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Abstract

This is an exposition of some recent results on ECS manifolds, by which we mean
pseudo-Riemannian manifolds of dimensions greater than 3 that are neither confor-
mally flat nor locally symmetric, and have parallel Weyl tensor. All ECS metrics
are indefinite. We state two classification theorems, describing the local structure
of ECS manifolds, and outline an argument showing that compact ECS manifolds
exist in infinitely many dimensions greater than 4. We also discuss some properties
of compact manifolds that admit ECS metrics, and provide a list of open questions
about compact ECS manifolds.

Introduction

An ECS manifold is any pseudo-Riemannian manifold of dimension n ≥ 4 that has par-
allel Weyl tensor (∇W = 0) without being conformally flat (W = 0) or locally symmetric
(∇R = 0). ECS manifolds exist in every dimension n ≥ 4, and their metrics are all
indefinite [18, Corollary 3], [4, Theorem 2], cf. [1, Remark 16.75(iii)]. This paper presents
selected results on ECS manifolds.
A local classification of ECS metrics, described in §§3 – 4, is naturally divided into two
cases, depending on the dimension of a null parallel distribution first introduced by Ol-
szak [16]. In §5 we state a theorem about the existence of compact ECS manifolds in
infinitely many dimensions n ≥ 5. An outline of its proof is given in §9. Sections 6 – 8
contain results on general properties of compact manifolds admitting ECS metrics, and
a list of open questions concerning compact ECS manifolds.
Metrics with parallel Weyl tensor were first studied by Chaki and Gupta [2], who referred
to them as conformally symmetric. Although the latter term was adopted by many authors
([10, 14, 19, 20], to name just a few), it may be misleading, since it appears in the literature
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with at least two other meanings [13, 15]. This is why, rather than speaking of conformal
symmetry, we use the phrases ‘parallel Weyl tensor’ and ‘ECS manifold’ (or, ‘metric’),
‘ECS’ being abbreviated from essentially conformally symmetric.
We wish to express our gratitude to David Blair and Ryszard Deszcz for comments
concerning terminology and pseudo-symmetry of ECS metrics. We also thank Maciej
Dunajski for bringing to our attention the results of [12], and Tadeusz Januszkiewicz for
pointing out the fact described in the last paragraph of §8.

1 Parallel Weyl tensor

The symbols R and W always denote the curvature tensor and Weyl conformal tensor
of the pseudo-Riemannian metric in question, while ρ, s and ∇ stand for its Ricci
tensor, scalar curvature and Levi-Civita connection. In dimensions n ≥ 4, one has the
decomposition

R = S + E + W
curvature = scalar + Einstein + Weyl

(1.1)

of R into its irreducible components under the action of the pseudo-orthogonal group;
if n = 4, the underlying manifold is oriented, and the metric signature is Riemannian
or neutral, W can be further decomposed into its self-dual and anti-self-dual parts. The
simplest linear conditions imposed on R are S = 0 (scalar-flatness), W = 0 (confor-
mal flatness) and E = 0 (which defines Einstein metrics). The decomposition of ∇R
resulting from (1.1) leads to the analogous conditions ∇S = 0, ∇E = 0 and ∇W = 0.
Questions about metrics with parallel Weyl tensor may, consequently, be considered as
natural as those concerning constant scalar curvature, or parallel Ricci tensor (including
the case of Einstein metrics and their products).
The requirement that the Weyl tensor be parallel is also related to some other conditions
that are of independent interest. For instance, all ECS metrics are scalar-flat [5, The-
orem 7], which, combined with the second Bianchi identity and the relation ∇W = 0,
implies in turn that they have harmonic curvature [1] (in other words, the Ricci tensor
satisfies the Codazzi equation).
Furthermore, all ECS manifolds are semisymmetric [5, Theorem 9], and hence pseudo-
symmetric [10]. Finally, in terms of the invariant d ∈ {1, 2} appearing in relation (2.2)
below, every ECS metric has low cohomogeneity (at most d), an ECS manifold with
d = 1 is necessarily Ricci-recurrent, and, in dimension four, ECS metrics with d = 2 are
all self-dual. See §§2 – 3.

2 The Olszak distribution

Let a pseudo-Riemannian manifold (M, g) of dimension n ≥ 4 have parallel Weyl tensor
W. The Olszak distribution of (M, g), introduced by Olszak [16], is the subbundle D of
TM such that the sections of D are precisely those vector fields u which satisfy the
condition

g(u, · ) ∧ W (v, v ′, · , · ) = 0 (2.1)

for all vector fields v, v ′ (exterior multiplication of a 1-form by a 2-form). At every point
x ∈ M , the space Dx thus consists, in addition to the zero vectors, of all vectors that
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∧-divide each 2-form in the image of Wx acting on 2-forms. In other words, Dx is the
subspace of TxM formed by the vectors that lie in the image of every nonzero 2-form in
the image of Wx. (We use gx to identify 2-forms at x with skew-adjoint endomorphisms
of TxM .)
The distribution D is obviously parallel. We denote its dimension by d. For any n-dimen-
sional pseudo-Riemannian manifold (M, g) with parallel Weyl tensor, d ∈ {0, 1, 2, n},
while d = n if and only if g is conformally flat. Furthermore,

in every ECS manifold, D is a null parallel distribution of dimension d ∈ {1, 2}.
(2.2)

The facts just stated are due to Olszak [16]. Their proofs an also be found in [8,
Lemma 2.1].

Lemma 2.1. For any pseudo-Riemannian manifold (M, g) with parallel Weyl tensor,
one has d = 2 if and only if W = ± ω ⊗ ω for some sign ± and some parallel
differential 2-form ω on M , defined, at each point, only up to a sign, and having rank
2 at every point. The image of ω is the Olszak distribution D.

Proof. This is obvious from [8, Lemma 2.1(iii)] and [6, Lemma 17.1(iii)] along with our
characterization of Dx in terms of images of nonzero 2-forms.

If (M, g) has parallel Weyl tensor, d = 2, and dimM = 4, then D, the image of ω (see
Lemma 2.1), is a null two-dimensional distribution, and so, by [11, Lemma 37.8], at every
x ∈M there exists a unique orientation of TxM for which ωx is self-dual. Consequently,
M must be orientable, and a suitably chosen orientation makes the Weyl tensor self-dual.
Dunajski and West [12] constructed various examples of self-dual metrics of the neutral
signature − − + + in dimension four. Some of their metrics have parallel Weyl tensor;
for instance, this is the case if Q in [12, formula (6.26)] is quadratic in X.

3 The local structure: case d = 1

Let the data I, f, n, V , 〈 , 〉, A consist of

(i) an open interval I ⊂ R, a C∞ function f : I → R, and an integer n ≥ 4,

(ii) a real vector space V of dimension n− 2 with a pseudo-Euclidean inner product
〈 , 〉,

(iii) a nonzero traceless linear operator A : V → V , self-adjoint relative to 〈 , 〉.

As in [18, Theorem 3], we use I, f, n, V , 〈 , 〉, A to construct the pseudo-Riemannian
manifold

(I ×R× V, κ dt2 + dt ds + δ) (3.1)

of dimension n. Here products of differentials stand for symmetric products, t, s are
the Cartesian coordinates on the I × R factor, δ is the pullback to I × R × V of
the flat pseudo-Riemannian metric on V corresponding to the inner product 〈 , 〉, and
κ : I × R × V → R is the function with κ(t, s, v) = f(t)〈v, v〉 + 〈Av, v〉. Denoting by
d the dimension of the Olszak distribution, we can characterize the manifolds (3.1) as
follows. A proof can be found in [8, Theorem 4.1]:
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Theorem 3.1. For any I, f, n, V , 〈 , 〉, A as in (i) – (iii), the pseudo-Riemannian man-
ifold (3.1) has parallel Weyl tensor and d = 1. In particular, (3.1) is never conformally
flat.
Conversely, in any pseudo-Riemannian manifold with parallel Weyl tensor and d = 1,
every point has a neighborhood isometric to an open subset of a manifold (3.1) constructed
as above from some such data I, f, n, V , 〈 , 〉, A.
The manifold (3.1) is locally symmetric if and only if f is constant.

One calls a pseudo-Riemannian manifold Ricci-recurrent if, for every tangent vector field
v, the Ricci tensor ρ and the covariant derivative ∇vρ are linearly dependent at each
point.
Every ECS metric with d = 1 is Ricci-recurrent. In fact, according to [8, Lemma 2.2(b)],
D contains, at each point, the image of the Ricci tensor ρ, and hence also the image of
∇vρ for any vector field v (as D is parallel). Thus, ρ and ∇vρ, being symmetric, must be
linearly dependent at every point if d = 1. (Note that, in view of (2.2) and the inclusion
just mentioned, rank ρ ≤ 2 at each point of any ECS manifold.)
Theorem 3.1 was inspired by the second author’s result [18, Theorem 3], which is a gen-
eral-position version of Theorem 3.1: rather using the condition d = 1, it assumes that
the metric is Ricci-recurrent, ρ⊗∇ρ 6= 0 at every point, and f df/dt 6= 0 everywhere in
I.
Among ECS manifolds with d = 2, in any dimension n ≥ 4, there are both Ricci-recur-
rent and non-Ricci-recurrent ones. (See [6, Section 24]; the condition rank W = 1 used
there is, by [6, Lemma 17.1(iii)], equivalent to the relation W = ± ω ⊗ ω in Lemma 2.1,
and hence to d = 2.)
The local cohomogeneity of any ECS metric is at most equal to the dimension d of
the Olszak distribution. If d = 1 (or, d = 2), this follows from Theorem 3.1, cf. [7,
Lemma 2.2] (or, from Theorem 4.1 below, cf. [6, Remark 22.1] and [9, the comment after
(f) in Section 10]).

4 The local structure: case d = 2

Let (Q, D, ζ, n, ε, V , 〈 , 〉) be a septuple formed by

(a) a surface Q with a projectively flat torsionfree connection D,

(b) a D-parallel area form ζ on Q, an integer n ≥ 4, and a sign factor ε = ±1,

(c) a real vector space V of dimension n− 4 with a pseudo-Euclidean inner product
〈 , 〉.

Also, let a twice-contravariant symmetric tensor φ on Q satisfy the differential equation

divD(divDφ) + (ρD, φ) = ε, (4.1)

where ρD is the Ricci tensor of D (in coordinates: φ jk
,jk + φ jkRjk = ε).

We define τ to be the twice-covariant symmetric tensor field on Q corresponding to φ
under the isomorphism TQ→ T ∗Q provided by ζ. In coordinates, τjk = ζjlζkmφ

lm.
Next, let hD be the Patterson-Walker Riemann extension metric on T ∗Q, obtained [17]
by requiring that all vertical and all D-horizontal vectors be hD-null, while hD

x (ξ, w) =
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ξ(dπxw) for every x ∈ T ∗Q, every vector w ∈ TxT
∗Q, and every vertical vector ξ ∈

Ker dπx = T ∗π(x)Q, where π : T ∗Q→ Q is the bundle projection.
Finally, we denote by δ the constant pseudo-Riemannian metric on V corresponding to
the inner product 〈 , 〉, and let θ stand for the function V → R with θ(v) = 〈v, v〉.
Our septuple (Q, D, ζ, n, ε, V , 〈 , 〉) now gives rise to the pseudo-Riemannian manifold

(T ∗Q × V, hD− 2τ + δ − θρD) , (4.2)

of dimension n, with the metric hD− 2τ + δ − θρD, where the function θ and covariant
tensor fields hD, τ, ρD, δ on T ∗Q, Q or V are identified with their pullbacks to T ∗Q × V .
With d again denoting the dimension of the Olszak distribution, we have the following
result.

Theorem 4.1. The pseudo-Riemannian manifold (4.2) obtained as above from any given
septuple (Q, D, ζ, n, ε, V , 〈 , 〉) with (a) – (c) has parallel Weyl tensor and d = 2.
Conversely, in any pseudo-Riemannian manifold with parallel Weyl tensor and d = 2,
every point has a neighborhood isometric to an open subset of a manifold (4.2) constructed
from some septuple (Q, D, ζ, n, ε, V , 〈 , 〉) as in (a) – (c).
The manifold (4.2) is never conformally flat, and it is locally symmetric if and only if
the Ricci tensor ρD is D-parallel.

Our septuple (Q, D, ζ, n, ε, V , 〈 , 〉) of parameters does not include φ, even though the
metric in (4.2) evidently depends on τ (and hence on φ). This is justified by the fact
that, locally, φ with (4.1) always exists, and, for any fixed (Q, D, ζ, n, ε, V , 〈 , 〉), the
manifolds (4.2) corresponding to two choices of φ are, locally, isometric to each other [6,
Remark 22.1].
In dimension four, V = {0} and 〈 , 〉 = 0, so that the septuple (Q, D, ζ, n, ε, V , 〈 , 〉)
with (a) – (c) may be replaced by a quadruple (Q, D, ζ, ε) consisting of a surface Q, a
projectively flat torsionfree connection D on Q, a D-parallel area form ζ on Q, and a
sign factor ε = ±1. The pair (4.2) then becomes the pseudo-Riemannian four-manifold
(T ∗Q, hD− 2τ).

5 Compact ECS manifolds: existence

Theorem 5.1. In every dimension n ≥ 5 with n ≡ 5 (mod 3), there exists a compact
ECS manifold of any prescribed indefinite metric signature, diffeomorphic to a nontrivial
torus bundle over the circle.

A proof of Theorem 5.1 is outlined in §9. For a more detailed argument, see [7].
The compact ECS manifolds that are shown to exist in §9 have further properties, not
included in the statement of Theorem 5.1. Some of these properties are mentioned in §8
(items II, IV and V). The first four steps of the proof in §9 might a priori produce ECS
metrics on bundles over the circle, the fibre of which is either a torus, or a 2-step nil-
manifold admitting a complete flat torsionfree connection with a nonzero parallel vector
field. However, our particular existence argument realizes only the torus as the fibre. See
[7, Remarks 4.1(iv) and 6.2].
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6 Compact ECS manifolds: properties

First, the existence of an ECS metric on a given compact manifold imposes specific
restrictions on the fundamental group, Euler characteristic, and real Pontryagin classes:

Theorem 6.1. If a compact manifold M of dimension n ≥ 4 admits an ECS metric,
then π1M is infinite, χ(M) = 0, and pi(M) = 0 in H4i(M,R) for all i ≥ 1.

Here χ(M) and pi(M) vanish since so do the Gauss-Bonnet-Chern integrand and the
Pontryagin forms [9]. For proofs of infiniteness of π1M and the next two theorems, see
[9] as well.

Theorem 6.2. Every four-dimensional Lorentzian ECS manifold is noncompact.

Theorem 6.3. Let (M, g) be a compact Lorentzian ECS manifold. Then some two-fold
covering manifold of M is the total space of a C∞ bundle over the circle, the fibre of
which admits a flat torsionfree connection with a nonzero parallel vector field.

If (M, g) is a compact ECS manifold and d ∈ {1, 2} is the dimension of its Olszak
distribution (§2), then TM = H ⊕ H+⊕ H− for some vector subbundles H,H+ and
H− of TM such that H+ is spacelike, H− is timelike, and both H± have the fibre
dimension d.
In fact, we obtain H+ and H− by decomposing TM into a spacelike and a timelike
subbundle, and then projecting the null distribution D onto the summands.

7 Some open questions

I. Do compact ECS manifolds exist in dimension four?

II. Does any torus admit an ECS metric? More generally, does there exist a compact
ECS manifold with an Abelian fundamental group?

III. Are there compact ECS manifolds of dimensions n ≥ 5 other than n = 3j+2, j ∈
Z?

IV. Can a compact ECS manifold be locally homogeneous?

V. Must the Olszak distribution of a compact ECS manifold be one-dimensional? More
generally, are all compact ECS manifolds Ricci-recurrent?

8 Comments on Questions I – V in §7
I. If the answer to Question I is ‘yes’ and compact four-dimensional ECS manifolds

do exist, they all must have the neutral metric signature − − + +. In fact, they
can be neither Riemannian [4, Theorem 2], nor Lorentzian (Theorem 6.2). See also
item V below.

II. None of the known compact ECS manifolds admits a finite covering by a manifold
with an Abelian fundamental group.
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III. The matrices (9.3) acting in R3 lead to a translation operator that has the property
required in STEP 3 of §9. The jth Cartesian-power extension of (9.3) does the same
in R3j, which is why our argument yields compact ECS manifolds of dimensions
n = 3j+2. A “building block” Rm, m ≥ 4, instead of R3, with operators analogous
to (9.3), would lead to examples in other dimensions, and it seems reasonable to
expect such operators to exist, although they might be harder to find than those
appearing in (9.3).

IV. Locally homogeneous ECS manifolds exist [3] in every dimension n ≥ 4. However,
none of the compact ECS manifolds arising from the argument in §9 is locally
homogeneous.

V. Every known compact ECS manifold has a one-dimensional Olszak distribution,
and is thereforee Ricci-recurrent (§3). One might try to answer Question I in the
affirmative and, simultaneously, the first part of Question V in the negative, by
proceeding as follows. We begin by choosing a quadruple (Q, D, ζ, ε) as at the
end of §4, with a closed surface Q. (According to [6, Section 23], such quadruples
exist, and realize all diffeomorphic types of closed surfaces Q.) As a next step, we
need to find a discrete group Γ of isometries of the four-dimensional ECS manifold
(T ∗Q, hD−2τ), acting on T ∗Q properly discontinuously with a compact quotient.
There is a topological restriction: Γ as above cannot exist unless Q is diffeomor-
phic to the torus T 2 or the Klein bottle K2 (see below). We do not know if such
Γ exists either for T 2 or for K2, even though, on T 2, the connections in question
are relatively well understood, cf. [6, the discussion following Remark 7.2].

The “topological restriction” mentioned under V can be phrased as follows.
If Q is a compact manifold and some group Γ of diffeomorphisms of T ∗Q acts on
T ∗Q properly discontinuously with a compact quotient, then χ(Q) = 0. In fact, we may
assume that Q is orientable (by passing, if necessary, to a two-fold orientable covering
and replacing Γ with a Z2 extension). Since the inclusion of the zero section Q in
T ∗Q is a homotopy equivalence, a generator [Q] of Hm(Q,Z) ≈ Z, for m = dimQ,
is also a generator of Hm(T ∗Q,Z), and so its image F∗[Q] under any diffeomorphism
F : T ∗Q → T ∗Q equals ±[Q]. We now choose F ∈ Γ such that Q and F (Q) are
disjoint: due to compactness of Q and proper discontinuity of the action, this is the case
for all but finitely many F ∈ Γ. Thus, χ(Q) = [Q] · [Q] = ±[Q] · F∗[Q] = 0, where ·
is the intersection form in Hm(T ∗Q,Z). (The same argument remains valid if T ∗Q is
replaced by the total space of an orientable real vector bundle of fibre dimension n over a
compact orientable n-dimensional manifold Q, the conclusion being now that the Euler
number of the vector bundle must vanish.)

9 Proof of Theorem 5.1 (an outline)

STEP 1. Consider an n-dimensional pseudo-Riemannian ECS manifold (3.1) constructed
from some I, f, n, V , 〈 , 〉, A with (i) – (iii) in §3 such that I = R, while f is nonconstant
(cf. Theorem 3.1) and periodic, for some period p > 0. Let E be the vector space of
all C∞ solutions u : R → V to the differential equation ü(t) = f(t)u(t) + Au(t).
The set G = Z × R × E has a group structure such that, setting (k, q, u) · (t, s, v) =
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(t + kp, s + q − 〈u̇(t), 2v + u(t)〉, v + u(t)), for (k, q, u) ∈ G and (t, s, v) ∈ R2 × V , we
define an action of G on R2 × V from the left. The action of G consists of isometries
of our manifold (3.1). See [7, Lemma 2.2].

STEP 2. Question: when does a manifold (3.1) selected as in STEP 1, with the corre-
sponding f, n, V , 〈 , 〉, A, p, E ,G and I = R, lead to a compact ECS manifold that arises as
the quotient of (3.1) under a discrete subgroup Γ of G acting on R2× V properly discon-
tinuously? Answer: such Γ exists if and only if some C∞ curve R 3 t 7→ B(t) ∈ End(V ),
periodic of period p, satisfies the differential equation Ḃ(t) + [B(t)]2 = f(t) +A (briefly,
Ḃ + B2 = f + A) and, at the same time, certain additional conditions, listed in [7,
Theorem 6.1(ii)], hold for some lattice Σ in the vector space W = R × L, where L is
the space of all C∞ functions u : R → V with u̇(t) = B(t)u(t). (Thus, L ⊂ E .) The
most important of these additional conditions is an arithmetic property of the translation
operator T : L → L acting by (Tu)(t) = u(t − p). Namely, we require the existence of
a linear functional ϕ ∈ L∗ such that Ψ(Σ) = Σ for the operator Ψ : W → W given by
Ψ(r, u) = (r + ϕ(u), Tu).

STEP 3. Observe that, in STEP 2, a lattice Σ with Ψ(Σ) = Σ for some functional ϕ
exists if and only if detT = ±1 and the matrix of T in some basis of L consists of
integers, cf. [7, the end of Section 1]. Thus, the main part of our task is to find B with
Ḃ + B2 = f + A such that the corresponding translation operator T has the property
just stated.

STEP 4. Fix integers k and l with 4 < k < l ≤ k2/4. (Such l exists for any given
k > 4.) It is an easy exercise [7, Lemma 1.3] to verify that the polynomial P (λ) =
−λ3 + kλ2 − lλ + 1 then has real roots λ, µ, ν with 0 < λ < µ < ν, λ < 1 < ν,
λµ < 1 < µν and λν 6= 1.

STEP 5. Fix p ∈ (0,∞) and denote by Fp the set of all septuples (α, β, γ, f, a, b, c)
consisting of C∞ functions α, β, γ, f : R → R of the variable t, periodic of period p,
and three distinct real constants a, b, c with a + b + c = 0, of which b is the smallest,
such that, with ( )˙ = d/dt,

α̇+ α2 = f + a, β̇ + β2 = f + b, γ̇ + γ2 = f + c, (9.1)

and α > β > γ. Let C be the subset of Fp formed by all (α, β, γ, f, a, b, c) with constant
α, β, γ and f . Define a mapping spec : Fp → R3 by spec(α, β, γ, f, a, b, c) = (λ, µ, ν),
where

(λ, µ, ν) = (exp [−
∫ p
0 α(t) dt], exp [−

∫ p
0 β(t) dt], exp [−

∫ p
0 γ(t) dt]). (9.2)

STEP 6. Show that spec(Fp r C) = U, where U ⊂ R3 is the open set of all (λ, µ, ν)
with 0 < λ < µ < ν, λ < 1 < ν, λµ < 1 < µν and λν 6= 1. This is done by reducing the
number of unknown functions in a septuple with (9.1). Specifically, to solve the two-equa-
tion system α̇+α2 = f + a, β̇+β2 = f + b with α > β (treating our a, b as fixed), one
sets ρ = α−β and ψ = α+β. As ψ = (a− b− ρ̇)/ρ, we may reconstruct α and β from
ρ. Solutions (α, β) of the two-equation system are thus in a bijective correspondence
with arbitrary C∞ functions ρ : R → (0,∞), periodic of period p. Similarly, a solution
to the last two equations in (9.1) is represented by a single arbitrary positive function
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analogous to ρ, which we denote by σ. Our ρ and σ are subject to a single differential
equation, stating that β reconstructed from ρ is the same as β reconstructed from σ.
The function log(σ/ρ) may, however, be completely arbitrary (aside from being of class
C∞ and periodic of period p); see [7, Lemma 9.6]. Expressing the triple (9.2) in terms
of the new unknown function log(σ/ρ), we now verify that spec(Fp r C) = U.

STEP 7. Using (λ, µ, ν) obtained in STEP 4, apply STEP 6 to pick (α, β, γ, f, a, b, c) ∈
Fp r C with spec(α, β, γ, f, a, b, c) = (λ, µ, ν), and then set

B(t) =

α(t) 0 0
0 β(t) 0
0 0 γ(t)

 , A =

a 0 0
0 b 0
0 0 c

 . (9.3)

As a consequence of (9.1), we now have Ḃ + B2 = f + A. Treating the matrices (9.3)
as endomorphisms of the space R3 endowed with the standard pseudo-Euclidean inner
product (of any signature), and noting that all B(t) commute with one another, we easily
conclude that the spectrum of the corresponding translation operator (STEP 2) is given
by (9.2), and hence coincides with our fixed (λ, µ, ν). Thus, P (λ) appearing in STEP 4
is the characteristic polynomial of T , and, consequently, T has the property required in
STEP 3 (see [7, the end of Section 1]). Also, f is nonconstant since (α, β, γ, f, a, b, c) /∈ C,
cf. [7, Remark 9.1]. The same conclusions hold if the endomorphisms (9.3) are replaced
by their jth Cartesian powers acting in V = R3j, j ≥ 1. According to STEP 3, this
completes the proof.
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