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On Compact Riemannian Manifolds
with Harmonic Curvature*

Andrzej Derdzinski**

Wroctaw University, Mathematical Institute, PL-50-384 Wroctaw, Poland

1. Introduction

A Riemannian manifold M is said to have harmonic curvature if R=0 (in local
coordinates, V'R,;;=0), R being the curvature tensor of M and JR its formal
divergence. In view of the second Bianchi identity, this happens if and only if the
Ricci tensor S of M satisfies the Codazzi equation VS,;=VS,,. Thus, ‘every
Riemannian manifold with parallel Ricci tensor has harmonic curvature. The
question whether the converse statement is true for compact manifolds, raised by
Bourguignon in [3], was answered in the negative in [5] by giving explicit
counterexamples in dimension four. Moreover, [5] contains a classification
theorem for a certain class of compact Riemannian four-manifolds with harmonic
curvature.

The aim of this paper is to extend the results of [5] (description of examples
and the classification theorem) to the case of arbitrary dimension n=3. More
precisely, we construct, in Sect. 3, a family of compact Riemannian manifolds with
harmonic curvature, the Ricci tensor of which is not parallel and has less than
three distinct eigenvalues at any point, and prove that every analytic manifold
with these properties is covered isometrically by one of our examples (Theorem 2).
For n=35, this classification is highly inefficient, since it contains, as a kind of
parameter, an arbitrary compact (n— 1)-dimensional Einstein manifold of positive
scalar curvature.

2. Preliminaries

Given Riemannian manifolds (M, k™) and (N, h") and a positive function F on M,
one defines [7, 2] the F-warped product M x ;N of M and N to be the Riemannian
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manifold (M x N, k™ x .h"), where
(h™ x ph™) yu+X, 0+ V) =h¥(u,v)+ F(x)h)(X, Y)

for u,ve TM, X, Ye T)N.
For warped products M x N with dimM =1, an explicit computation gives
the following

Lemma 1[5, Remark 1 and Lemma 4]. Let I be an interval of R, considered with its
stardard metric, F a positive C* function on I and (N,h) an (n— 1)-dimensional
Riemannian manifold. Denoting by g the F-warped product metric of I x ;N and by S
its Ricci tensor, and letting the indices i,j,k run through 1, ...,n—1, we have

(i) Given a product chart t=x°x",..,x"~! for I x N with gyo=1, go;=0 and
gij= Fh;j, the components of S and VS are given by

1~n ” r
So0= T[zq +(¢)?], So;=0,

1)
S;=0,;—5e'[2¢" +(n—1)(¢)*1hy;,
and
1 - n " /i
VoSoo= T[q +4'q"), VoSi0=V:S00=0,
VoSij=—q'0;;—3¢'[q" +(n—1)q'q"h;;, 2

’ 2_n e/
ViSo;= —1q Qi+ e'q'q"h;;, ViSi;=Dyoy;,

4
where gq=logF and D, ¢ denote the Riemannian connection and Ricci tensor of
(N, h), respectively, while the components of h, ¢ and Dg are considered with respect
to the chart x!,...,x"" ! of N.

(ii) If F is non-constant and n23, then I x ;N has harmonic curvature if and
only if (N, h) is an Einstein space and the positive function ¢ = F"* on I satisfies the
ordinary differential equation

nk
T 4(n—1)

"

14

1—4/n

® =py 3)

for some real number p, k being the constant scalar curvature of N.

Remark 1. Let F be a non-constant positive function on an interval I such that, for
some (n— 1)-dimensional (n>3) Riemannian manifold N, the warped product
Ix ;N has harmonic curvature. By Lemma 1 (ii), N is an Einstein space and
@ = F"* satisfies (3) with p, k as above. Using (2) it is now easy to verify that the
Ricci tensor of I x ;N is parallel if and only if F is given by one of the following
formulae:

k(t—t,)?
(n—1)(n-2)’
F(t)=exp(de(t—to)p'/?/n), e= £ 1, for p>0,k=0,

F(t)= for p=0,k>0,
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or
|A|sin?(2(t — to)lp|*/?/n), for p<0,k>0,
F(t)=1 |Alch?(2(t—t,)p'/*/n), for p>0,k<O0,
|A|sh2(2(t—t,)p'/?/n), for p>0,k>0,
n2k . .
where A=————— and ¢, is a real parameter. In fact, in view of (2),

4p(n—1)(n—2)
condition VS=0 is equivalent to ¢”+¢'q"=0 and (n—1)(n— 2)q”+2ke 1=0,
which, in terms of the function v=]/F =e%2, means precisely that v"=cv and
(n—1)(n—2)[(v')?> — cv*] =k, for some constant c. Using (3) with ¢p=0v"?, we see
that ¢=4p/n®. Our assertion can now be obtained by explicitly solving the
equation v" =cv.

Lemma 1 suggests that, in order to use the warped product construction to
obtain compact manifolds with harmonic curvature, it is necessary to examine the
global behaviour of the solutions of (3). In this connection, we can prove the
following

Theorem 1. For real numbers k, p and an integer n=3, we have

(i) If k>0 and p <O, then (3) possesses some 2-parameter family of non-constant
positive periodic solutions, defined everywhere in IR.

(ii) Conversely, if (3) has at least one non-constant positive periodic solution,
defined on R, then k>0 and p <O.

Proof. Set B=n2k/(4(n— 1)(n— 2)). Multiplying both sides of (3) by ¢’ it is easy to
see that, apart from constant solutions, (3) is equivalent to

(@) =Be*”*"+pp*—c, (4)

where ¢ runs through RR. Setting H = ¢?*", we can rewrite (4) in the form

2
%H"‘ AH')?=pH"+BH" ?—c. )
Denote by P the polynomial P(y)=py"+ By" 2.
If k>0 and p <0, then B>0 and there exists exactly one y, >0 with P'(y,)=0.
Moreover, P(y,)= max P(y)>0. The relations P(0)=0 and P'(y)%0 for y>0,

V¥ Y,, imply now that for any real constant ce(0, P(y,)), the polynomial P—c has
precisely two positive roots a, b, both simple, which satisfy a.<y,<b, and,
viewed as functions of c, are strictly monotone and analytic. Moreover, P—c>0
everywhere in (a_ b,). The function @, on the closed interval I, =[a,,b_], given by

20)="] (P'(‘) i )”2 au,

is well-defined and continuous on the whole interval I, (which follows from the fact
that g, b, are simple roots of P—c) and analytic in its interior. Moreover,
lim @ (y)-— lim  @/(y)=co. Thus, #, maps I, homeomorphically onto [0, T.],

y=ac(+) y=be(—)

where T,=¢ (b)) >0. The inverse mapping H=H,: [0, T,]— I, is analytic in (0, T),
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satisfies (5), and t_lgg )H;(t)= Hlp(x_)Hé(z):O, We can now extend H, to a
function on IR, denoted again by H, and defined by

H(t)— H(t—2mT), if 2m=<t/T,<2m+1,melZ,

0= H@2mT,—t), if 2m—1<t/T,<2m,meZ.
It is easy to see that H_ is of class C' on IR, periodic with minimal period 27,>0
and

maxH, =b, minH =H/(0)=a,>0. (6)

Moreover, outside of the discrete set ZT,, H=H_ is analytic and satisfies (5). Thus,
the non-constant positive periodic function ¢ =¢@,=H"? of class C! is a solution
of (3) in R—ZT,. Consequently, it is of class C? and therefore analytic, and satisfies
(3) everywhere. The functions ¢, ,, where ¢, (t)=¢ (t+r) form a family of non-
constant positive periodic solutions of (3), depending essentially, in view of (6), on
two real parameters ce(0, P(y,)) and re(— T, T,). This yields (i).

To prove (ii), suppose that ¢:IRR—IR is a non-constant positive periodic
solution of (3). Then the function H = @2 satisfies (5) for a suitably chosen c. Since
H is periodic, we have 0 <a=min H <b=max H and, by (5), the polynomial P—c
satisfies P(a)—c=P(b)—c=0 and P(y)—c=0 for a<y<b. Moreover, (4) yields
B?+p?>>0. Choosing y,e(a,b) to be a local maximum of P, we have
0=y3""P'(yo)=npy2+(n—2)B, so that pB<0, and, for n=4,
0=y§ "P"(yo)=n(n—1)py}+(n—2)n—3)B=2(2—n)B, while for n=3, 0=P"(y,)
=6py,. Consequently, p<0and B>0, i.e., k>0. This completes the proof.

For a later application, we also prove

Lemma 2. Suppose that n=3, (N, h) is an (n—1)-dimensional Einstein manifold of
(constant) scalar curvature k and p a real number. Let F be a non-constant positive
function on R such that ¢ = F"* is a solution of (3), G the group of all translations of
IR leaving F invariant and M =R x N. If the Ricci tensor of M is not parallel, then

(i) The group G xIsomN, acting on the underlying manifold R x N of M in the
product manner, is contained in IsomM as a subgroup of finite index. If N is
compact, then this is also true for G x Isom®N, Isom°N being the identity component
of IsomN.

(i) If RX N covers isometrically a compact manifold, then k>0, p<0 and G is
non-trivial, i.e., F is periodic.

Proof. Formula (1) together with g,;= ;k—lhi ; shows that the Ricci tensor S of M

has at most two distinct eigenvalues at any point, and, since S is not a multiple of
the metric, it must have exactly two eigenvalues almost everywhere. Moreover,
again by (1), the S-eigenspace' decomposition of TM coincides with the product
decomposition of T(R x N). The latter is therefore invariant under the action of
IsomM, i.e, every isometry of M is a Cartesian product 6 x n of a difffomorphism
0 of R with a diffeomorphism 5 of N. The definition of warped product yields
(0 x n)*(g x ph)=0%g X r.gn*h, g being the standard metric of R. Thus feIlsomIR,
Fof=1F and n*h=t"'h for some real number t>0. Since @=F"* satisfies
@°0=1"*¢ with feIsomIR, it is easy to deduce from (3) together with Remark 1
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that t=1, i.e., § leaves F invariant and ne [som N. The group of all isometries of M
which preserve the orientation of the line subbundle of TM corresponding to the
R-factor of R x N is, clearly, a subgroup of index 1 or 2 in Isom M, which proves
the first statement of (i). Now, if N is compact, (i) follows from the fact that
Isom N/Isom°N is finite. To prove (ii), suppose that M,=M/I, is a compact
manifold covered isometrically by M, I, being a discrete subgroup of IsomM.
Since, by (i), the subgroup I', =I',"(G x Isom N) is of finite index in Iy, the obvious
map M, =M/I',—M/Ty=M, is a finite covering and hence M, is compact. If G
were trivial, all elements of I, would be of the form (0, Q) [notation as in (i)] and
the product projection M =R x .N—R would give rise to an unbounded function
on M,, contradicting its compactness. Therefore F must be periodic, and, by
Theorem 1 (ii), k>0 and p <0, which completes the proof.

3. Construction of Examples and a Classification Theorem

We are now in a position to describe a family of compact Riemannian manifolds
with harmonic curvature and non-parallel Ricci tensor, extending the construction
given in [5] for the case of dimension four.

Suppose we are given an integer n>3, a compact (n— 1)-dimensional Einstein
manifold N with (constant) scalar curvature k>0, a non-constant, positive,
periodic (with minimal period 2T >0) function F on R such that ¢ = F" 4 satisfies
(3) for some real number p <0 (for the existence, see Theorem 1), a positive integer
m and an isometry Q€ Isom°N of the identity component of Isom N. We define the
n-dimensional Riemannian manifold M =My ¢ o ., as follows. The infinite cyclic
subgroup I, r o) of Isom(R x ;N), generated by (2mT, Q) (notation of Lemma 2),
acts on R x N properly discontinuously. Therefore we may set

M =My r om =R x pN)/T i F,0)-

it . ..
The assignment M3(t, y) mod T (m,F,Q)ﬂexp% eS! is a fibre bundle projection

with fibre N, which is trivial since Q is isotopic to the identity transformation of N.
Consequently, M =My ¢ o m is diffeomorphic to S!x N and, as a Riemannian
manifold, it has harmonic curvature [Lemma 1 (ii)]. The Ricci tensor S of M has,
by (1), less than three eigenvalues at any point. Finally, V'S +0, since, in view of
Remark 1, the functions F for which S is parallel cannot be non-constant, positive
and periodic on R.

The manifolds M{y o . are characterized by the above properties as follows.

Theorem 2. Let M be a compact, analytic, n-dimensional (n=3) Riemannian
manifold with harmonic curvature. If the Ricci tensor S of M is not parallel and has
less than three distinct eigenvalues at each point, then M is covered isometrically by
one of the manifolds My ¢ o m defined above.

Proof. Since M is not Einstein, the set U of all points at which S has exactly two
distinct eigenvalues is non-empty. Therefore U is an open dense subset of M and,
by Theorem 1 (i) of [5], each point x of U has a neighbourhood isometric to a
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warped product I x ¢V, where I is an open interval of R, ¥ an (n— 1)-dimensional
Einstein space and F a non-constant positive function on I such that ¢=F"*
satisfies (3), k being the constant scalar curvature of ¥ and p a real number.
Viewing I x .V as embedded in M, it is clear from (1) that, in a neighbourhood of
x, the S-eigenspace decomposition of TM coincides with the product decom-
position of T(I x V). Again by (1), the eigenvalues of S are constant along each
submanifold of the form {t} x ¥, tel. The same is true for the r-th elementary
symmetric function 6(S)= ). 4,,...4,,r=1,...,n, of the eigenvalues 1, ..., 4,

ay
a1 <...<o

of S (taken at any point together with their multiplicities). The functions ¢,(S) are
well-defined and analytic on M, and one of them is non-constant. In fact,
constancy of all ¢,(S) would imply constancy of the eigenvalues of S, which, by the
argument of Lemma 3 of [5], would yield ¥S=0. Choosing r so that h=¢,(S) is
not constant, we may clearly find xe U such that h(x) is not a critical value of h.
Hence the connected component of h~*(h(x)), passing through x, is a compact
analytic submanifold of M, containing {¢} x V for some tel. The corresponding
embedding V—h~(h(x)) is isometric (up to a constant factor), in view of the
definition of warped product. Consequently, V is isometric to an open sub-
manifold of some compact (n— 1)-dimensional Einstein manifold Y.

To prove that our function F can be extended from I to a positive analytic
function on IR, note that the function S,, occurring in (1), viewed as depending on
the parameter t=x€1, has an analytic extension to the whole real line. In fact,
since, for a fixed ye V, the curve Ist—y(t)=(t, y)e I x ;V is a geodesic (for arbitrary
F), we have S,,(¢)=S((t), 7(1)), and the existence of the extension of S,, to R
follows from the fact that M is complete. On the other hand, the function u=F!/?
satisfies [in view of (3) with @ =F™* and (1)] the second order linear differential
equation

1

u'= 1_nSoou. W)

Therefore u, as well as F =u?, has an analytic extension to IR. We claim that u=%0
everywhere in R. In fact, from (3) we obtain, with u= @™,

.k n-2 ., 2,
uu = 36=0) 5 )"+ - u“. (8)

If we had, for some ¢,eRR,

u(to) =0, ©®

then (8) would imply k=(n—1)(n—2)(u'(¢,))*20. Moreover, since u is not
identically zero, the linear equation (7) would yield #/(t,)+0 and, consequently,
k>0. In this case, we claim that the differential equation (8) with initial condition
(9) has exactly two analytic solutions on R (for arbitrary fixed parameter p), which

differ only by sign. In fact, letting u(t)= Y, a,(t—t,)" be a local power series
m21
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expansion for such a solution u, we obtain from (8), by a direct calculation,
a?=k/((n—1)(n—2))+0 and a,=0, while for m22,

0=(n+m—2)(m+1)a,a,.,
+% z (r+1)[(n—2)(m+1)—(n_4)r]ar+lam-r+1—2_np Z a0, .

1<r<m-1 0<r<m

which is nothing but a recursion formula for a,, in terms of a,. The only solutions
of (8) and (9) must therefore be given by the formula

(k[((n—1)(n=2))"*(t—1t0),  if p=0
+u(t) =1 141" sin(2(t — t,)lp|/*/n), if p<0 (10)
|A|Y2 sh(2(t—to)p*/*/n), if p>0

22
(where A= nk ), which is easily seen to define a solution of (8) and (9).

4p(n—1)(n—2)
However, if our function u is given by (10), then F =u? and Remark 1 yield V'S=0,
contradicting our hypothesis. Consequently, (9) is not satisfied by any real ¢, and
the analytic function F=u? is positive everywhere in R.

By the first part of this proof, the Riemannian manifolds M and R x ;Y (the
latter being complete by Lemma 7.2 of [2, p.23]), possess isometric open
submanifolds. The extension theorem for analytic isometries [6, p. 252] implies
now that the Riemannian universal covering M of M is isometric to Rx N, N
being the universal covering manifold of Y. Consequently, up to an isometry we
have M =R x N/I for some discrete subgroup I' of [som(R x .N). Compactness
of M together with Lemma 2 (ii) implies now that k>0, p<0 and F is periodic,
with some minimal period 2T >0. Therefore, the simply connected manifold N is
compact, since it carries a complete Einstein metric of positive scalar curvature k.
Now, in view of Lemma 2 (i) (and in the notations thereof), the discrete group
I'; =I'n(G x Isom°N) is of finite index in I'. Moreover, I'; must contain an element
of GxIsom°N of the form (2mT, Q) with some integer m>0, for otherwise the
manifold M, =R x ;N/I'; would be non-compact (it would admit the unbounded
function determined by the projection R x .N—IR) and, at the same time, it would
finitely cover the compact manifold M =R x  N/I'. Consequently, I'>I, r o,
(notation of the beginning of this section), i.e., we have the obvious map

My r.om=RXpN/Tp p 0,2 RX N/T=M,
which is a finite isometric covering. This completes the proof.

Remark 2. For any n-dimensional (n=3) Riemannian manifold (M, g), the second
Bianchi identity yields the well-known divergence formulae 6S=3%VK, R=dS
and, consequently,

_n=3

K
5W—md(s—§-(;‘:1—)g), (11)

K being the scalar curvature of (M, g) and W its Weyl conformal curvature tensor.
Combining the first formula above with the Codazzi equation for S, one sees easily
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that K is constant whenever M has harmonic curvature (i.e. 60R =dS =0). On the
other hand, (11) implies that every manifold with constant scalar curvature, which
is locally conformally Euclidean (for n=4, this is equivalent to W=0) must have
harmonic curvature. (This relates the problem of finding new compact manifolds
with harmonic curvature and W=0 to a special case of Yamabe’s conjecture, cf.
[1, 8, 4]) However, the manifolds M{y o ,,) With harmonic curvature, described
above, do not satisfy W=0 unless N is a space of constant curvature. In fact, each
of these manifolds looks locally like the warped product R x ;N which is, in turn,
locally conformally equivalent to the ordinary product R x N. It is now easy to see
that, provided dimN >3, Rx N satisfies W =0 if and only if N has constant
sectional curvature.
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paper.
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