S1. In addition, for any functions t : M̂ → R on the universal
covering manifold of M and θ : M → R, such that dt is the pullback of ξ
to M̂ and dθ = φξ, and for some c ∈ (0,∞),

(a) t : M̂ → R descends to a bundle projection M → R/cZ = S1,
(b) the pullback of θ to M̂ equals the composite Λ(t) for some nonconstant
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function Λ : R → R which is periodic, and has c as a period,
(c) M̂ can be diffeomorphically identified with R×N for some manifold N

so as to make t coincide with the projection R×N → R.

Proof. Let ĝ be the pullback to M̂ of any fixed Riemannian metric g on
M . The ĝ-gradient ∇̂t of t gives rise to the vector field w = ∇̂t/ĝ(∇̂t, ∇̂t),
which is complete, being the pullback of the vector field u/g(u, u) on M , for
u such that ξ = g(u, · ). A standard argument [15, p. 12] using the flow of
w, for which t itself serves as the parameter, yields (c). Denoting by θ̂ and
φ̂ the pullbacks of θ and φ to M̂ , we have ∇̂θ̂ = φ̂∇̂t. Hence θ̂ is, locally,
a function of t. The word ‘locally’ can in turn be dropped as the level sets of
t are connected by (c). Thus, θ̂ = Λ(t) (that is, θ̂ = Λ◦ t) for some function
Λ : R → R. Since θ and θ̂ are nonconstant, so is Λ.

The invariance of dt under the action of the deck transformation group Γ =
π1M implies that t◦α = t+Ξ(α) for some homomorphism Ξ : Γ → R and all
α ∈ Γ. As θ̂ = Λ(t) is Γ-invariant, every nonzero value of Ξ is a period of Λ.
Thus, Ξ(Γ) = cZ for some c ∈ (0,∞), and (b) follows. Finally, the surjective
submersion t : M̂ → R descends to a mapping M = M̂/Γ → R/cZ, which
must be a surjective submersion as well. In addition, for each s ∈ R, the
preimage of s + cZ under the latter mapping is connected, as it coincides
with the image of t−1(s) ⊂ M̂ under the covering projection M̂ → M , and
t−1(s) ⊂ M̂ is connected by (c). Remark 1.1 now yields (a). 2

Given a connection ∇ in a vector bundle E over a manifold M , a section ψ of
E , and vector fields u, v tangent to M , our sign convention for the curvature
tensor R = R∇ is

R(u, v)ψ = ∇v∇uψ − ∇u∇vψ + ∇[u,v]ψ. (1)

Such ∇, E ,M, u and v give rise to the bundle morphism

R∇(u, v) : E → E (2)

sending a section ψ of E to R∇(u, v)ψ = R(u, v)ψ defined in (1).

We always denote by ∇ both the Levi-Civita connection of a given pseu-
do-Riemannian manifold (M, g), and the g-gradient operator. The same sym-
bol ∇ is also used for connections induced by ∇ in ∇-parallel subbundles of
TM and their quotients.

A pseudo-Riemannian fibre metric γ in a vector bundle E over a manifold
M is, as usual, any family of nondegenerate symmetric bilinear forms γx in
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the fibres Ex that constitutes a C∞ section of the symmetric power (E∗)�2.

Remark 1.3 Every simply connected manifold N with a complete flat tor-
sionfree connection ∇ is diffeomorphic to a Euclidean space: the exponential
mapping of ∇ at any point x ∈ N is an affine diffeomorphism TxN → N.
See Auslander and Markus [1, p. 145].

Given a flat connection ∇ in a vector bundle E of fibre dimension k over
a manifold M , we will say that E is trivialized by its parallel sections if the
space of ∇-parallel global sections of E is k-dimensional (or, in other words,
∇ is globally flat).

Lemma 1.4 If a compact manifold N with a flat torsionfree connection ∇
admits a ∇-parallel distribution L such that both bundles L and E = TN/L,
with the flat connections induced by ∇, are trivialized by their parallel sections,
then ∇ is complete.

Proof. We denote by X the space of parallel sections of L, and by expx the
exponential mapping of ∇ at x ∈ M . Geodesics tangent to L at some (or
every) point, being integral curves of elements of X , are obviously complete.

Let Y be a vector subbundle of TN such that TN = L ⊕ Y , and let us fix
w ∈ V , where V is the vector space of sections of Y obtained as the image
of the space of parallel sections of E under the obvious isomorphism E → Y .
The vector field v = ∇ww then is a section of L. (In fact, locally, w = w ′+w̃,
for a section w ′ of L and a local parallel vector field w̃, so that ∇ww = ∇ww

′,
while ∇ww

′ is a section of L.) Any integral curve R 3 t 7→ x(t) ∈ N of w
now gives rise to a function ζ : R → X defined by requiring that ζ(t) ∈ X
have the value vx(t) at the point x(t). Any function η : R → X with the
second derivative η̈ = −ζ leads in turn to the curve R 3 t 7→ y(t) ∈ N, given
by y(t) = expx(t) η(t, x(t)), where η(t, x) ∈ TxM is the value of η(t) ∈ X at
x ∈M . That t 7→ y(t) is a geodesic is clear: a treating N, locally, as an affine
space, we have y(t) = x(t) + η(t), and ÿ = ẍ + η̈ = 0. Since such geodesics
realize all initial data, our assertion follows. 2

Let (t, s) 7→ x(s, t) be a fixed variation of curves in a pseudo-Riemannian
manifold (M, g), that is, an M -valued C∞ mapping from a rectangle (product
of intervals) in the ts-plane. By a vector field w along the variation we mean,
as usual, a section of the pullback of TM to the rectangle: w(t, s) ∈ Tx(t,s)M .
Examples are xs and xt, which assign to (t, s) the velocity of the curve
t 7→ x(t, s) (or, s 7→ x(t, s)) at s (or t). Further examples are provided
by restrictions to the variation of vector fields on M . The partial covariant
derivatives of a vector field w along the variation are the vector fields wt, ws

along the variation, obtained by differentiating w covariantly along the curves
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t 7→ x(t, s) or s 7→ x(t, s). Skipping parentheses, we write wts, wstt, etc., rather
than (wt)s, ((ws)t)t for higher-order derivatives, as well as xss, xst instead of
(xs)s, (xs)t. One always has wts = wst + R(xt, xs)w, cf. [12, formula (11.2)
on p. 493], and, since the Levi-Civita connection ∇ is torsionfree, xst = xts.
Consequently, xttss = xstts + [R(xt, xs)xt]s, xstts = xstst + R(xt, xs)xst and
xstst = xsstt + [R(xt, xs)xs]t. Thus, whenever (t, s) 7→ x(s, t) is a variation of
curves in M ,

a) xtts = xstt + R(xt, xs)xt ,

b) xttss = xsstt + [R(xt, xs)xs]t + R(xt, xs)xst + [R(xt, xs)xt]s .
(3)

2 Conformally symmetric manifolds

The Schouten tensor σ and Weyl conformal tensor W of a pseudo-Riem-
annian manifold (M, g) of dimension n ≥ 4 are given by the formulae σ =
ρ − (2n − 2)−1 sg and W = R − (n − 2)−1g ∧ σ, with ρ denoting the Ricci
tensor and s = trgρ standing for the scalar curvature. Here ∧ is the exterior
multiplication of 1-forms valued in 1-forms, which involves the ordinary ∧ as
the valuewise multiplication; thus, g ∧ σ is a 2-form valued in 2-forms.

Lemma 2.1 For any essentially conformally symmetric manifold (M, g),

(a) R = W + (n− 2)−1g ∧ ρ, where n = dimM ≥ 4,
(b) the Ricci tensor ρ satisfies the Codazzi equation, in the sense that the

three-times covariant tensor field ∇ρ is totally symmetric.

Proof. In any essentially conformally symmetric manifold, s = 0 identically
[9, Theorem 7], so that σ = ρ. This gives (a), and (b) follows since the
condition ∇W = 0 implies vanishing of the divergence of W, which, in view
of the second Bianchi identity, is equivalent to the Codazzi equation for σ, cf.
[12, formula (5.29) on p. 460]. 2

Assertion (i) in the next lemma is due to Olszak [16]. Its proof can also be
found in [11, Appendix I].

Lemma 2.2 Let D be the Olszak distribution of an essentially conformally
symmetric manifold (M, g), defined in the Introduction. Then

(i) D is a null parallel distribution of dimension 1 or 2,
(ii) at every point x, the space Dx contains the image of the Ricci tensor

treated, with the aid of gx, as a linear operator TxM → TxM,
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(iii) R(v, v ′, · , · ) =W (v, v ′, · , · ) = 0 whenever v and v ′ are sections of D⊥,
(iv) of the connections in the vector bundles D and E = D⊥/D, induced by

the Levi-Civita connection of g, the latter is always flat, and the former
is flat if D is one-dimensional.

Proof. See [11, Lemmas 2.1(ii) and 2.2]. 2

For a k times covariant tensor field B on a pseudo-Riemannian manifold
(M, g), k ≥ 1, and a point x ∈M , we denote by KerBx the subspace of TxM
formed by all vectors v with Bx(v, · , . . . , · ) = 0. Its orthogonal complement
(KerBx)

⊥ is the image of Bx, that is, the subspace of TxM spanned by vectors
u ∈ TxM such that g(u, · ) = B( · , u2, . . . , uk) for some u2, . . . , uk ∈ TxM .
If B is parallel, the spaces KerBx and (KerBx)

⊥ form parallel distributions
KerB and (KerB)⊥ on M .

Remark 2.3 Given an essentially conformally symmetric manifold (M, g)
such that the Olszak distribution D is 2-dimensional, we have W = εω⊗ ω
for some ε = ±1 and a parallel differential 2-form ω with rank ω = 2,
defined, at each point of M , only up to a sign. In addition,

D = (Ker ω)⊥, (4)

In fact, if x ∈ M and u, v, v ′ are vector fields chosen so that ux ∈ Dx r {0}
and Ωx 6= 0, for Ω = W (v, v ′, · , · ), then the 2-form Ωx is ∧-divisible by
ξx, where ξ = g(u, · ) (cf. the definition of D). Thus, if D is 2-dimensional,
the image of the Weyl tensor Wx acting on exterior 2-forms is spanned by
ξ ∧ ξ ′, where ξ = g(u, · ) and ξ ′ = g(u′, · ) for any basis u, u′ of Dx. Since
Wx acting on 2-forms is self-adjoint, our claim follows, (4) being immediate
as (Ker ω)⊥ is the image of ω.

Next, at any point x of any essentially conformally symmetric manifold,

a) (Kerρx)
⊥ ⊂ Dx ⊂ Dx

⊥ ⊂ Kerρx , b) D ⊂ KerW , (5)

where D is the Olszak distribution and ρ denotes the Ricci tensor. Namely,
the first inclusion in (a) follows from Lemma 2.2(ii) (as (Kerρx)

⊥ is the image
of ρx), the second from Lemma 2.2(i), and the third from the first. For (b),
we consider the two possible values d ∈ {1, 2} of the dimension of D (see
Lemma 2.2(i)). If d = 2, we have D = (KerW )⊥, that is, D equals the image
of W (which coincides with the image (Ker ω)⊥ of ω, cf. (4)), while D ⊂ D⊥

by Lemma 2.2(i). Now let d = 1. As W and D⊥ are both parallel, it suffices to
establish (b) at any fixed x ∈M with ρx 6= 0. (Note that g is not Ricci-flat.)
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Now the image (Kerρx)
⊥ of ρx is contained in KerWx, cf. [9, Theorem 8(c)

on p. 22], while Dx = (Kerρx)
⊥ by Lemma 2.2(ii), which yields (b).

3 Proof of Theorem A, first part

The phrase ‘up to a factor’ means, in this section, up to a nonzero constant
factor, which may depend on the dimensions involved.

Given a pseudo-Euclidean inner product 〈 , 〉 in an oriented real vector space
V of even dimension r = 2m, let Θ be the volume form, with Θ(e1, . . . , er) =
1 for any positive-oriented orthonormal basis e1, . . . , er of V . We denote
by Pf the Pfaffian function of 〈 , 〉, assigning to an m-tuple of linear op-
erators Sj : V → V , which are all skew-adjoint relative to 〈 , 〉, the value
s = Pf (S1, . . . , Sm) ∈ R such that ζ1 ∧ . . . ∧ ζm = sΘ, with the 2-forms ζj
characterized by ζj(u, v) = 〈Sju, v〉 for all u, v ∈ V .

Lemma 3.1 For Sj as above, Pf (S1, . . . , Sm) = 0 if
⋂m

j=1 KerSj 6= {0}.

Proof. Our ζj are pullbacks to V of some 2-forms in the space V/V ′, where
V ′ =

⋂m
j=1 KerSj. Hence ζ1∧ . . . ∧ ζm = 0 if dim(V/V ′) < 2m. 2

Given an oriented real vector bundle E of fibre dimension r ≥ 1 over a
manifold M , let a pair (∇, γ) consist of a connection ∇ and a ∇-parallel
pseudo-Riemannian fibre metric γ in E . The Euler form of (∇, γ) then is the
differential r-form on M equal to 0, when r is odd, and for even r obtained,
up to a factor, by skew-symmetrization of the r times covariant tensor field
v1, . . . , vr to Pf (R∇(v1, v2), . . . , R

∇(vr−1, vr)), cf. (2), with Pf as above for
V = Ex, x ∈M .

The Euler form of (∇, γ) is closed, and represents in cohomology the real
Euler class of the oriented bundle E . See [2,6,14,4].

Similarly, the real Pontryagin classes pi(E) ∈ H4i(M,R) of a real vector
bundle E over a manifold M are the cohomology classes of the Pontryagin
forms of any connection ∇ in E , given by explicit formulae involving the
curvature tensor R = R∇. To prove vanishing of the Pontryagin forms (and
classes) under some specific assumptions, one may instead use what we call
here the generating forms, the cohomology classes of which form another set of
generators for the Pontryagin algebra (the subalgebra of H∗(M,R) generated
by all pi(E)). The ith generating form of ∇, for any integer i ≥ 1, is the
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differential 4i-form on M obtained, up to a factor, as the skew-symmetriza-
tion of the 4i times covariant tensor field sending vector fields v1, . . . , v4i to
tr [R∇(v1, v2) ◦ . . . ◦R∇(v4i−1, v4i)], with R∇(v, v ′) as in (2). See [7].

In the case where ∇ is the Levi-Civita connection of a pseudo-Riemannian
manifold (M, g) and E = TM , we speak of the Euler form and generating
forms of (M, g).

Theorem A (minus the claim about π1M) is immediate from the following
local result.

Lemma 3.2 The Euler form and all Pontryagin forms of any oriented essen-
tially conformally symmetric manifold (M, g) are identically zero.

Proof. Given a point x ∈M and an integer i with 1 ≤ i ≤ n/4, where n =
dimM , we set Bj = Wx(u2j−1, u2j) : TxM → TxM for linearly independent
vectors u1, . . . , u4i in TxM , and b = tr (B1 ◦ . . . ◦ B2i). (Notation as in (2),
with the Weyl tensor W instead of R.) For vanishing of the Pontryagin forms,
it suffices to prove that b = 0, since, as shown by Avez [3], in the definition
of generating forms of (M, g) one may replace the curvature tensor R = R∇

by W. We are thus allowed to choose x at which the Ricci tensor ρx is
nonzero: W is parallel, and hence so is the ith generating form. For any
fixed v ′ ∈ TxM with ρx(v

′, · ) 6= 0, Lemma 2.2(ii) implies that each Bj, when
treated (with the aid of gx) as a 2-form at x, is ∧-divisible by ρx(v

′, · ).
In other words, Bj : TxM → TxM equals gx(wj, · )v − ρx(v

′, · )wj for some
wj ∈ TxM and the unique v ∈ TxM with gx(v, · ) = ρx(v

′, · ). Furthermore,
Dx ⊂ KerWx ⊂ KerBj and Dx ⊂ Kerρx (see (5)), so that, by Lemma 2.2(ii),
v ∈ Dx and wj ∈ Dx

⊥ (as wj lies in the image (KerBj)
⊥ of Bj). As D is

null (Lemma 2.2(i)), B1 ◦ B2 = −gx(w1, w2)ρx(v
′, · )v, tr (B1 ◦ B2) = 0 and

B1 ◦B2 ◦B3 = 0 if i > 1, which implies that b = 0 both for i = 1 and i > 1.

Now let n be even. Given x ∈ M , we set s = Pf (S1, . . . , Sm), where m =
n/2 and Sj = Rx(e2j−1, e2j) : TxM → TxM for a basis e1, . . . , en of TxM
containing a basis of Dx

⊥ (where D is the Olszak distribution). To obtain
vanishing of the Euler form, we need to show that s = 0. First, s = 0 if, for
each j ∈ {1, . . . ,m}, at least one of the vectors e2j−1, e2j lies in Dx

⊥. In fact, by
Lemma 2.1(a), Rx(v, u

′, u, · ) = 0 whenever u ∈ Dx, v ∈ Dx
⊥ and u′ ∈ TxM ,

as Dx ⊂ KerWx and (g ∧ ρ)x(v, u
′, u, · ) = 0 in view of (5); thus,

⋂m
j=1 KerSj

contains the subspace Dx 6= {0} (cf. Lemma 2.2(i)), and Lemma 3.1 shows
that s = 0.

In the remaining case, e2j−1, e2j ∈ Dx
⊥ for some j ∈ {1, . . . ,m}. Namely,

if d denotes the dimension of D, then D⊥ is (2m − d)-dimensional, with
d ≤ 2 ≤ m by Lemma 2.2(i). Among e1, . . . , e2m there are 2m − d ≥ m
elements of Dx

⊥, so that one of the m sets Σj = {e2j−1, e2j} must be contained
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in Dx
⊥ (or else Σj∩Dx

⊥ would, for each j = 1, . . . ,m, have exactly one element,
leading to a case which we already excluded).

Now that e2j−1, e2j ∈ Dx
⊥ for some j, Lemma 2.2(iii) gives Sj = 0 and,

consequently, s = 0. 2

4 Proof of Theorem D

In any essentially conformally symmetric manifold (M, g) such that the Ol-
szak distribution D is one-dimensional, setting E = D⊥/D, one has a vector-
bundle morphism

Φ : (D∗)⊗2 → (E∗)⊗2 (6)

defined as follows. We declare Φx(λ ⊗ λ′) : Ex × Ex → R, for x ∈ M and
λ, λ′ ∈ Dx

∗, to be the symmetric bilinear form sending the cosets v + Dx

and v ′ + Dx of vectors v, v ′ ∈ Dx
⊥ to Wx(v, u, u

′, v ′), where u, u′ ∈ TxM
are any vectors with λ = gx(u, · ) and λ′ = gx(u

′, · ) on Dx. Note that,
as Dx ⊂ KerWx by (5.b), the value Wx(v, u, u

′, v ′) depends just on the Dx-
cosets, rather than the vectors v, v ′ themselves, while, by Lemma 2.2(iii),
Wx(v, u, u

′, v ′) is not affected by how u and u′ were chosen: two such choices
of either vector differ by an element of Dx

⊥.

Remark 4.1 If (M, g) is essentially conformally symmetric and D is one-
dimensional, the Levi-Civita connection of g induces flat connections in both
bundles (D∗)⊗2 and (E∗)⊗2 (by Lemma 2.2(iv)), and the morphism Φ is

(a) parallel relative to those connections,
(b) nonzero, and hence injective, at every point x ∈M .

Here (a) states that Φ, viewed as a section of the bundle Hom((D∗)⊗2, (E∗)⊗2),
is parallel relative to the induced flat connection, or, equivalently, that the Φ-
image of any parallel local section of (D∗)⊗2 is parallel in (E∗)⊗2.

Assertion (a) is obvious from naturality of Φ, since W is parallel. To verify
(b), note that if we had Wx(v, u, u, v

′) = 0 for a fixed u ∈ TxM rDx
⊥ and all

v, v ′ ∈ Dx
⊥, the components of Wx in a basis consisting of u and a basis of Dx

⊥

would vanish (Lemma 2.2(iii)), even though (M, g) is not conformally flat.

Remark 4.2 Given an essentially conformally symmetric manifold (M, g),
let D and E be as in (6). Since D is the g-nullspace subbundle of D⊥ (cf.
Lemma 2.2(i)), the metric g, restricted to D⊥, descends to a pseudo-Riemanni-
an fibre metric γ on E . Clearly, γ is parallel relative to the connection induced

10



by the Levi-Civita connection ∇ of g. Being ∇-parallel, D⊥ is integrable and
has totally geodesic leaves, and the Levi-Civita connection of g induces on
each leaf a torsionfree connection, which is flat in view of Lemma 2.2(iii).

If the sign pattern of g is (i−, i+), with i− minuses and i+ pluses, then γ has
the sign pattern (i− − d, i+ − d), where d the dimension of the distribution
D. This is clear if one chooses a subspace V of Dx

⊥ with Dx
⊥ = Dx ⊕ V , for

any x ∈ M , and notes that TxM = V ⊕ V ⊥, while V and V ⊥ have the sign
patterns equal to that of γ and, respectively, (d, d) (as Dx ⊂ V ⊥).

We can now prove Theorem D. Let (M, g) be essentially conformally sym-
metric and Lorentzian, and let d be the dimension of D. Then d = 1 by
Lemma 2.2(i), since d ≤ 1 due to the Lorentzian sign pattern −+ . . .+. (In
fact, TxM contains V ⊕Dx, for any x ∈M and any codimension-one subspace
V ⊂ TxM on which gx is positive definite.)

The parallel injective morphism Φ in (6) now gives rise to a fibre norm | |
in the line bundle D, which is parallel (invariant under parallel transports).
Namely, for x ∈ M and u ∈ Dx r {0}, we set |u| = |Φx(λ ⊗ λ)|−1/2, where
λ ∈ Dx

∗ is chosen so that λ(u) = 1, and the latter | | is the fibre norm in
(E∗)⊗2 corresponding to the fibre metric γ in E . Note that γ is positive
definite as d = 1 (see Remark 4.2). Since a | |-unit section of D is parallel,
this proves Theorem D.

5 Proof of Theorem B

Let an essentially conformally symmetric manifold (M, g) satisfy one of the
following two conditions:

(i) M is simply connected and the Olszak distribution D is one-dimensional,
(ii) g is Lorentzian and D is trivial as a real line bundle, cf. Theorem D.

Then there exist functions ψ, φ and a vector field u on M such that

(a) u is parallel, nonzero, and spans D,
(b) the 1-form ξ = g(u, · ) is parallel, the Ricci tensor ρ equals ψ ξ⊗ξ, and

dψ = φ ξ,
(c) φ is nonconstant if M is compact.

Still assuming (i) or (ii), we define a vector-bundle morphism A : E → E by
requiring that γx(Axη, · ) = [Φx(λ ⊗ λ)](η, · ) for x ∈ M and η ∈ Ex with
λ ∈ D∗

x such that λ(ux) = 1. (Notation of Lemma 2.2(iv), Remark 4.2 and
(6).) Then
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(d) A is ∇-parallel as a section of Hom(E , E), nonzero, self-adjoint relative
to γ and traceless at every point,

(e) in the case where Ax : Ex → Ex has n − 2 = dim Ex distinct eigenvalues
at some/every point x ∈ M , for n = dimM ≥ 4, the bundle E over M
is an orthogonal direct sum of ∇-parallel real-line subbundles.

Under the assumption (i), there exists a function t : M → R such that, for
ξ = g(u, · ),

(f) ξ = dt (or, equivalently, u = ∇t) and ψ is, locally, a function of t.

In fact, u in (a) exists in view of Lemma 2.2(iv) and Theorem D, while (b),
for some ψ and φ, follows from Lemma 2.2(ii), since ∇ρ = dψ ⊗ ξ ⊗ ξ is
totally symmetric by Lemma 2.1(b). Now, if φ were constant and M compact,
dψ would be parallel (as ξ is), and so, being zero somewhere, dψ would
vanish identically. However, ψ is nonconstant, since ρ cannot be parallel: g
is conformally symmetric but not locally symmetric. This contradiction proves
(c). Next, (d) holds in view of Remark 4.1 and Theorem D, with traceless-
ness of A due to vanishing of the contractions of W. Assertion (e) is now
immediate, the subbundles in question being the eigenspace bundles of A.
Finally, ξ is parallel, and hence closed, so that (b) implies (f).

We can now prove Theorem B. Let (M, g) be a compact essentially confor-
mally symmetric Lorentzian manifold. Theorem D allows us to assume that
(M, g) admits a global parallel vector field u spanning the one-dimensional
null parallel distribution D. Condition (ii) above is therefore satisfied, which
implies (b), while the function φ in (b) is nonconstant by (c). The assertion
of Theorem B is thus immediate from Lemmas 1.2 and 2.2(iii).

Remark 5.1 Let (M, g) be any compact essentially conformally symmetric
Lorentzian manifold such that the Olszak distribution D is trivial as a real
line bundle. Choosing ξ, φ, ψ as in (a) – (c), and t as in (f) (where, for t
to exist, we use instead of (M, g) its universal covering manifold (M̂, ĝ)), we
see that ξ, φ, ψ and t satisfy all the hypotheses of Lemma 1.2. Consequently,
they satisfy the conclusions of Lemma 1.2 as well. This proves the claims
immediately following Theorem C in the Introduction.

6 Examples

Suppose that we are given a nonconstant C∞ function f : R → R, a real
vector space V of dimension n−2 ≥ 2 with a pseudo-Euclidean inner product
〈 , 〉, and a nonzero traceless linear operator A : V → V , self-adjoint relative
to 〈 , 〉. Following [17], we use such data to define a pseudo-Riemannian metric
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ĝ = κ dt2 + dt ds + h on the manifold M̂ = R2 × V , diffeomorphic to Rn,
where products of differentials stand for symmetric products, t, s are the
Cartesian coordinates on the R2 factor, h denotes the pullback to M̂ of the
flat pseudo-Riemannian metric on V corresponding to the inner product 〈 , 〉,
and κ : M̂ → R is given by κ(t, s, v) = f(t)〈v, v〉+ 〈Av, v〉.

Let E be the vector space of all C∞ solutions u : R → V to the differential
equation ü(t) = f(t)u(t)+Au(t), and let P be the additive group of all p ∈ R
with f(t+ p) = f(t) for every real t. The set G = P×R× E has a unique
group structure such that, for (p, q, u) ∈ G and (t, s, v) ∈ M̂ = R2× V , the
formula (p, q, u) · (t, s, v) = (t+ p, s+ q− 〈u̇(t), 2v+ u(t)〉, v+ u(t)) describes
a group action of G on M̂ . See [10, Section 2].

Lemma 6.1 For any choice of the above data f, n, V , 〈 , 〉 and A,

(i) the metric ĝ is essentially conformally symmetric,
(ii) the sign pattern of ĝ arises from that of 〈 , 〉 by adding one plus and

one minus,
(iii) the group G acts on (M̂, ĝ) by isometries,
(iv) if n = 4 and the metric ĝ is Lorentzian,

a) G is a subgroup of finite index in the full isometry group of (M̂, ĝ),
b) (M̂, ĝ) is not the universal covering space of any compact pseu-

do-Riemannian manifold.

Proof. For (i), see [17, Theorem 3] or [10, Lemma 2.1], while (ii) is obvious,
and (iii) is immediate from [10, Lemma 2.2].

Generally, the index ind(G ′,G) of a subgroup G in a group G ′ is the car-
dinality of the quotient set G ′/G consisting of all left cosets of G in G ′.
If H ′ ⊂ G ′ is a subgroup such that G ′ = H ′G, then, for H = G ∩ H ′, the
inclusion mapping H ′ → G ′ clearly induces a bijection H ′/H → G ′/G, and
so ind(G ′,G) = ind(H ′,H). Here are two special cases in which groups G ′,G
and H satisfy the above assumption, and hence the conclusion:

(I) H ′ = KerΠ for a group homomorphism Π : G ′→ K with Π(G) = K,
(II) G ′ acts from the left on a set Y , the action restricted to G is transitive,

and H ′ is the isotropy subgroup of G ′ at some y ∈ Y .

Let ĝ now be Lorentzian, and let G ′ denote the group of those isometries
of (M̂, ĝ) which preserve the 1-form dt. The Ricci tensor of ĝ is given by
ρ = (2 − n)f(t) dt ⊗ dt, and dt is parallel. (See [17, p. 93], where the sign
convention for ρ is the opposite of ours.) Thus, by Lemma 2.2(ii), the Olszak
distribution D is spanned by the null parallel vector field u = ∇t. Since u
can be naturally normalized with the aid of a parallel fibre norm in D (see
the end of Section 4), isometries of (M̂, ĝ) leave dt invariant up to a sign, so
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that the full isometry group of (M̂, ĝ) contains G ′ as a subgroup of index at
most 2, and (iv-a) will follow if we show that ind(G ′,G) is finite.

As G ′ preserves dt and ρ = (2 − n)f(t) dt ⊗ dt, we have t ◦ α = t + Π(α)
for some homomorphism Π : G ′ → R and all α ∈ G ′, while the function
f(t) : M̂ → R is G ′-invariant. Thus, Π(G ′) coincides with the additive group
P defined earlier in this section, and so ind(G ′,G) = ind(KerΠ,G∩ KerΠ),
in view of (I) above for K = P and Π : G ′→ P. Next, for any fixed t ∈ R,
the action of KerΠ leaves the affine subspace M̂t = {t} × R × V of M̂
invariant, and the restriction of this action to G∩ KerΠ is transitive on M̂t,
since it consists of affine transformations realizing all translational parts in
{0} ×R × V . Consequently, (II) gives ind(G ′,G) = ind(H ′,H), where H ′ is
the isotropy subgroup of G ′ at any fixed x ∈ M̂ , and H = G ∩ H ′.

On the other hand, ind(H ′,H) ≤ 4 if n = 4. Namely, the infinitesimal action
of H ′ on TxM̂ = R2× V preserves dtx and the vector ux = (0, 1/2, 0), along
with the subspace u⊥x = Dx

⊥. Hence the action descends to Ex = Dx
⊥/Dx,

where it preserves the inner product γx (see Remark 4.2) and commutes with
the operator Ax : Ex → Ex which, under the obvious identification Ex ≈ V ,
coincides with our A : V → V . (See [17, the description of W on p. 93].)
The differentials at x of elements of H ′, acting on TxM̂ = R2× V , thus have
the form (t, s, v) 7→ (t, s + ϕ(v), Lv), where L : V → V is a linear isometry
commuting with A, and ϕ ∈ V ∗. As elements of the subgroup H realize all
ϕ ∈ V ∗, and have L = Id, it follows that ind(H ′,H) ≤ 4 (see Remark 6.2
below), which yields (iv-a).

Finally, to prove (iv-b), we may suppose that, on the contrary, some group
Γ of isometries of (M̂, ĝ) acts on M̂ properly discontinuously, producing a
compact quotient manifold. The same is then true for the subgroup Γ∩G of
Γ (as Γ ∩G is of finite index in Γ, by (iv-a)), which in turn contradicts [10,
Theorem 7.3]. Note that periodicity of f as a function of t, required in [10],
follows from Lemma 1.2(b), cf. Remark 5.1. 2

Remark 6.2 For a nonzero traceless self-adjoint linear endomorphism A of
a pseudo-Euclidean plane V , there may exist at most four linear isometries
L : V → V commuting with A. This is clear when A is diagonalizable, since
L must then send an orthonormal basis (v, w) diagonalizing A to (±v,±w)
or (±v,∓w). On the other hand, if a linear isometry L commutes with A and
A is non-diagonalizable (so that V is Lorentzian), we have L = ±Id. In fact,
let L 6= ±Id. The two null lines in V are interchanged by L (if they were
preserved, L would be diagonalizable, implying the same for A). However,
choosing a basis (v, w) of null vectors with Lv = w and Lw = v, we would
then again diagonalize L (and hence A), this time with the eigenvectors v±w.
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7 A classification theorem

In the following theorem, t denotes any fixed function M̂ → R such that
u = ∇t is a global parallel vector field spanning the Olszak distribution D.
Such t exists according to (f) in Section 5, cf. Theorem D.

Theorem 7.1 Let (M̂, ĝ) be a simply connected essentially conformally sym-
metric Lorentzian manifold of dimension n ≥ 4 such that the leaves of the
parallel distribution D⊥ are all complete and the function t : M̂ → R satisfies
condition (c) in Lemma 1.2. Then, up to an isometry, (M̂, ĝ) is one of the
manifolds constructed in Section 6.

Our proof of Theorem 7.1, given in Section 9, uses the facts presented below.

Let (M̂, ĝ) be a simply connected essentially conformally symmetric manifold
such that the Olszak distribution D is one-dimensional. If v, v ′ are sections
of D⊥ and u is a fixed nonzero parallel section of D, while u′ is any vector
field, then

R(u′, v)v ′ = g(u′, u)[γ(Av, v ′) + fg(v, v ′)]u, (7)

where f : M̂ → R is given by f = (2 − n)−1ψ, for n = dim M̂ ≥ 4, with
ψ and A defined as in Section 5, and v denotes the image of v under the
quotient-projection morphism D⊥ → E = D⊥/D. (Thus, f is characterized
by ρ = (2− n)f ξ ⊗ ξ, for the parallel 1-form ξ = g(u, · ) = dt.)

In fact, by Lemma 2.2(iii), R(u′, v)v ′ is orthogonal to D⊥, and hence equals
a function times u. As both sides of (7) are linear in u′, (7) will follow if,
under the assumption g(u′, u) = 1, applying g(u′, · ) to both sides we obtain
the same value. This last conclusion is in turn immediate from Lemma 2.1(a)
combined with the definition of A in Section 5, since ρ = (2− n)f ξ⊗ ξ. (By
(5.a), ρ(v, · ) = ρ(v ′, · ) = 0.)

Remark 7.2 Let (M̂, ĝ) satisfy the assumptions of Theorem 7.1. We say
that a curve I → M̂ , defined on an interval I ⊂ R, is parametrized by the
function t : M̂ → R (chosen at the beginning of this section) if t sends the
image of the curve diffeomorphically onto I. Such a curve may be written as
I 3 t 7→ y(t) ∈ M̂ , with t serving as the parameter.

(a) Up to an affine re-parametrization, every geodesic in (M̂, ĝ), not tangent
to the distribution D⊥, is parametrized by the function t.

(b) If a curve R 3 t 7→ y(t) ∈ M̂ is parametrized by the function t, then so is
every curve t 7→ x(t, s) in the variation given by x(t, s) = expy(t) sw(t),

where R 3 t 7→ w(t) ∈ D⊥
y(t) is any vector field along the original curve,
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tangent to D⊥.
(c) For any curve R 3 t 7→ y(t) ∈ M̂ is parametrized by the function t, we

have g(ẏ, u) = 1, for u = ∇t, and ∇ẏẏ is tangent to D⊥.

In fact, (a) and (b) follow since ∇dt = 0, so that t restricted to any geodesic
is an affine function of the geodesic parameter, while the leaves of D⊥ are
totally geodesic (Remark 4.2), and t is constant on each leaf as D⊥ = Ker dt.
Now (c) is immediate as D⊥ = u⊥ and u = ∇t is parallel: differentiating
g(ẏ, u) = 1, we get g(∇ẏẏ, u) = 0.

The following lemma is a crucial step in proving Theorem 7.1.

Lemma 7.3 Under the assumptions of Theorem 7.1, (M̂, ĝ) is complete.

Proof. Using (c) in Lemma 1.2, we may fix a curve R 3 t 7→ y(t) ∈ M̂
parametrized by the function t (cf. Remark 7.2), and consider the differential
equation

∇ẏ∇ẏw +R(ẏ, w)ẏ +∇ẏẏ = −Q(w)u/4 (8)

imposed on vector fields w along the curve which are tangent to D⊥. Here
u = ∇t and Q(w) = 3[γ(Aw, w)]̇ + 3f [g(w,w)]̇ + 2ḟg(w,w), with f, A,w
as in (7), and [ ]̇ = d/dt. (Thus, ḟ = df(y(t))/dt.) By Remark 7.2(c), both
sides of (8) are tangent to D⊥, that is, orthogonal to u, as ∇u = 0 and so
R( · , · , · , u) = 0.

Every solution w to (8) can be defined on the whole real line. Namely, this
is true, due to linearity, for solutions w̃ (tangent to D⊥) of the equation
∇ẏ∇ẏw̃+R(ẏ, w̃)ẏ+∇ẏẏ = 0. Using any such w̃ and any function µ : R → R
with the second derivative µ̈ = Q(w̃)/4, we now get a solution w = w̃ − µu
to (8), defined on R. (Note that Q(w) = Q(w̃), and R(ẏ, u)ẏ = 0 since
∇u = 0.)

Any solution w to (8), defined on R, leads to the variation of curves in M̂
given by x(t, s) = expy(t) sw(t). Let v be the vector field along the variation
such that vs = 0 for all (t, s), and v = ∇ẏẏ at s = 0 (notation as in (3)).
We have

i) xtt + (s− 1)[v − sQ(xs)u/4] = 0, ii) [Q(xs)]s = 0. (9)

where the subscripts now also stand for partial derivatives of functions of (t, s),
and Q(xs) = 3[γ(Axs, xs)]t + 3f [g(xs, xs)]t + 2ftg(xs, xs). Before proving (9),
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note that

a) g(xt, u) = 1, b) xss = 0,

c) xs, xtt and xst = xts are all tangent to D⊥.
(10)

In fact, (10.a) and the claim about xtt in (10.c) are immediate from clauses
(b), (c) in Remark 7.2. Next, xss = 0 and xs is tangent to D⊥, as D⊥

has totally geodesic leaves (Remark 4.2), while the curves s 7→ x(t, s) are
geodesics, tangent to D⊥ at s = 0. Finally, xst is tangent to D⊥, since so is
xs and D⊥ is parallel.

Furthermore, for the covariant derivatives Rt, Rs of the curvature tensor,

a) Rt(xt, xs)xs = ftg(xs, xs)u, b) Rs = 0, c) fs = 0. (11)

Namely, by (f) in Section 5, f is a function of t, while ts = 0 as the curves
s 7→ x(t, s) are tangent to D⊥ = Ker dt, and (11.c) follows. In view of the
frelations ρ = (2 − n)f(t) dt ⊗ dt, ∇W = 0 and ∇dt = 0, equalities (11.a)
and (11.b) are immediate from (11.c) and Lemma 2.1(a).

We can now prove (9). Relation (9.ii) is obvious from (11.c), as g, γ and A
are parallel, so that (10.b) yields [γ(Axs, xs)]s = [g(xs, xs)]s = 0. Denoting by
ṽ the left-hand side of (9.i), we get ṽ = ṽs = 0 at s = 0 (from (3.a), (8) and
(9.ii) with us = vs = 0). Finally, ṽss = 0 for all (t, s), since (3.b) and (7) give
xttss = Q(xs)u/2. More precisely, according to (3.b) with xss = 0 (see (10.b)),
xttss equals the sum of three curvature terms, so that, using the Leibniz rule
with xts = xst, we obtain xttss = 3R(xt, xs)xst + Rt(xt, xs)xs, all the other
terms being zero as a consequence of Lemma 2.2(iii) combined with (10.b,c),
and (11.b). Using (7) with (10.a,c) and (11.a), we now get xttss = Q(xs)u/2
and ṽss = 0.

Thus, ṽs must be identically zero, as it is parallel in the s direction and
vanishes at s = 0. For the same reason, ṽ = 0 for all (t, s), which yields (9.i).

By (9.i), xtt = 0 when s = 1, so that the curve t 7→ x(t, 1) is a geodesic
defined on R. Such geodesics realize all initial conditions (x, ẋ) with the
velocities ẋ for which gx(ux, ẋ) = 1 (the normalization being due to the fact
that they are parametrized by the function t, cf. Remark 7.2). Namely, we can
realize (x, ẋ) by the curve t 7→ y(t) chosen above, and then use the solution
w to (8) with the zero initial conditions. 2
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8 Proof of Theorem 7.1

Suppose that (M̂, ĝ) satisfies the assumptions of Theorem 7.1. The data re-
quired for the construction in Section 6 can be introduced as follows. For u
chosen at the beginning of Section 7, we define f as in the lines following
(7). According to (f) in Section 5, f is, locally, a function of t. The word
‘locally’ may be dropped as we are assuming condition (c) in Lemma 1.2, and
hence the level sets of t are connected. Next, we let V be the space of all
parallel sections of E , so that dimV = n− 2 by Lemma 2.2(iv). Finally, the
pseudo-Euclidean inner product 〈 , 〉 in V and A : V → V are the objects
induced, in an obvious manner, by the fibre metric γ on E and the bundle
morphism A : E → E , both of which are parallel (see Remark 4.2 and (d) in
Section 5).

We now fix a null geodesic R 3 t 7→ x(t) ∈ M̂ parametrized by the function
t, which exists in view of Lemma 7.3 and Remark 7.2(a). As g(ẋ, u) = 1 (see
Remark 7.2(c)), the plane P in Tx(0)M̂ spanned by the null vectors ẋ(0) and

ux(0) is gx-nondegenerate, with the sign pattern −+, so that Tx(0)M̂ = P⊕ Ṽ ,

for Ṽ = P⊥.

We define a mapping F : R2×V → M̂ by F (t, s, v) = expx(t)(ṽ(t)+sux(t)/2),

for the parallel vector field t 7→ ṽ(t) ∈ Tx(t)M̂ with ṽ(0) = pr vx(0), where pr

is the orthogonal projection Tx(0)M̂ → Ṽ (and so pr, restricted to Dx
⊥ for

x = x(0), descends to the quotient Ex = Dx
⊥/Dx, forming an isomorphism

Ex → Ṽ ).

That F is a diffeomorphism can be seen as follows. The manifold N in
Lemma 1.2(c) is simply connected, since so is M̂ . Therefore, each leaf of
D⊥ (level set of t), with its complete flat torsionfree connection (Remark 4.2),
is the diffeomorphic image of its tangent space at any point under the expo-
nential mapping, cf. Remark 1.3.

Finally, according to [11, Lemma 5.1] F ∗ĝ coincides with the metric κ dt2 +
dtds+h on R2×V , constructed from the data described above as in Section 6.

9 Proof of Theorem C

In the following lemma, the bundle morphism A : E → E defined in Section 5
makes sense even without assuming that the line bundle D is trivial. In fact,
A depends quadratically on our fixed nonzero parallel section u of D, which,
for nontrivial D, is still well-defined, locally, up to a sign. (Cf. Theorem D.)
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Lemma 9.1 Let (M, g) be a compact essentially conformally symmetric Lo-
rentzian manifold of dimension n ≥ 4 such that, at some/every point x ∈M ,
the nonzero traceless self-adjoint endomorphism Ax : Ex → Ex has n − 2 =
dim Ex distinct eigenvalues. Then the leaves of the parallel distribution D⊥ are
all complete.

In fact, in view of Lemma 2.2(iv) and (e) in Section 5, passing to a suitable
finite covering of M we may assume that both vector bundles D and E over
M are trivialized by their parallel sections. Our assertion now follows from
Lemma 1.4 applied to L which is the restriction of D to any leaf N of D⊥.

Remark 9.2 For n = 4, the assumption about eigenvalues in Lemma 9.1
is redundant: it follows from the other stated properties of Ax, since γx is
positive definite (Remark 4.2).

We now proceed to prove Theorem C. Suppose that (M, g) is a compact essen-
tially conformally symmetric Lorentzian four-manifold. Its universal covering
(M̂, ĝ) then satisfies the assumptions of Theorem 7.1: the leaves of D⊥ are
complete by Lemma 9.1 (cf. Remark 9.2), while condition (c) in Lemma 1.2
holds for t in view of Remark 5.1.

The conclusion of Theorem 7.1 now contradicts Lemma 6.1(iv-b).

10 Vector bundles related to Killing fields

Throughout this section, (M, g) stands for a fixed essentially conformally
symmetric pseudo-Riemannian manifold of dimension n ≥ 4 such that the
Olszak distribution D is two-dimensional, and ω is the 2-form described in
Remark 2.3. We assume that ω is single-valued, rather than being defined just
up to a sign, which can always be achieved by passing to a two-fold covering
manifold, if necessary.

In addition to D and D⊥, we consider here the real vector bundle Y over
M , the sections of which are the differential 2-forms ζ such that ζ(v, · ) = 0
for every section v of D. Thus, Y is a subbundle of (T ∗M)∧2, isomorphic to
([(TM)/D]∗)∧2, and ω is a section of Y (as D ⊂ Ker ω by (5.a) and (4). Let
L be the real-line subbundle of Y spanned by ω. The Levi-Civita connection
of g induces connections, all denoted by ∇, in each of the bundles D,D⊥,Y
and L.

The formula ∇
◦

u(v, ζ) = (∇uv − ζu,∇uζ − (n− 2)−1g(v, · ) ∧ ρ(u, · )), with ρ

standing for the Ricci tensor of g, clearly defines a connection ∇
◦

in the vector
bundle D⊥⊕ Y . (Here ζu is the unique vector field with g(ζu, · ) = ζ(u, · ),
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and similarly for the symbols ρu, ωx appearing below.) The following facts
will be needed in the next section.

(a) The connection ∇
◦

in D⊥⊕ Y is flat.

(b) The subbundle D ⊕ L of D⊥⊕ Y is ∇
◦
-parallel.

(c) For every ∇
◦
-parallel section (v, ζ) of D⊥⊕Y , the g-covariant derivative

∇v is ∇-parallel along D⊥.

If M is also simply connected, then, for the space V of all ∇
◦
-parallel sections

of D ⊕ L,

(d) dimV = 3,
(e) there exists a unique C∞ mapping F : M → V r {0} such that F (x),

for x ∈M , is characterized by F (x) = (v, ζ) with vx = 0 and ζx = ωx,
(f) for F as in (e) and any x ∈ M , the differential dFx : TxM → V has

rank 2, while the image dFx(TxM) and F (x) together span V ,
(g) the leaves of D⊥ are the connected components of nonempty F -preim-

ages of points of V ,
(h) for every leaf N of D⊥, the tangent bundle TN is trivialized by its

∇-parallel sections (cf. Remark 4.2).

We will not use the easily-verified fact that the assignment v 7→ (v, ζ), with
ζ characterized by ζ(u, · ) = g(∇uv, · ) for all vector fields u, is a linear
isomorphism between the space of all Killing fields v on (M, g) tangent to

D⊥, and the space of all ∇
◦
-parallel sections (v, ζ) of Y .

Let R
◦
, R and R̂ be the curvature tensors of ∇

◦
, the Levi-Civita connection

∇ of g and, respectively, the connection induced by ∇ in [T ∗M ]∧2. For

arbitrary vector fields u, u′ on M , (1) yields R
◦
(u, u′)(v, ζ) = (v ′, ζ ′), where

v ′ = R(u, u′)v − (n− 2)−1[g(v, u)ρu′− g(v, u′)ρu] and

ζ ′ = R̂(u, u′)ζ + (n− 2)−1[ζ(u, · ) ∧ ρ(u′, · )− ζ(u′, · ) ∧ ρ(u, · )].

(By Lemma 2.1(b), (∇uρ)(u
′, · ) is symmetric in u, u′.) Now Lemma 2.1(a)

gives g(v ′, · ) = W (u, u′, v, · ). (Note that ρ(v, · ) = 0 in view of (5.a), since
v is a section of D⊥.) Consequently, v ′ = 0, as v is a section of D⊥ =
Ker ω ⊂ KerW, by (4) with W = εω⊗ω. Furthermore, by the Ricci identity,
[R̂(u, u′)ζ ](w,w ′) = ζ(R(u′, u)w,w ′) + ζ(w,R(u′, u)w ′) for any vector fields
w,w ′. Replacing R here by the expression in Lemma 2.1(a), we get ζ ′ = 0.
(In fact, numerous terms vanish since the images of Wx and ρx at any point
x are contained in Dx ⊂ Ker ζx, cf. (4) and (5.a).) This proves (a).

Next, if (v, ζ) is a section of D ⊕ L, then, for any vector field u, so are
(∇uv,∇uζ) (since D and ω are parallel), and (ζu, (n− 2)−1g(v, · ) ∧ ρ(u, · )
(as D is the image of ω by (4), and ζ equals a function times ω, while
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v and ρu are sections of D, cf. Lemma 2.2(ii)). Consequently, ∇
◦

u(v, ζ) is a
section of D ⊕ L as well, and (b) follows.

By the definition of ∇
◦
, if (v, ζ) is a ∇

◦
-parallel section of D⊥ ⊕ Y , then

∇uζ = 0 for every section u of D⊥, as one then has ρ(u, · ) = 0 by (5.a).
Hence ζ is ∇-parallel along D⊥, which yields (c).

Now let M be simply connected. Assertion (d) is obvious from (a) and (b),
as 3 is the fibre dimension of D ⊕ L. Similarly, (e) is due to the existence of
a unique parallel section of D ⊕ L with a prescribed value at x.

To prove (f), we first observe that dFx sends any u ∈ TxM to (v̇, ζ̇) ∈ V
characterized by v̇x = −ωxu and ζ̇x = 0. In fact, let t 7→ x(t) be a curve
in M , and let us set (v(t), ζ(t)) = F (x(t)). Suppressing the dependence on
t, and differentiating, covariantly along the curve, both the relation vx = 0
and the equality which states that (∇v)x corresponds via gx to ωx, we get
v̇x+ωx(ẋ, · ) = 0 and (∇v̇)x = 0, as required. (The second covariant derivative
of the Killing field v at x depends linearly on vx, due to a well-known identity,
cf. [12, formula (17.4) on p. 536], and so ∇(∇v) = 0 at x, since vx = 0.) As
rank ω = 2 (see Remark 2.3), this implies (f).

As a consequence of (c), F is constant along D⊥. (Note that ∇ω = 0 and,
by (4), D⊥ = Ker ω.) Now (g) is immediate from (f).

Finally, in view of (a), given a leaf N of D⊥, a point x ∈ N, and a vector

w ∈ TxN = Dx
⊥, we may choose a ∇

◦
-parallel section (v, ζ) of D⊥⊕Y satisfying

the initial conditions vx = w and ζx = 0 (that is, (∇v)x = 0). Thus, v is
tangent to N and, by (c), ∇-parallel along N, which proves (h).

11 Proof of the second part of Theorem A

We need the following two simple facts from topology.

Lemma 11.1 If the fundamental group Γ of a compact k-dimensional man-
ifold P is Abelian and the universal covering manifold of P is diffeomorphic
to Rk, then Γ is isomorphic to Zk.

Proof. As Γ is torsionfree by Smith’s theorem [13, p. 287], and finitely
generated, it is isomorphic to Zr for some integer r ≥ 1. The K(Zr, 1)
space P must have the homotopy type of the r-torus [18, pp. 93–95], so
that r = k, since both r and k are equal to the highest integer m with
Hm(P,Z2) 6= {0}. 2
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Lemma 11.2 If M → S2 is a fibration and its fibre N is a compact manifold
of dimension k ≥ 2 with a universal covering space diffeomorphic to Rk, then
the fundamental group of M is infinite.

Proof. Since Z = π2S
2 → π1N → π1M is a part of the homotopy exact

sequence of the fibration M → S2, if π1M were finite, the image Γ of Z =
π2S

2 would be a cyclic subgroup of finite index in π1N. The manifold P =
Rk/Γ, forming a finite covering space of N = Rk/π1N, would be compact,
which, as k ≥ 2, would contradict Lemma 11.1. 2

We now assume that (M, g) is a compact simply connected essentially con-
formally symmetric manifold. As we show below, this assumption leads to a
contradiction, which proves the claim about π1M in Theorem A.

Let d ∈ {1, 2} be the dimension of the Olszak distribution D (Lemma 2.2(i)).

If d = 1, Lemma 2.2(iv) implies the existence of a nonzero global parallel
vector field u spanning D. The 1-form ξ = g(u, · ), being parallel, is closed,
so that ξ = dt for some function t. As dt is parallel, dt 6= 0 everywhere,
which contradicts compactness of M .

Now let d = 2, and let V , F be as in (d) – (g), Section 10. For a fixed
Euclidean norm | | in the 3-space V , the formula π(x) = F (x)/|F (x)| defines
a submersion π : M → S2 valued in the unit sphere S2 = {w ∈ V : |w| = 1}.
As π(M) ⊂ S2 is both compact and open, the submersion π is surjective, so
that π is a fibration (Remark 1.1). The fibres of π thus are the leaves of D⊥

(see (g) in Section 10). If a fixed fibre N is endowed with the flat torsionfree
connection mentioned in Remark 4.2, then, according to (h) in Section 10,
TN is trivialized by its parallel sections. Lemma 1.4 (for L = TN) and
Remark 1.3 now imply that the universal covering manifold of N is diffeo-
morphic to Rn−2. Since π1M was assumed to be trivial, and n− 2 ≥ 2, this
contradicts Lemma 11.2, thus completing the proof of Theorem A.

12 Further remarks

This section consists of three separate comments, indicating how some results
presented above might be strengthened.

First, Theorem 7.1, with essentially the same proof, remains valid if, in its
assumptions, condition (c) in Lemma 1.2 and completeness of the leaves of
D⊥ are replaced by completeness of ĝ.
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Secondly, the argument that we used to show nonexistence of compact four-di-
mensional essentially conformally symmetric Lorentzian manifolds can be min-
imally modified so as to yield the following classification theorem: If a compact
essentially conformally symmetric Lorentzian manifold (M, g) of any dimen-
sion n ≥ 4 satisfies the assumption about distinct eigenvalues made in Lemma
9.1, then the pseudo-Riemannian universal covering (M̂, ĝ) of (M, g) coin-
cides, up to an isometry, with one of the manifolds constructed in Section 6,
and the fundamental group of M , treated as a group of isometries of (M̂, ĝ),
has a finite-index subgroup contained in the group G defined in Section 6.

Finally, in Section 11 we showed that π1M is infinite for any compact essen-
tially conformally symmetric manifold (M, g), using separate arguments for
the cases d = 1 and d = 2, where d is the dimension of the Olszak distri-
bution D. If d = 1, we obtain the stronger conclusion b1(M) ≥ 1 from the
following lemma applied to F = D⊥ along with a vector-bundle isomorphism
D → [(TM)/F ]∗ provided by g, cf. Lemma 2.2(iv).

Lemma 12.1 Let a compact manifold M with a torsionfree connection ∇
admit a codimension-one ∇-parallel distribution F such that the connection
induced by ∇ in the line bundle (TM)/F is flat. Then the first Betti number
b1(M) is positive, and, consequently, M has an infinite fundamental group.

Proof. The dual bundle of (TM)/F may be identified with the real-line sub-
bundle L of T ∗M such that the sections of L are precisely those 1-forms ξ
on M with ξ(w) = 0 for every section w of F . Clearly, L is ∇-parallel.

Suppose, on the contrary, that b1(M) = 0, so that the homology group
H1(M,Z) is finite. Replacing M by a two-fold covering manifold, if neces-
sary, we may assume that L is spanned by a global nonzero parallel 1-form
ξ. In fact, the connection in L induced by ∇ is flat, and so its holonomy
representation, with any fixed base point x ∈ M , is valued in the multiplica-
tive group R r {0}. Since R r {0} is Abelian, the holonomy representation
is a composite π1M → H1(M,Z) → R r {0}, and its image must, due to
finiteness of H1(M,Z), be contained in {1,−1}.

As ∇ is torsionfree and b1(M) = 0, the parallel 1-form ξ is closed, and hence
ξ = dt is nonzero everywhere, for some function t. Since this contradicts
compactness of M , our assertion follows. 2
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