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Kähler manifolds with geodesic
holomorphic gradients

Andrzej Derdzinski and Paolo Piccione

Abstract. We prove a dichotomy theorem about compact Kähler mani-
folds admitting nontrivial real-holomorphic geodesic gradient vector fields,
which has the following consequence: either such a manifold satisfies an
additional integrability condition, or through every zero of the real-holo-
morphic geodesic gradient there passes an uncountable family of totally
geodesic, holomorphically immersed complex projective spaces, each car-
rying a fixed multiple of the Fubini–Study metric. We also obtain a classifi-
cation result for the case where the integrability condition holds, implying
that the manifold must then be biholomorphically isometric to a bundle
of complex projective spaces with a bundle-like metric.

1. Introduction

The present paper deals with geodesic-gradient Kähler triples (M, g, τι) consisting,
by definition, of a Kähler manifold (M, g) and a nonconstant real-valued function τι
on M such that the g-gradient of τι is real-holomorphic and its integral curves are
reparametrized geodesics. We call (M, g, τι) compact if so is the manifold M.

Every compact Kähler manifold (M, g) of real cohomogeneity one which admits
a nontrivial invariant Killing field with zeros provides an example of a geodes-
ic-gradient Kähler triple (Lemma 4.4). Special cases of this construction yield
Grassmannian triples and CP triples, described in Section 5. Further examples
of compact geodesic-gradient Kähler triples arise from the above through what we
call nontrivial modifications (Section 13) and horizontal extensions of CP triples
(Section 17). Section 8 introduces a class of noncompact geodesic-gradient Kähler
triples which serve as universal building blocks for all compact ones.

In a geodesic-gradient Kähler triple (M, g, τι), of particular interest are

(1.1) the τι-preimages Σ+ and Σ− of τι+ = max τι and τι− = min τι,
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whenever the extrema of τι exist. From now on, let us assume compactness of M,
which has important known consequences – see Theorem 11.1: the maximum and
minimum level sets Σ± are connected totally geodesic compact complex submani-
folds of M, their union Σ+∪Σ− equals the set of critical points of τι (the zero set
of the g-gradient v = ∇τι), u = Jv is a Killing vector field with a periodic flow,
and τι itself must be a Morse–Bott function.

Furthermore, according to Remark 11.3 and Theorem 11.6 (c), for either fixed
sign ±, every x ∈ M �Σ∓ has a unique point y nearest x in Σ±, and setting
y = π±(x) one defines a holomorphic disk-bundle projection π± : M�Σ∓ → Σ±.
The word ‘disk’ is used here liberally, as the fibres of π± are biholomorphic to
complex vector spaces rather than disks in such spaces.

These two projections π± or, more precisely, the punctured disk-bundle pro-
jections obtained by restricting them to the non-critical set M ′ =M � (Σ+∪Σ−),
are the main protagonists of our study.

Specifically, we consider any leaf Π± of the (obviously integrable) vertical dis-
tribution Kerdπ±. While π± sends Π± to a point, the other projection π∓ maps
Π± ∩M ′, according to our Theorem 15.1, onto the image F (CPk) of some totally
geodesic holomorphic immersion F : CPk → Σ∓ inducing on CPk a multiple of the
Fubini–Study metric. The dimension k = k± ≥ 0 is given here by k± = m−1−d±,
for m = dimCM and d±= dimCΣ

±.
There arises the question of how the restriction π∓ : M ′ → Σ∓ treats the in-

dividual leaves of Kerdπ± passing though all points x of Π∓ ∩ M ′, for a fixed
leaf Π∓ of Kerdπ∓, that is, how their π∓-images vary with x ∈ Π∓ ∩M ′. Since
these images are totally geodesic, the question may be reduced to its infinitesimal
version, involving the complex Grassmannian Grk(TyΣ

∓) and the assignment

(1.2) M ′ � x 	→ dπ∓
x (Kerdπ±x ) ∈ Grk(TyΣ

∓), where y = π∓(x),

with k = k± defined before. Our main result, Theorem 19.1, reveals a dichotomy
about (1.2): one of the following two cases has to occur. First, (1.2) may be
constant on each leaf of Kerdπ∓ in M ′, for both signs ±. Otherwise, (1.2) must be
“strongly nonconstant” on every such leaf Π∓, in the sense that the dimensions
l = k∓ and k = k± are both positive, while (1.2) restricted to Π∓ is a composite
mapping Π∓ → CPl → Grk(TyΣ

∓) formed by a holomorphic bundle projection

Π∓ → CPl, having the fibre C � {0}, and a nonconstant holomorphic embedding
of CPl in the complex Grassmannian Grk(TyΣ

∓).
Functions with geodesic gradients on arbitrary Riemannian manifolds, usually

called transnormal, have been studied extensively as well [2], [11], [10]. One easily
constructs examples showing that a dichotomy as above does not generally occur
in the Riemannian case, without the Kähler and holomorphicity assumptions.

Our two vertical distributions Kerdπ± always span a vector subbundle of TM ′,
cf. formulae (11.6)–(11.7). The first case of Theorem 19.1 occurs if and only if

(1.3) Kerdπ+ and Kerdπ− span an integrable distribution on M ′,

and the immersions CPk → Σ∓, mentioned in the above discussion of Theo-
rem 15.1, are then embeddings, for both signs ±, while their images constitute
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foliations of Σ∓, both with the same leaf space B appearing below in our summary
of Theorem 17.3. In the aforementioned second case of Theorem 19.1, the images
of these immersions, rather than being pairwise disjoint, are totally geodesic, holo-
morphically immersed complex projective spaces, an uncountable family of which
passes through each point of Σ∓. See Remark 19.2.

Note that a compact geodesic-gradient Kähler triple need not have the prop-
erty (1.3). Examples are provided by those Grassmannian triples (Section 5),
which do not constitute CP triples, as well as triples arising from them via non-
trivial modifications close to the identity. See Remark 19.6. However, one easily
sees that all CP triples satisfy condition (1.3).

Theorem 17.3 describes all compact geodesic-gradient Kähler triples (M, g, τι)
with (1.3). In each of them,M is biholomorphic to a bundle of positive-dimensional
complex projective spaces over some base manifold B having dimCB ≥ 0.

Three special classes of compact geodesic-gradient Kähler triples (M, g, τι) have
been studied before. They all satisfy (1.3). In one, that of the gradient Kähler–
Ricci solitons discovered by Koiso [9] and, independently, Cao [3], τι is the soliton
function. The other two consist of the special Kähler–Ricci potentials τι on compact
Kähler manifolds and, respectively, compact geodesic-gradient Kähler triples with
dimCM = 2. The papers [5], [4] provide complete explicit descriptions of the
latter two classes, and our Theorem 17.3 generalizes their classification results:
Theorem 16.3 of [5] and Theorem 6.1 in [4]. See the end of Section 17.

The text is organized as follows. After the preliminary Sections 2–3, 6 and 7,
examples and basic properties of geodesic-gradient Kähler triples are presented in
Sections 4–5, 8–10, and 13, while Sections 11–12 and 14–15 deal with general
consequences of compactness. Sections 16–17 establish Theorem 17.3, that is,
a classification result for the case (1.3). The two final sections are devoted to
proving Theorem 19.1. The arXiv version [6] of this paper provides details of
many arguments of secondary importance, addressed here only briefly.

The authors wish to thank the referee and Fangyang Zheng for helpful sugges-
tions and comments.

2. Preliminaries

Manifolds, mappings and tensor fields, including Riemannian metrics and func-
tions, are by definition of class C∞. A (sub)manifold is always assumed connected.

Our sign convention for the curvature tensor R = RD of a connection D in
a vector bundle N over a manifold Σ, any section ξ of N, and vector fields v, w
tangent to Σ, is R(v, w)ξ = DwDv ξ−DvDw ξ+D[v,w]ξ. The total space of N has the

underlying set N = {(y, ξ) : y ∈ Σ and ξ ∈ Ny}. We treat R(v, w), the covariant
derivative Dξ, and any function f on Σ as bundle morphisms R(v, w), f : N → N
and Dξ : TΣ → N, sending ξ or v to R(u, v)ξ, fξ and Dvξ. For a Riemannian
manifold (M, g), the symbol ∇ will always denote both the Levi-Civita connection
of g and the g-gradient. Given a function τι, vector fields w,w′, v, u on (M, g), and
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any bundle morphism B : TM → TM, one has

(2.1)

a) [£vg](w,w
′) = 2g(Sw,w′), for v = ∇τι and S = ∇v : TM → TM,

b) £vB = ∇vB + [B,∇v],
c) ∇vA = R(u, v), with A = ∇u, whenever u is a Killing field,

d) ∇Q = 2∇vv and dvτι = g(v,∇τι) = Q if v = ∇τι and and Q = g(v, v).

Cf. Section 1 of [6]. Let Exp⊥ now denote the normal exponential mapping of a
totally geodesic submanifold Σ in a Riemannian manifold (M, g), so that Exp⊥ is
defined on an open submanifold of the total space of the normal bundle NΣ. Given
(y, ξ) in the domain of Exp⊥ and any r ∈ [0, 1], the differential dExp⊥(y, rξ) satisfies
the following relation – see, for instance, formula (1.9) of [6]:

(2.2) dExp⊥(y, rξ)(rη + whrz
r ) = ŵ(r),

involving the normal connection D in NΣ and any fixed w ∈ TyΣ. Here y ∈ Σ and

ξ ∈ NyΣ, while the vector η ∈ NyΣ = T(y, rξ)[NyΣ] is vertical, whrz
r denotes the D-

horizontal lift of w to (y, rξ), and r 	→ ŵ(r) stands for the Jacobi field along the
geodesic r 	→ x(r) = expy rξ such that ŵ(0) = w and [∇̇xŵ](0) = η.

As usual, given a mapping π : M → B between manifolds, a vector field w (or,
a distribution E) onM is said to be π-projectable if dπxwx = uπ(x) or, respectively,

dπx(Ex) = Hπ(x) for some vector field u (or, some distribution H) on B and all
x ∈M. We call such w, or E, projectable along an integrable distribution V on M,
or V-projectable, if it is π-projectable when restricted to any open submanifold
of M on which V forms the vertical distribution Kerdπ of a bundle projection π.

The following facts are well known. Details can be found in Section 2 of [6].

Remark 2.1. Let π : M → B be a bundle projection with the vertical distribution
V = Kerdπ. One easily verifies that a vector field w on M is π-projectable if and
only if, for every section v of V, the Lie bracket [v, w] is also a section of V. On the
other hand, the local flow of a vector field v on a manifold preserves a distribution E
if and only if, whenever w is a local section of E, so is [v, w].

Lemma 2.2. For two integrable distributions E± on a manifold M such that the
span E of E+ and E− has constant dimension, the three conditions

(a) E is integrable,

(b) E+ is projectable along E−,

(c) E− is projectable along E+

are mutually equivalent. Each of (a)–(c) also implies integrability of the distribu-
tions that E± locally project onto.

Remark 2.3. For a connection D in a vector bundle N over a manifold Σ and
vector fields u, v tangent to Σ, the vertical component, at any x = (y, ξ) ∈ N, of
the Lie bracket of the horizontal lifts of u and v equals RD

y (uy, vy)ξ.
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3. Kähler manifolds

For Kähler manifolds we use symbols such as (M, g), where M stands for the
underlying complex manifold, and J usually denotes the complex-structure tensor.

Let u, v be vector fields on a Kähler manifold (M, g). Since ∇J = 0,

(3.1)
a) A = JS if one sets S = ∇v and A = ∇u, for u = Jv,

b) R(u, v) = R(Ju, Jv) : TM → TM commutes with J : TM → TM,

R being the curvature tensor, with S,A viewed as bundle morphisms TM → TM.
Real-holomorphic vector fields v on Kähler manifolds will always be briefly

referred to as holomorphic. As they are characterized by £vJ = 0, formula (2.1.b)
for B = J implies that, given a vector field v on a Kähler manifold (M, g),

(3.2) v is holomorphic if and only if ∇v and J commute,

where J,∇v : TM → TM, cf. Section 2. For any holomorphic vector field v,

(3.3)
Jv must be holomorphic as well, while v is locally
a gradient if and only if u = Jv is a Killing field.

In fact, for S = ∇v and A = ∇u, (3.1)–(3.2) give A = JS = SJ , and so A +A∗ =
J(S − S∗), while the local-gradient property of v amounts to S − S∗= 0, and the
Killing condition for u reads A+A∗= 0.

Lemma 3.1. Whenever a complex manifold M admits a Kähler metric g, with
the Kähler form ω = g(J · , · ), and ε : CPk → M is a nonconstant holomorphic
mapping, ε∗ω must represent a nonzero de Rham cohomology class in H2(CPk,R).

If a holomorphic mapping ε : CPk → M is constant/nonconstant, so are all
holomorphic mappings CPk →M sufficiently close to ε in the C0 topology.

Proof. See Lemma 3.2 in [6]. �

Lemma 3.2. If Ψ : Π →M is a continuous mapping between complex manifolds,
and a codimension-one complex submanifold Λ of Π, closed as a subset of Π, has
the property that the restrictions of Ψ to Π and to the complement Π�Λ are both
holomorphic, then Ψ is holomorphic on Π.

Proof. See Remark 3.5 of [6]. �

In any complex manifold, dω = 0 and ω(J · , · ) symmetric whenever ω = i∂∂f
or, equivalently, 2ω = −d [J∗df ] for a real-valued function f, with the 1-form J∗df,
also denoted by (df)J , which sends any tangent vector field v to dJvf. Clearly,

(3.4)
i) 2i∂∂f = 2if ′∂∂χ − f ′′dχ∧J∗dχ, with f ′ = df/dχ,

ii) (dκ)(u, v) = du[κ(v)] − dv[κ(u)] − κ([u, v]).

In (3.4.i) we assume f to be a C∞ function of a function χ on the manifold,
while (3.4.ii) and (ι∧κ)(u, v) = ι(u)κ(v)− ι(v)κ(u) are our exterior-derivative and
exterior-product conventions, for 1-forms ι, κ and vector fields u, v.
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Remark 3.3. For the real part 〈 , 〉 of a Hermitian inner product in a complex
vector space N with dimN <∞, let ρ : N → [0,∞) and V be the norm function,
ρ(ξ) = 〈ξ, ξ〉1/2, and C-radial distribution on N � {0}, so that Vξ = SpanC(ξ).

(a) Obviously, dρ2 is given by ξ 	→ 2〈ξ, · 〉.
(b) i∂∂ρ2 equals twice the Kähler form 〈J · , · 〉 of the constant metric 〈 , 〉.
(c) dρ2 ∧ J∗dρ2 restricted to V, on N � {0}, coincides with −4ρ2〈J · , · 〉.
(d) [dρ2 ∧ J∗dρ2 ](v, · ) = 0 for any vector field v on N � {0}, orthogonal to V.

In fact, (b)–(d) are immediate from (a) and the text following Lemma 3.2.

Remark 3.4. On any almost-complex manifold, the formula 2ω = −d [J∗df ] pre-
ceding (3.4) defines an operator associating with a real-valued function f the exact
2-form ω = i∂∂f. For instance, using the horizontal distribution H of a connec-
tion D in a complex vector bundle N over an almost-complex manifold Σ, we
define an almost-complex structure on the total space N by requiring H to be a
complex vector subbundle of TN, and the bundle projection π : N → Σ, as well as
the inclusion mappings of all fibres, to be holomorphic. (Holomorphicity means
here C-linearity of the differential at each point.) If a D-parallel Hermitian fibre
metric on N has the norm function ρ : N → [0,∞) and the real part 〈 , 〉, then,
applying (3.4.ii) to κ = J∗dρ2 (which vanishes on H) we see that, by Remarks 2.3
and 3.3 (a), for ω = i∂∂ρ2 = −dκ/2 and x = (y, ξ) ∈ N, the restriction of ωx to Hx

equals the dπx-pullback of the 2-form −〈RD
y ( · , · )ξ, iξ〉 at y ∈ Σ.

Remark 3.5. For a Kähler manifold (Π,h) with dimCΠ = l, any holomorphic
mapping F : CPl → Π such that F ∗h equals a positive constant times the Fubini–
Study metric on CPl is a biholomorphism. See Remark 3.9 in [6].

4. Geodesic-gradient Kähler triples

Given a manifold M endowed with a fixed connection ∇, we refer to a vector
field v on M as geodesic if the integral curves of v are reparametrized ∇-geodesics.
Equivalently, for some function ψ on the open set M ′ ⊆M on which v �= 0,

(4.1) ∇vv = ψ everywhere in M ′.

A function τι on a Riemannian manifold (M, g) is said to have a geodesic gradient
if its gradient v is a geodesic vector field relative to the Levi-Civita connection ∇.

Lemma 4.1. For a function τι on a Riemannian manifold (M, g), the gradient
of τι is a geodesic vector field if and only if Q = g(∇τι,∇τι) is, locally in M ′, a C∞

function of τι.

Proof. By (2.1.d), condition (4.1) amounts to dQ ∧ dτι = 0. �

Geodesic-gradient Kähler triples were defined in the Introduction. Speaking of
their dimension, we always mean that of the underlying complex manifold, and we
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call two such triples (M, g, τι), (M̂, ĝ , τ̂ι) isomorphic if τι = τ̂ι ◦ Φ and g = Φ∗ĝ for
some biholomorphism Φ : M → M̂.

Remark 4.2. Whenever the g-gradient v = ∇τι of a function τι on a Riemannian
manifold (M, g) is tangent to a submanifold Π with the submanifold metric g′, the
restriction of v to Π obviously equals the g′-gradient of τι : Π → R.

Remark 4.3. A geodesic-gradient Kähler triple (M, g, τι) can be trivially modified
to yield (M, g, pτι + q), with any real constants p �= 0 and q, and Σ± in (1.1) then
become switched if p < 0. Any such (M, g, τι) and any complex submanifold Π
of M, tangent to v = ∇τι (so that it is a union of integral curves of v), and not
contained in a single level set of τι, give rise (cf. Remark 4.2) to the new geodesic-
gradient Kähler triple (Π, g′, τι′), where g′, τι′ are the restrictions of g, τι to Π.

According to the next lemma, geodesic-gradient Kähler triples naturally arise
from suitable cohomogeneity-one isometry groups.

Lemma 4.4. Let a connected Lie group G acting by holomorphic isometries on
a Kähler manifold (M, g), and having some orbits of real codimension 1, preserve
a nontrivial holomorphic Killing field u with zeros. If H1(M,R) = {0}, then
(M, g, τι) is a geodesic-gradient Kähler triple and u = J(∇τι) for some G-invari-
ant function τι on M.

Proof. Since H1(M,R) = {0}, (3.3) implies both the existence of a function τι
with u = J(∇τι), and the fact that its gradient v = ∇τι = −Ju is holomorphic.
Thus, elements of G preserve τι up to additive constants. Let Σ now be a fixed
connected component of the zero set of u, so that G, being connected, leaves Σ
invariant, while τι is constant on Σ. The additive constants just mentioned are
therefore equal to 0. Due to their G-invariance, the functions τι and Q = g(∇τι,∇τι)
are constant along codimension-one orbits of G and, consequently, functionally
dependent. (Note that the union of such orbits is dense in M.) Consequently, by
Lemma 4.1, the gradient v = ∇τι is a geodesic vector field. �

The assumptions about H1(M,R) and holomorphicity of u in Lemma 4.4 are
well-known to be redundant when M is compact, by Corollary 4.5 on p. 95 of [8];
cf. formula (A.2c) and Theorem A.1 in [4]. For proving Theorem 10.1, we will also
need the following fact.

Lemma 4.5. If a vector field w on a Riemannian manifold (M, g) is orthogonal
to a geodesic gradient v and commutes with v, then w is a Jacobi field along every
integral curve of v/|v| in the set M ′ where v �= 0.

Proof. See Lemma 4.6 of [6]. �

A compact geodesic-gradient Kähler triple of complex dimension 1 is essentially,
up to isomorphisms, nothing else than the sphere S2 with a rotationally invariant
metric. Cf. Remark 4.7 in [6].
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5. Examples: Grassmannian and CP triples

In this section vector spaces are complex, except for the lines preceding (5.5), and
finite-dimensional. By k-planes in a vector space V we mean k-dimensional vector
subspaces of V. When k = 1, they will also be called lines in V.

Given a vector space V and k ∈ {0, 1, . . . , dimCV}, the Grassmannian GrkV
is the set of all k-planes in V. Each GrkV naturally forms a compact complex
manifold, and PV = Gr1V is the projective space of V, provided that dimCV > 0.
We will use the standard identification

(5.1) P(C× V) = V ∪ PV,

of P(C × V) with the disjoint union of an open subset biholomorphic to V and a
complex submanifold biholomorphic to PV via the biholomorphism sending v ∈ V,
or the line Cv spanned by v ∈ V� {0}, to the line C(1, v) or, respectively, C(0, v).
The projectivization of a holomorphic vector bundle N over a complex manifold Σ
is, as usual, the holomorphic bundle PN of complex projective spaces over Σ with
the fibres [PN ]y = PV for V = Ny, whenever y ∈ Σ.

For a subspace L of a vector space V such that dimCV ≥ 2, let G be the group
of all complex-linear automorphisms of V preserving both L and a fixed Hermitian
inner product in V. We now define a compact complex manifold M by

(5.2)
i) M = GrkV, where 0 < k < dimCV and dimCL = 1, or

ii) M = PV, allowing dimCL ∈ {1, . . . , dimCV − 1} to be arbitrary.

The hypotheses (and conclusions) of Lemma 4.4 then are satisfied by these M,G,
any G-invariant Kähler metric g on M, and some u. Specifically, u is a vector field
arising from the central circle subgroup S1 of G formed by all unimodular elements
of G acting in both L, L⊥ as multiples of Id. See the discussion below.

The triples (M, g, τι) arising via Lemma 4.4 in cases (5.2.i) and (5.2.ii) will from
now on be called Grassmannian triples and, respectively, CP triples.

Since G as above contains all unit complex multiples of Id, its action on M is
not effective. Lemma 4.4 does not require effectiveness of the action.

For detailed justifications of the facts stated below, see Section 5 of [6].

The cohomogeneity-one assumption of Lemma 4.4 holds here as the orbits of G
are easily seen to be the levels of the nonconstant real-analytic function f on M
defined, in case (5.2.i) (or (5.2.ii)) by f(W) = |pr(X,W)|2, where pr(X,W) denotes
the orthogonal projection of X onto W, and X is some/any unit vector spanning L
(or, respectively, f(W) = |pr(XW, L)|2, with XW standing for some, or any, unit
vector that spans the line W).

For a Grassmannian or CP triple (M, g, τι), critical points of τι (that is, zeros of
u = J∇τι or, equivalently, fixed points of the central circle subgroup S1 mentioned
above) form the disjoint union of two (connected) compact complex submanifolds,
coinciding – due to obvious constancy of τι on either of them– with Σ± in (1.1). If
Y = L⊥ and ≈ denotes biholomorphic equivalence, these Σ± clearly equal

(5.3)
a) {W ∈M : L ⊆ W} ≈Grk−1Y, b) {W ∈M : W ⊆ Y} ≈GrkY,
c) {W ∈M : W ⊆ L} ≈ PL, d) {W ∈M : W ⊆ Y} ≈ PY,

where (5.3.a)–(5.3.b) correspond to (5.2.i), and (5.3.c)–(5.3.d) to (5.2.ii).
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Let 〈 , 〉 be the real part of a Hermitian inner product in a vector space V. The
Fubini–Study metric on PV associated with 〈 , 〉 is, as usual, uniquely characterized
by requiring that the restriction of the projection ξ 	→ Cξ to the unit sphere of 〈 , 〉
be a Riemannian submersion.

Given a vector space V and k ∈ {1, . . . , dimCV}, we use the symbols StkV
and π : StkV → GrkV for the Stiefel manifold of all linearly independent ordered
k-tuples of vectors in V (forming an open submanifolds of the kth Cartesian power
of V) and, respectively, the holomorphic submersion sending each e ∈ StkV to
π(e) = Span(e). One then also has the canonical isomorphic identification

(5.4) TW[GrkV] = Hom(W,V/W)

for the tangent space of the complex manifold GrkV at any k-plane W, where

Hom means ‘the space of linear operators’: for any linear lift H̃ : W → V of
H ∈ Hom(W,V/W) and any basis e of W, (5.4) identifies dπe(H̃e) ∈ TW[GrkV]

with H, which does not depend on how H̃ and e were chosen.

For a real (or, complex) manifold U and real (or, complex) vector spaces T
and Y, let F : U → Hom(T ,Y) be a C∞ (or, holomorphic) mapping giving rise to
a constant function U � ξ 	→ rankF (ξ) or, equivalently, leading to the same value
of k = dim Ker F(ξ) over all ξ ∈ U. Then the mapping U � ξ 	→ Ker F(ξ) ∈ GrkT
is of class C∞ (or, holomorphic) and its differential TξU → Hom(W, T/W) at any

ξ ∈ U, where W = Ker F(ξ), cf. (5.4), sends η ∈ TξU to the unique H : W → T/W
having a linear lift H̃ : W → T such that, as one easily sees,

(5.5) F(ξ) ◦ H̃ equals the restriction of −dFξη to W,

with dFξ : TξU → Hom(T ,Y), both F(ξ) and dFξη being linear operators T → Y.
All compact geodesic-gradient Kähler triples of complex dimension 1 are iso-

morphic to those arising from the data (5.2.ii) with (dimCV, dimCL) = (2, 1).

6. Some relevant types of data

We will repeatedly consider quadruples τι−, τι+, a,Q formed by

(6.1)

a nontrivial closed interval [τι−, τι+], a constant a ∈ (0,∞),
and a C∞ function Q of the variable τι ∈ [τι−, τι+], positive
on (τι−, τι+), such that Q = 0 and dQ/dτι = ∓2a at τι = τι± ,
∓ being the opposite of ± ; then (see below), we choose a
sign ± , a C∞ diffeomorphism (τι−, τι+) � τι 	→ ρ ∈ (0,∞)
having dρ/dτι = ∓aρ/Q, a function (0,∞) � ρ 	→ f ∈ R

with the derivative characterized by aρ df/dρ = 2|τι − τι±|,
and the unique increasing diffeomorphism (0,∞) � ρ 	→ σ ∈ (0, δ) such that

(6.2)
aρ dσ/dρ = Q1/2 and σ→ 0 as ρ→ 0, where
δ ∈ (0,∞) is the integral of Q−1/2dτι over (τι−, τι+).

(We use the inverse of τι 	→ ρ in (6.1) to treat τι,Q as functions of ρ.) Namely, one
easily verifies that τι 	→ ρ and ρ 	→ σ with the stated properties exist, while δ is
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finite. Details are provided by Remark 5.1 in [5], Theorem 10.2 (iii) in [4] and
p. 1661 of [4]. Note that it is the limit condition in (6.2) that makes σ unique; by
contrast, ρ with (6.1) is only unique up to a positive constant factor.

Any f satisfying (6.1) has a C∞ extension to [0,∞), which is also a C∞ function
of ρ2 ∈ [0,∞). See Lemma 6.1 in [6]. The first and second derivatives of f
with respect to ρ2 obviously equal |τι − τι±|/(aρ2) and (Q − 2a|τι − τι±|)/(2a2ρ4).
If ρ simultaneously denotes a positive function on a complex manifold M ′, which
turns f into a function M ′ → R, (3.4.i) for χ = ρ2 and these formulae give

(6.3) 4ia2ρ4∂∂f = 4iaρ2|τι − τι±| ∂∂ρ2 + (2a|τι − τι±| −Q) dρ2 ∧ J∗dρ2.

Remark 6.1. The composite (0, δ) � σ 	→ ρ 	→ τι ∈ (τι−, τι+) of the inverses of the
diffeomorphisms in (6.1)–(6.2) is the unique solution of the autonomous equation
dτι/dσ = ∓Q1/2, with the sign ± fixed as in (6.1), such that τι → τι± as σ → 0. (We
say ‘autonomous’ since (6.1) makes Q a function of τι.) In fact, any two solutions
of the equivalent equation dσ/dτι = ∓Q−1/2 differ by a constant.

7. The Chern connection

Let 〈 , 〉 be the real part of a Hermitian fibre metric in a holomorphic complex
vector bundle N over a complex manifold Σ. The Chern connection of 〈 , 〉 is the
unique connection D in N which makes 〈 , 〉 parallel and satisfies the condition
D0,1= ∂, meaning that, for any section ξ of N, the complex-antilinear part of the
real vector-bundle morphism Dξ : TΣ → N equals ∂ξ, the image of ξ under the
Cauchy–Riemann operator. Cf. Sect. 1.4 of [7]. The following properties of D are
well known; see p. 32 in [1] and Propositions 1.3.5, 1.7.19, 1.4.18 of [7].

(a) D depends on N and 〈 , 〉 functorially with respect to all natural operations,
including Hom, direct sums, and pullbacks under holomorphic mappings.

(b) RD(Jw, Jw′) = RD(w,w′), with the notation of Section 2, where w,w′, RD

are any vector fields on Σ and, respectively, the curvature tensor of D.

(c) D is the Levi-Civita connection of 〈 , 〉 if 〈 , 〉 is a Kähler metric in N = TΣ.

(d) D coincides with the normal connection in the normal bundle NΣ for any
totally geodesic complex submanifold Σ a Kähler manifold (M, g) and the
Riemannian fibre metric 〈 , 〉 in N induced by g. (In addition, it follows then
that N must be a holomorphic subbundle of TM.)

Lemma 7.1. For N,Σ, 〈 , 〉 as above, the bundle projection π : N → Σ, the norm
function ρ : N → [0,∞) of 〈 , 〉, the Chern connection D of 〈 , 〉, its curvature
tensor RD, and the 2-form ω = i∂∂ρ2 have the following properties.

(i) The horizontal distribution of D and the vertical distribution are mutually
ω-orthogonal, in an obvious sense, complex vector subbundles of TN.

(ii) Remark 3.3 (b) describes ω restricted to any fibre Ny of N, where y ∈ Σ.

(iii) Whenever x = (y, ξ) ∈ N, the restriction of ωx to the horizontal space of D
at x equals the dπx-pullback of the 2-form −〈RD

y ( · , · )ξ, iξ〉 at y ∈ Σ.

Proof. For (i), (ii) see Lemma 7.1 of [6]; (iii) follows from (i) and Remark 3.4. �
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8. Examples: Vector bundles

The geodesic-gradient Kähler triples constructed in this section are all noncompact.
What makes them relevant is the fact that some of them serve as universal building
blocks for compact geodesic-gradient Kähler triples (Theorem 14.2).

We begin with data Σ, h,N, 〈 , 〉, τι−, τι+, a,Q,±, τι 	→ ρ and ρ 	→ f formed by

(i) the real part 〈 , 〉 of a Hermitian fibre metric in a holomorphic complex vector
bundle N of positive fibre dimension over a Kähler manifold (Σ, h),

(ii) objects τι−, τι+, a,Q,±, τι 	→ ρ and ρ 	→ f satisfying (6.1).

Letting π : N → Σ stand for the bundle projection, D for the Chern connection
of 〈 , 〉 (see Section 7), and ρ both for the variable in (ii) and for the norm function
N → [0,∞), we use the inverse mapping of τι 	→ ρ, cf. (6.1), to

(8.1) treat τι, Q and f as functions N → R, denoted here by τ̂ι, Q̂, and f̂ .

We define a Kähler metric ĝ on N by requiring the Kähler forms ω̂ = ĝ(Ĵ · , · ) and
ωh = h(J · , · ) to be related by ω̂ = π∗ωh+ i∂∂f̂. (Here Ĵ is the complex-structure
tensor of N.) This amounts to

(8.2)
a) ĝ = π∗h − (i∂∂f̂)(Ĵ · , · ), where we are also assuming that

b) π∗h− (i∂∂f̂)(Ĵ · , · ) is positive definite at every point of N.

The above construction starts from the data (i)–(ii) with (8.2.b), and yields a
geodesic-gradient Kähler triple (N, ĝ, τ̂ι). See Lemma 8.1 below.

It is convenient, however, to provide the following equivalent, though less con-
cise, description of ĝ and Ĵ restricted to the complement N ′ = N � Σ of the zero
section in N. It uses the complex – due to Lemma 7.1 (i) – direct-sum decompo-
sition TN ′ = V̂ ⊕ Ĥ∓⊕ Ĥ•, in which Ĥ• is the horizontal distribution of D and
V̂ ⊕ Ĥ∓ = Kerdπ equals the vertical distribution, with the summands V̂ and Ĥ∓

forming, on each punctured fibre Ny � {0}, the C-radial distribution (Remark 3.3)

and, respectively, its 〈 , 〉-orthogonal complement in Ny�{0}. To describe ĝ and Ĵ ,

we declare that the three summands V̂, Ĥ∓, Ĥ• of TN ′ are Ĵ-invariant, that Ĵ re-
stricted to V̂ ⊕ Ĥ∓ agrees, along each punctured fibre Ny � {0}, with its standard

complex-structure tensor of the complex vector space Ny, that the differential of π

at every (y, ξ) ∈ Ny � {0}, maps Ĥ•
(y, ξ) complex-linearly onto TyΣ and, with the

constant a ∈ (0,∞) and function τ̂ι appearing in (ii) and (8.1),

(8.3)

a) the summands V̂, Ĥ∓, Ĥ• of TN ′ are mutually ĝ orthogonal,

b) a2ρ2ĝ = Q̂ 〈 , 〉 on V̂, aρ2ĝ = 2| τ̂ι − τι±| 〈 , 〉 on Ĥ±,

c) ĝx(wx,wx
′ ) = hy(w,w

′)− |τ̂ι(x)− τι±|
aρ2

〈RD
y (w,Jyw

′)ξ, iξ〉 with ρ= |ξ|,

at any x = (y, ξ) ∈ Ny � {0}, where w,w′ are any two vectors in TyΣ, and wx, wx
′

denote their D-horizontal lifts to x. Vertical vector fields v̂, û along with the
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restrictions of ĝ and Ĵ to V̂ = Span(v̂, û) may now be characterized by

(8.4) v̂(y, ξ) = ∓aξ, û(y, ξ) = ∓aiξ, ĝ(v̂, v̂) = ĝ(û, û) = Q̂, ĝ(v̂, û) = 0, û = Ĵv̂ .

Note that the symmetry of ĝx(wx, wx
′ ) in wx, wx

′ reflects (b) in Section 7.

Formula (6.3), combined with (b) and (d) in Remark 3.3 and Lemma 7.1
(i)–(iii), easily implies that the definition (8.3) of ĝ is actually equivalent to (8.2.a),
while (8.2.b) amounts to positivity of the right-hand side in (8.3.c) when w=w′ �=0.

Lemma 8.1. For any data (i)–(ii) with (8.2.b), define ĝ , τ̂ι by (8.1)–(8.2.a).

(a) (N, ĝ, τ̂ι) is a geodesic-gradient Kähler triple, and the fibres Ny = π−1(y),
y ∈ Σ, are totally geodesic complex submanifolds of (N, ĝ).

(b) The zero section Σ ⊆ N coincides with Σ±, the τι± level set of τι.

(c) The ĝ -gradient v̂ = ∇̂τ̂ι and Ŝ = ∇̂v̂ satisfy (8.4) and the equality

(8.5) 2ĝx(Ŝxwx, wx
′ ) = ± Q̂(x)

aρ2
〈RD

y (w, Jyw
′)ξ, iξ〉, where ρ = |ξ| > 0,

the assumptions being the same as in (8.3.c).

Proof. See Theorem 8.1 of [6]. �

A special Kähler–Ricci potential [5] on a Kähler manifold (M, g) is any non-
constant function τι : M → R such that v = ∇τι is real-holomorphic, while, at
points where v �= 0, all nonzero vectors orthogonal to v and Jv are eigenvectors of
both ∇v and the Ricci tensor, with ∇v : TM → TM as in Section 2. We then call
(M, g, τι) an SKRP triple. All SKRP triples (M, g, τι) are geodesic-gradient Kähler
triples, as they satisfy (4.1).

Compact SKRP triples (M, g, τι) have been classified by Theorem 16.3 of [5].
They are divided into Class 1, in which M is the total space of a holomorphic CP1

bundle, and Class 2, with M biholomorphic to CPm for m = dimCM.

Lemma 8.2. Up to isomorphisms, compact SKRP triples of Class 2 are the same
as CP triples constructed using (5.2.ii) with dimCL = 1.

Proof. See Remark 6.2 in [5]. (Note that (5.2.ii) with dimCL = m − 1 obviously
leads to the same isomorphism type.) �

In (i) above, dimCΣ ≥ 0, which allows the possibility of a one-point base mani-
fold Σ = {y}, so that, as a complex manifold, N is a complex vector space, namely,
the fibre Ny. According to pp. 85–86 of [5], under the standard identification (5.1)

for V = Ny, both ĝ and τ̂ι then can be extended to the projective space P(C×Ny),

giving rise to a Class 2 SKRP triple (M, ĝ, τ̂ι) with M = P(C×Ny).

Lemma 8.3. The SKRP triples (M, g, τι) just mentioned, with M = P(C ×Ny),
represent all isomorphism types of compact SKRP triples of Class 2. Such types
include all compact geodesic-gradient Kähler triples of complex dimension 1.

Proof. For the first part, see Remark 6.2 in [5]. The final clause is in turn imme-
diate from Lemma 8.2 and the final two-line paragraph of Section 5. �
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Remark 8.4. As a consequence of the second part of Remark 4.3, for (N, ĝ, τ̂ι) as
in Lemma 8.1, every fibre Ny is the underlying complex manifold of a geodesic-gra-
dient Kähler triple, realizing a special case of Lemma 8.1: that of a one-point base
manifold {y}. Its projective compactification P(C ×Ny) constitutes, for reasons
mentioned above, the underlying complex manifold of an SKRP triple of Class 2.
The resulting submanifold metric on the complement of Ny in P(C ×Ny) (that

is, on the projective hyperplane at infinity, identified via (5.1) with PNy) equals

2(τι+−τι−)/a times the Fubini–Study metric associated – as in Section 5 – with 〈 , 〉.
This easily-verified claim is also justified in Remark 8.4 of [6].

9. Local properties

Throughout this section (M, g, τι) is a fixed geodesic-gradient Kähler triple (see the
Introduction). We use the symbols

(9.1) J, v, u, M ′, ψ, Q, V , V⊥, S, A

for the complex-structure tensor J : TM → TM of the underlying complex mani-
fold M, the gradient v = ∇τι, its J-image u = Jv, the open set M ′ where v �= 0,
the function ψ on M ′ with (4.1), the function Q = g(v, v) on M, the distribution
V = Span(v, u) on M ′, its orthogonal complement, as well as the endomorphisms
S = ∇v and A = ∇u of TM, cf. Section 2. Under the above hypotheses,

(9.2)

a) v, u are both holomorphic, |v| = |u| = Q1/2, and A = JS = SJ ,

b) u = Jv is a Killing field commuting with v, and orthogonal to v,

c) ∇wA = R(u,w) and ∇wS = −J [R(u,w)] for any vector field w,

d) S is self adjoint and J,A are skew adjoint at every point of M,

e) g([w,w′], u) = −2g(Aw,w′) for any local sections w,w′ of V⊥ ,
f) ∇vv = ψv = −∇uu and ∇uv = ∇vu = ψu everywhere in M ′,
g) Q is, locally in M ′, a function of τι , and 2ψ = dQ/dτι,

h) J, S, A and the local flows of u and v leave V and V⊥ invariant.

In (9.2.c), R denotes the curvature tensor of g, with the convention of Section 2.

Namely, holomorphicity of v combined with (3.1)–(3.2) gives (9.2.a), u being
holomorphic due to (3.2), as A = JS = SJ commutes with J . Next, (9.2.b) follows
from (3.3) and the Lie-bracket equality [u, v] = ∇uv−∇vu = Su−Av = Su−SJv
= 0, obvious in view of (9.2.a), while (9.2.c) (or, (9.2.d)) is a direct consequence
of (2.1.c) and (9.2.a) or, respectively, of of (9.2.b) combined with the fact that
v is a gradient. We now obtain (9.2.e) from (9.2.d), noting that g(∇ww′, u) =
−g(w′,∇wu) = −g(w′, Aw). On the other hand, (9.2.b), (9.2.a) and (4.1) yield
∇uv = ∇vu = ∇v(Jv) = J∇vv = ψJv = ψu and so ∇uu = ∇u(Jv) = J∇uv = ψJu =
−ψv, establishing (9.2.f). Lemma 4.1, (2.1.d) and (9.2.f) in turn imply (9.2.g).
That J, S,A all leave V = Span(v, u) invariant is clear as Jv = u and Ju = −v
while, by (9.2.f), Sv, Su,Av,Au are sections of V. The same conclusion for V⊥ is
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now immediate from (9.2.d). By (9.2.b), the local flows of v and u preserve v, u
and V = Span(v, u). The u-invariance of V⊥ now follows from (9.2.b). Finally,
let w be a section of V⊥. Writing 〈 , 〉 for g, we get 〈[v, w], v〉 = 〈∇vw −∇wv, v〉 =
−〈w,∇vv〉 − 〈Sw, v〉 = −〈Sw, v〉 = −〈w, Sv〉 = 0, cf. (9.2.d) and (9.2.f). Similarly,
〈[v, w], u〉 = 〈∇vw − ∇wv, u〉 = −〈w,∇vu〉 − 〈Sw, u〉 = −〈Sw, u〉 = −〈w, Su〉 = 0.
Thus, [v, w] is a section of V⊥ as well. Due to the final clause of Remark 2.1, this
completes the proof of (9.2.h). For easy reference, note that, by (9.2.a)–(9.2.b),

(9.3) g(v, v) = g(u, u) = Q, g(v, u) = 0, u = Jv.

Lemma 9.1. Under the assumptions preceding (9.2), on M ′,

(a) the distribution V = Span(v, u) is integrable and has totally geodesic leaves,

(b) a local section w of V⊥ is projectable along V if and only if [u,w] = [v, w] = 0,

(c) if local sections w and w′ of V⊥ commute with u and v, then

(9.4)

i) dv[g(w,w
′)] = 2g(Sw,w′), ii) dv[g(Sw,w

′)] = 2ψg(Sw,w′),
iii) dv[Q

−1g(Sw,w′)] = 0, iv) dvQ = 2ψQ,

v) du[g(w,w
′)] = du[g(Sw,w

′)] = duQ = 0,

(d) [∇vS]w = 2(ψ − S)Sw whenever w is a local section of V⊥.

Proof. Assertions (a)–(b) are obvious from (9.2.b) and, respectively, Remark 2.1
combined with (9.2.h). Next, let £vw = £vw

′ = £uw = £vw
′ = 0. Since £v

and £u act on functions as dv and du, (2.1.a) implies (9.4.i), and du[g(w,w
′)] = 0

as £ug = 0 by (9.2.b). For similar reasons, du[g(Sw,w
′)] = £u[g(Sw,w

′)] = 0.
(Namely, (9.2.c) gives ∇uS = 0, so that (9.2.a) and (2.1.b), with u, S rather
than v,B, yield £uS = 0.) On the other hand, by (9.3), g(v, v) = Q. Now (2.1.d),
(9.2.f) and (9.2.b) imply that duτι = duQ = 0 and dvQ = 2ψQ, establishing (d).

Using (9.2.a) we get g(Sw,w′) = g(JSw, Jw′) = g(Aw, Jw′) which, by (9.2.e),
is nothing else than −g([w, Jw′], u)/2. Hence 2dv[g(Sw,w

′)] = 2£v[g(Sw,w
′)] =

−£v[g(u, [w, Jw
′]))]= − [£vg](u, [w, Jw

′])). (Our assumption that £vw=£vw
′= 0

gives £v(Jw
′) = 0, as v is holomorphic, which in turn yields £v[w, Jw

′] = 0,
while £vu = 0, cf. (9.2.b).) From (2.1.a), (9.2.f) and (9.2.a) we now obtain
dv[g(Sw,w

′)] = −[£vg](u, [w, Jw
′]))/2 = −g(Su, [w, Jw′]) = −2g(ψu, [w, Jw′]) =

2ψg(Aw,Jw′) = −2ψg(JAw,w′) = 2ψg(Sw,w′), that is, (9.4.ii), which, since
dvQ = 2ψQ by (d), also proves (9.4.iii).

Finally, (9.2.h) and the equality ∇vS = −J [R(u, v)], cf. (9.2.c), combined
with (a), imply that ∇vS − (2ψ − S)S leaves V⊥ invariant. To obtain (e), it now
suffices to show that [∇vS]w−(2ψ−S)Sw is orthogonal to w′ for any local sections
w,w′ of V⊥. We are free to assume here that w = w′ (due to self-adjointness of S =
∇v) and that w commutes with u and v (see (b)). Differentiation by parts gives,
by (9.4.iii) and (9.2.d), g([∇vS]w,w) = dv[g(Sw,w)]− g(S∇vw,w)− g(Sw,∇vw) =
2ψg(Sw,w) − 2g(Sw, Sw), as required, with ∇vw = Sw since [v, w] = 0. �
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10. Horizontal Jacobi fields

In addition to using the assumptions and notations of Section 9, we now let Γ stand
for the underlying one-dimensional manifold of a fixed maximal integral curve of v
in M ′. We restrict the objects in (9.1) to Γ without changing the notation, and
select a unit-speed parametrization t 	→ x(t) of the geodesic Γ such that

(10.1)
a) ẋ = v/|v| = Q−1/2v along Γ, where v = ∇τι ,
b) τ̇ι = Q1/2, Q̇ = 2ψQ1/2, with ( )˙ = d/dt = dẋ ,

(10.1.b) being an obvious consequence of (10.1.a), (2.1.d) and (9.4.iv).

Any constant c ∈ [R � τι(Γ )] ∪ {∞}, where τι(Γ ) is the range of τι on Γ, gives
rise to the function λc : Γ → R defined by

(10.2) λc = Q/[2(τι − c)],

the convention being that λc is identically zero when c = ∞. We denote by W the
set of all V⊥-valued vector fields t 	→ w(t) ∈ V⊥

x(t) along Γ such that

(10.3) ∇̇xw = Q−1/2Sw.

Of particular interest to us are c satisfying the conditions

(10.4)
a) c ∈ [R� τι(Γ )] ∪ {∞} and W [c] �= {0}, where

b) W [c] = {w ∈ W : Sw = λcw}.

About projectability along V in (i) below, see Lemma 9.1 (b).

Theorem 10.1. Under the above hypotheses, the following conclusions hold.

(i) V⊥-valued solutions w to (10.3) are precisely the restrictions to Γ of the local
sections of V⊥ with domains containing Γ that are projectable along V.

(ii) All w as in (i), that is, all elements of W, are Jacobi fields along Γ.

(iii) Every vector in V⊥
x(t) equals w(t) for some unique w ∈ W.

(iv) W is a complex vector space of dimension dimCM − 1, and the direct sum
of all W [c] for c in (10.4.a), w 	→ Jw being the multiplication by i ∈ C.

(v) A function t 	→ λ(t) on the parameter interval of t 	→ x(t) satisfies the
equation dλ/dt = 2(ψ − λ)λQ−1/2, with ψ,Q evaluated at x(t), if and only
if λ(t) = λc(x(t)), cf. (10.2), for some c ∈ [R � τι(Γ )] ∪ {∞} and all t.

(vi) At any x = x(t) ∈ Γ, the eigenvalues of Sx : V⊥
x → V⊥

x , cf. (9.2.h), are
precisely the values λc(x) for all c in (10.4.a). The λc(x)-eigenspace of
Sx : V⊥

x → V⊥
x is {w(t) : w ∈ W [c]}.

(vii) R(w, u)u=R(w, v)v=(ψ−S)Sw=R(v, u)Jw/2 on M ′ for sections w of V⊥.

(viii) If τι(Γ ) = (τι−, τι+) is bounded, then Q/(τι − τι+) ≤ 2S ≤ Q/(τι − τι−) on V⊥.
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Proof. Any w as in the second line of (i), restricted to Γ, becomes both a Jacobi field
(by Lemmas 4.5 and 9.1(b)) and a V⊥-valued solution to (10.3) (since S = ∇v, so
that (10.1.a) and Lemma 9.1(b) give ∇̇xw = Q−1/2∇vw = Q−1/2∇wv = Q−1/2Sw).
With Γ replaced by suitable shorter subgeodesics covering all points of Γ, the
inclusion just established between the two vector spaces appearing in (i) is actually
an equality: in either class, the vector field in question is uniquely determined by
its initial value at any given point x ∈ Γ. This proves (i)–(ii) as well as (iii)–(iv),
the latter in view of the fact that JS = SJ , cf. (9.2.a).

For a C1 function λ defined on the parameter interval of t 	→ x(t), one has

(10.5) λ̇ = 2(ψ − λ)λQ−1/2 with ( ) ˙ = d/dt

if and only if either λ = 0 identically, or λ �= 0 everywhere and the function c char-
acterized by 2c = 2τι−Q/λ is constant. (In fact, the either-or claim about vanishing
of λ is due to uniqueness of solutions of initial-value problems, while (10.1.b) yields
2ċ = Qλ−2[λ̇− 2(ψ − λ)λQ−1/2 ].) Now (v) easily follows, all nonzero initial condi-
tions for (10.5) at fixed t being realized by suitably chosen constants c ∈ R� τι(Γ )
(and λ = 0 satisfying (v) with c = ∞).

On the other hand, from (10.1.a) and Lemma 9.1(d),

(10.6) [∇̇xS]w = 2Q−1/2(ψ − S)Sw, if w is a V⊥-valued vector field along Γ .

Next, we fix x = x(t) ∈ Γ and express any prescribed eigenvalue-eigenvector pair
for Sx : V⊥

x → V⊥
x as λc(x) and w(t), with some unique c ∈ [R � τι(Γ )] ∪ {∞} and

w ∈ W. By (v), λ = λc satisfies (10.5), so that, in view of (10.3) and (10.6),
the vector field ŵ = Sw − λw is a solution of the linear homogeneous differential
equation ∇̇xŵ = Q−1/2(2ψ−2λ−S)ŵ. Since ŵ vanishes at x = x(t), it must vanish
identically, which establishes (vi).

Now let w ∈ W. As Q̇ = 2ψQ1/2 (see the lines following (10.5)), the Jacobi
equation and (10.3) give, by (ii) and (10.6), R(w, ẋ)ẋ = ∇̇x∇̇xw = ∇̇x[Q−1/2Sw] =
Q−1(ψ − S)Sw, that is, R(w, v)v = (ψ − S)Sw, the second equality in (vii). Also,
Lemma 9.1(d), (9.2.c) and (3.1.b) yield 2(ψ − S)Sw = [∇vS]w = −J [R(u, v)w] =
−R(u, v)Jw = R(v, u)Jw = R(v, Jv)Jw, the last equality in (vii). Combining the
two relations, and repeatedly using (3.1.b), we get 2R(w, v)v = R(v, Jv)Jw, that
is, R(w, v)v = R(v, w)v + R(v, Jv)Jw = R(Jv, Jw)v + R(v, Jv)Jw. Thus, from
the Bianchi identity, R(w, v)v = R(v, Jw)Jv = R(Jv, JJw)Jv = R(w, u)u, which
proves (vii). Finally, (viii) is an easy consequence of (vi) and (9.2.d). �

11. Consequences of compactness

The six parts of the next theorem are all well known: (i)–(iv) and (v)–(vi) appear
in [4] as Lemmas 11.1–11.2, Example 8.1 and, respectively, Lemma 8.4 (iv). More
general versions of both (vi) and (iv) are originally due to Wang; see Lemmas 1
and 3 of [11]. However, we follow the referee’s suggestion that – to make the
presentation more autonomous – the proofs of these six facts should be at least
outlined here, along with an argument justifying Remark 11.2.
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Theorem 11.1. Given a compact geodesic-gradient Kähler triple (M, g, τι), cf. the
Introduction, with Σ± as in (1.1), let v = ∇τι be the g-gradient of τι.

(i) Q = g(v, v) is a C∞ function of τι, leading to data τι−, τι+, a,Q with (6.1).

(ii) u = Jv is a Killing vector field with a periodic flow.

(iii) Σ± are connected totally geodesic compact complex submanifolds of M.

(iv) Σ+∪Σ− equals the zero set of v, that is, the set of critical points of τι.

(v) τι has the Morse–Bott property.

(vi) v is tangent to every geodesic normal to Σ±.

Remark 11.2. For a as in Theorem 11.1 (i), ∓a is the unique nonzero eigenval-
ue of the Hessian of τι (that is, of S = ∇v) at any critical point y ∈ Σ±. The
∓a-eigenspace of Sy is the normal space NyΣ

±, and Ker Sy = TyΣ
± (which thus

constitutes the 0-eigenspace of Sy unless Σ± = {y}). See Remark 11.2 in [6].

Sketch of proof. The zeros of the holomorphic Killing field u = Jv, cf. (9.2.a)–
(9.2.b), obviously form a disjoint union of submanifolds with the properties named
in (iii), the normal exponential mappings of which easily lead to local coordinate
systems making u appear as a skew-adjoint linear vector field. This – combined
with the equalities ∇u = JS = SJ in (9.2.a) – implies the rank condition needed
for (v), since S = ∇v, at any zero y of v = ∇τι, corresponds via g to the Hessian
of τι. Taking the limits, when they exist, of (4.1) divided by |v| and evaluated at
points of sequences converging to any such y along any geodesic normal at y to
the critical manifold Σ of τι through y, we see that the normal space NyΣ consists

of 0 and eigenvectors of ∇vy with an eigenvalue a �= 0 independent of the normal

direction (NyΣ being a vector space). Up to a sign change, a is also independent
of the critical point y, as 2π/|a| must obviously be the minimum positive period of
the flow of the linear vector field ∇uy = JySy in TyM and, consequently, also the
minimum positive period of the flow of u inM. The last clause – immediate since an
isometry is uniquely determined by its 1-jet at a single point – in addition yields (ii).
On the other hand, the Hessian of τι is semidefinite at every critical point, a
or −a being its only nonzero eigenvalue, while the levels of τι (being complex
submanifolds) are of real codimensions greater than 1. A standard argument – see
Prop. 11.4 of [5] – shows that, for a Morse–Bott function τι with these properties on
a compact manifold, all levels of τι must be connected, which proves (iii) and (iv).
Connectedness of the levels also allows us to skip the word ‘locally’ when applying
Lemma 4.1, and so the first part of (i) follows, as one easily verifies smoothness
of the assignment τι 	→ Q at the extremum values τι± in (1.1). Replacing a with
its absolute value we now obtain both Remark 11.2, and the remainder of (i), the
latter–by noting that the limits of (4.1) divided by |v|, mentioned earlier in the
proof, give dQ/dτι = ∓2a at τι = τι±, due to (2.1.d) and (4.1). Finally, (vi) is a
consequence of a much more general fact, namely, Lemma 8.2 of [5]: if a vector
field v and a connection ∇ on a manifold M satisfy (4.1), where ψ : M ′ → R,
then every geodesic segment emanating from a zero y of v, tangent at y to an
eigenvector of ∇vy for a nonzero eigenvalue, and containing no zeros of v other
than y, must be a reparametrized integral curve of v. �
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Restricting τι 	→ Q in Theorem 11.1 (i) to the open interval (τι−, τι+) we have

(11.1) dQ/dτι = 2ψ, and so ψ → ∓a as τι → τι± ,

ψ being the function with (4.1) on the open set M ′ where v �= 0. This makes ψ
a C∞ function of τι, and it follows as dQ = 2ψ dτι on M ′, by (2.1.d) and (4.1).

Still assuming compactness of a geodesic-gradient Kähler triple (M, g, τι), let
N δΣ± be the bundle of radius δ normal open disks around the zero section in
the normal bundle NΣ±, with δ characterized by (6.2). According to Lemma 10.3
of [4], δ is then the distance between Σ+ and Σ−, while, with Exp⊥ as in Section 2,

(11.2)
the restriction to N δΣ± of the normal exponential mapping

Exp⊥ : NΣ± → M is a diffeomorphism N δΣ± → M�Σ∓.

Cf. [2], Lemma 2 in [11], and Theorem 1.1 of [10]. Its inverse M�Σ∓ → N δΣ±,
composed with the projection N δΣ± → Σ±, yields a new disk-bundle projection

(11.3) π± :M�Σ∓ → Σ±.

Remark 11.3. Clearly, π± ◦ Exp⊥ is the normal-bundle projection NΣ± → Σ±.
Also, according to the lines preceding (11.3),

(11.4)
the image π±(x) of any x ∈M ′ is the unique y ∈ Σ± that can
be joined to x by a (necessarily unique) geodesic segment Γx of
length less than δ emanating from y in a direction normal to Σ±,

which implies (see Remark 4.6, Example 8.1 and Theorem 10.2 (iii)–(vi) of [4])
that π± sends every x ∈M�Σ∓ to the unique point nearest x in Σ±.

In the next lemma, by a leaf we mean–as usual–a maximal integral manifold.

Lemma 11.4. Given a compact geodesic-gradient Kähler triple (M, g, τι), the in-
tegrable distribution V = Span(v, u) on M ′ =M � (Σ+∪Σ−), cf. Lemma 9.1 (a)
and Remark 11.1 (iv), has the property that V ⊆ Kerdπ± while, if ξ is a unit
vector normal to Σ± at a point y, then, with δ as in (11.2),

(a) the punctured radius δ disk {zξ : z ∈ C and 0 < |z| < δ} in NyΣ
± is

mapped by expy diffeomorphically onto a leaf Λ of V.

Also, for any leaf Λ ⊆ M ′ of V, its closure Λ̂ in M, and the normal exponential
mapping Exp⊥ : NΣ± → M, there exist y± ∈ Σ± such that {y±} = π±(Λ) and Λ
arises from (a) applied to some unit normal vector ξ at the point y = y±, while
Λ̂ = Λ ∪ {y+, y−} is a totally geodesic complex submanifold of (M, g), biholomor-
phic to CP1, and

(11.5) π∓(Exp⊥(y±, zξ)) = y∓ whenever z ∈ C and 0 < |z| ≤ δ.

Proof. Let us fix x, y and Γx as in (11.4). Due to Theorem 11.1 (iv), the Killing field
u = Jv vanishes along Σ±, so that its infinitesimal flow at y preserves both TyΣ

±
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and NyΣ
±. The images of Γx under the flow transformations of u thus are geodesic

segments normal to Σ± emanating from y and, as a consequence of (11.4), π±

maps them all onto {y}. In other words, the union of such segments, with the
point y removed, is simultaneously a subset of the π±-preimage of y as well as
– according to (9.3) and parts (ii), (iv), (vi) of Theorem 11.1 – a surface embedded
in M ′. This surface is, due to its very definition and Theorem 11.1 (vi), tangent
to both u and v which, in view of (11.2), yields (a); note that, by (9.2.a) and
Remark 11.2, the orbit of ξ under the flow of A = ∇u at y consists of all unit
complex multiples of ξ.

What we just observed about the orbit of ξ clearly ensures smoothness of the
closure of the leaf at y. By (11.2) and Theorem 11.1 (vi), the union of Γx and its
analog for the same point x and the other projection π∓ is a length δ geodesic
segment joining y ∈ Σ± to its other endpoint y∓ ∈ Σ∓. The above discussion of
the images of such a segment under the flow of u applies equally well to y∓, so that
(b)–(c) follow from Lemma 9.1 (a) and the fact that x ∈M ′ was arbitrary. �

Remark 11.5. Let (M, g, τι) be a Grassmannian or CP triple, constructed as in
Section 5 from some data (5.2.i) or (5.2.ii). We use the notation of (9.1) and (11.3).

(a) We already know that the critical manifolds Σ± of τι are given by (5.3).

(b) In the case of (5.3.c) (or, (5.3.b) and (5.3.d)), π± acts on W as the orthogonal
projection into L (or, respectively, into L⊥)

(c) When Σ± has the form (5.3.a), π± sends W to L⊕ (W∩ L⊥).

(d) The leaf of V through any W ∈M ′ consists

(d1) for (5.2.i) – of all L′ ⊕W′, where W′ = W∩ L⊥ and L′ is any line in the
plane L⊕ (W′ ∩W⊥) other than the lines L and W′ ∩W⊥ themselves,

(d2) for (5.2.ii) – of all lines other than W′ and W′′ in the plane W′ ⊕ W′′,
where W′,W′′ denote the orthogonal projections of W into L and L⊥.

Justifications of these easily-verified facts are given in Remark 11.5 of [6].

As V ⊆ Kerdπ± (Lemma 11.4), we define vector subbundles H± of TM ′ by

(11.6) H± = V⊥ ∩ Kerdπ∓, so that Kerdπ± = V ⊕H∓.

Theorem 11.6. For a compact geodesic-gradient Kähler triple (M, g, τι) and v,
M ′, Q, V, S, Σ±, τι±, π

±, H± defined in (9.1), (1.1), (11.6), the bundle endo-
morphism 2(τι − τι±)S − Q of TM, restricted to V⊥, has constant rank on M ′,
and

(11.7) H∓ = V⊥∩ Ker[2(τι − τι±)S − Q], TM ′ = V ⊕ H+⊕ H−⊕ H

with some subbundle H of TM ′, the decomposition being complex, S-invariant
and orthogonal. Furthermore, the closure in M of any Γ ⊆ M ′ chosen as at the
beginning of Section 10 admits a unit-speed C∞ parametrization [t−, t+] � t 	→ x(t)
which, restricted to (t−, t+), is a parametrization of Γ satisfying (10.1.a) and the
following conditions.
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(a) The endpoint y± = x(t±) lies in Σ±, while ẋ(t±) is normal to Σ± at y±.
(b) Every solution (t−, t+) � t 	→ w(t) ∈ V⊥

x(t) of (10.3) along Γ has a C∞

extension to [t−, t+] such that dπ±
x(t)[w(t)] = w(t±) whenever t ∈ (t−, t+).

(c) The bundle projection π± :M�Σ∓ → Σ± is holomorphic.

(d) If w ∈ W [τι±], cf. (10.4), then, in (b), w(t±) = 0, and [∇̇xw](t±) is normal
to Σ± at y± = x(t±) as well as orthogonal to ẋ(t±) and Jẋ(t±).

(e) If w lies in the direct sum of spaces W [c] �= {0} with c �= τι±, for a fixed
sign ±, then w(t±) is tangent to Σ± at y± = x(t±), and [∇̇xw](t±) = 0.

(f) Whenever t ∈ (t−, t+), the assignment w(t) 	→ (w(t±), [∇̇xw](t±)), with w
as in (b), is a C-linear isomorphism V⊥

x → TyΣ
±×N′

y, where N′
y denotes

the orthogonal complement of Span(ẋ(t±), Jẋ(t±)) in NyΣ
± and (x, y) =

(x(t), y±). At the same time, w(t) then equals the image, under the differen-
tial of the normal exponential mapping Exp⊥: NΣ± → M at (y, ξ) ∈ NΣ±

given by y = x(t±) and ξ = (t − t±)ẋ(t±), of the vector tangent to NΣ± at
(y, ξ) which equals the sum of the vertical vector η = (t − t±)[∇̇xw](t±) and
the D-horizontal lift of w(t±) to (y, ξ), for the normal connection D in NΣ±.
Similarly, ux(t), for u = Jv, is the image, under the differential of Exp⊥ at

(y, ξ), of the vertical vector η = ∓aiξ.
(g) For any w,w′ ∈ W, the function Q−1g(Sw,w′) is constant on Γ and the

restriction of g(w,w′) to Γ is an affine function of τι : Γ → R with the
derivative d[g(w,w′)]/dτι = 2Q−1g(Sw,w′).

(h) In (g), with a as in Remark 11.1 (i), either sign ±, and y = y± = x(t±),

(h1) g(w,w′) = (τι+− τι−)
−1|τι − τι∓|gy(w±, w

′
±) if w ∈ W [τι∓] and w′ ∈ W,

(h2) g(w,w′) = gy(w±, w
′
±)−a−1|τι−τι±| gy(Ry(w±, Jyw

′
±)ẋ±, Jy ẋ±) if w,w

′

both satisfy the assumption of (e),

(h3) g(w,w′) = 2a−1|τι − τι±| gy([∇̇xw]±, [∇̇xw′]±) if w,w
′ ∈ W [τι±],

the subscript ± next to w,w′, ∇̇xw, ∇̇xw′ or ẋ representing the evaluation at t±.

Remark 11.7. Since |τι − τι±| = ∓(τι − τι±) and ±(τι+− τι−) = τι± − τι∓, applying
d/dτι to the right-hand side in (h1), or (h2), or (h3), we get the three values

(τι±−τι∓)−1gy(w±,w
′
±), ±a−1gy(Ry(w±,Jyw

′
±)ẋ±,Jyẋ±), ∓2a−1gy([∇̇xw]±, [∇̇xw′ ]±).

As a consequence of parts (g)–(h) of Theorem 11.6, this triple provides the three
expressions for 2Q−1g(Sw,w′) in the cases (h1), (h2) and (h3), respectively.

Note that the three different formulae for g(w,w′) in (h1), (h2) and –with the
reversed sign – in (h3), are all simultaneously valid when w,w′ ∈ W [τι∓].

Remark 11.8. Under the assumptions of Theorem 11.6,

(i) the relation ξ = (t− t±)ẋ(t±) in (f) clearly gives ẋ± = ∓ξ/|ξ| in (h2),

(ii) by (d)–(f), the images under the differential of Exp⊥ of vertical (or, hori-
zontal) vectors tangent to NΣ± at the point (y, ξ) appearing in (f) have the
form w(t) for w satisfying the hypothesis of (d) (or, respectively, of (e)),
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(iii) the differential of π± at any x ∈M ′ maps the summandsH±
x andHx in (11.7)

isomorphically onto the images dπ±
x (H±

x ) and dπ±
x (Hx), orthogonal to each

other in TyΣ
± for y = π±(x),

(iv) one has (τι+−τι−)gx(w,w′) = |τι(x)− τι∓|gy(dπ±
x w, dπ

±
x w

′) whenever w ∈ H±
x

and w′ ∈ V⊥
x at any x ∈M ′, while y = π±(x),

(v) (1.1) and (a) imply the inequality of Theorem 10.1 (viii) everywhere in M ′.

Only (iii)–(iv) require explanations, which can be found in Remark 11.8 of [6].

Remark 11.9. As another direct consequence of Theorem 11.6, the assignment
x 	→ dπ±

x (H±
x ) = dπ±

x (Vx⊕H±
x ) defines a holomorphic section of the bundle overM ′

arising via the pullback under π± from Grk(TΣ
±), for a suitable integer k = k±.

Here Grk(TΣ
±) is the Grassmannian bundle over Σ± with the fibres Grk(TyΣ

±),
y ∈ Σ± (cf. Section 5), holomorphicity and the equality dπ±

x (H±
x ) = dπ±

x (Vx ⊕H±
x )

are clear from Theorem 11.6 (c) (which also implies, due to (11.6), that V ⊕H± is a
holomorphic subbundle of TM ′) and (11.7) (which, combined with (11.6), ensures
constancy of the dimension k = k± of the spaces dπ±

x (H±
x )).

12. Proof of Theorem 11.6

We begin by establishing (a)–(f) under the stated assumptions about Γ.
Let (t−, t+) 	→ x(t) be a parametrization of Γ with (10.1.a). As τι then is

clearly an increasing function of t, it has some limits τ̂ι± as t → t±, finite due to

boundedness of τι. The length of Γ obviously equals the integral of Q−1/2 over
(τ̂ι−, τ̂ι+) ⊆ (τι−, τι+), and so it is finite in view of (6.2). This implies the existence
of limits x(t±) of x(t) as t → t±. Furthermore, each x(t±) lies in Σ± since, if
one x(t±) did not, Theorem 11.1 (iv) would yield v �= 0 at x(t±), contradicting
maximality of Γ. Thus, [t−, t+] 	→ x(t) parametrizes the closure of Γ . Next,
M � (Σ+∪ Σ−) is, by (11.2) and Theorem 11.1 (vi), a disjoint union of maximal
integral curves of v, each of which has two limit points, one in Σ− and one in Σ+,
and the corresponding limit directions of the curve are normal to Σ− and Σ+.
As Γ is one of these curves, (a) follows.

In (b), a C∞ extension to [t−, t+] must exist as w is a Jacobi field; see Theo-
rem 10.1 (ii). To obtain (d)–(e), we fix w ∈ W [c], so that, from (10.2)–(10.4),

(12.1) i) Sw = Qw/[2(τι − c)], ii) ∇̇xw = Q1/2w/[2(τι − c)].

Let y = x(t±) and wy = w(t±). By Theorem 11.1 (iv), Q = τι − τι± = 0 on Σ±

while, in view of (a) and (11.1), Q/[2(τι−τι±)] evaluated at x(t) tends to ∓a �= 0 as

t→ t±. If c = τι±, (12.1.ii) multiplied by Q1/2 thus yields wy = 0, and the relation

Sw′ = Qw′/[2(τι − c)] for w′ = ∇̇xw, obvious from (12.1), implies that [∇̇xw](t±)
lies in the ∓a-eigenspace of Sy. When c �= τι±, (12.1.i) and (12.1.ii) give Sywy = 0

and [∇̇xw](t±) = 0. Due to Remark 11.2, this proves (d) and (e): orthogonality
in (d) follows since w and ∇̇xw take values in V⊥, for V = Span(v, u) (so that
g(w, v) = g(w, u) = 0), while ẋ = v/|v| by (10.1.a), and u = Jv.
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Furthermore, the assignment in (f) is well-defined, injective, complex-linear and
(TyΣ

±×N′
y)-valued due to parts (iii), (ii), (iv) of Theorem 10.1 and, respectively,

(d)–(e). The first claim of (f) thus follows since both spaces have the same di-
mension. The second (or, third) one is in turn immediate from (2.2) applied, at
r = 1, to any w ∈ W, cf. Theorem 10.1 (ii) (or, to w = u), with y, ξ, η as in (f),
and ŵ defined by ŵ(r) = w(rt + (1 − r)t±). (That r 	→ ŵ(r) then is a Jacobi field
along the geodesic r 	→ x(rt+(1− r)t±) follows from Theorem 10.1 (ii) or, respec-
tively, (9.2.b) while, in the latter case, due to (9.2.a) along with Remarks 11.1 (iv)
and 11.2, w = u realizes the initial conditions (u,∇dx/dru) = (0,∓aiξ) at r = 0.)

The remaining equality dπ±
x(t)[w(t)] = w(t±) in (b) now becomes an obvious

consequence of the second part of (f) combined with the first line of Remark 11.3.
This proves (b) and, combined with Theorem 10.1 (iv), implies (c).

Next, for t 	→ x(t) as in (a)–(f), any t ∈ (t−, t+), a fixed sign ±, and x = x(t),
Theorem 10.1 (iii), (11.6) and (b) give H∓

x = {w(t) : w ∈ W and w(t±) = 0}.
Writing any w ∈ W as w = w′ + w′′, where w′ ∈ W [τι±] and w

′′ lies in the direct
sum of the spaces W [c] �= {0} with c �= τι± , cf. Theorem 10.1 (iv), we see that, by
(d)–(e), the isomorphism in (f) sends w′(t) and w′′(t), respectively, to pairs of the
form (0, · ) and ( · , 0). Thus, w(t) ∈ H∓

x if and only if w′′ = 0, that is, w ∈ W [τι±].
From Theorem 10.1 (vi), (10.2) and (10.4.b), one now obtains the first equality
in (11.7), so that (11.6) implies the constant-rank assertion preceding (11.7). On
the other hand, H+

x and H−
x are mutually orthogonal at every x ∈ M ′, being,

by (11.7), contained in eigenspaces corresponding to different eigenvalues of the
self-adjoint operator Sx, cf. (9.2.d), so that the second part of (11.7) follows.

Let w,w′ ∈ W. Constancy of Q−1g(Sw,w′) along Γ is immediate from (9.4.iii)
and Theorem 11.1 (vi), cf. Lemma 9.1 (b) and parts (i)–(ii) of Theorem 10.1. The
operators d/dτι and dv acting on functions Γ → R are in turn related by dv =
Qd/dτι, since (10.1.a) gives dv = Q1/2dẋ = Q1/2d/dt, while d/dt = Q1/2d/dτι due
to (10.1.b). Now (g) trivially follows from (9.4.ii).

In (h), all three right-hand sides are affine functions of τι with the correct
values at t = t± (that is, limits at the endpoint y± = x(t±)). Proving (h) is thus
reduced by (g) to showing that, in each case, χ = 2Q−1g(Sw,w′) coincides with the
derivative of the right-hand side provided by Remark 11.7, which – even though χ
is constant on Γ, cf. (g) – will be achieved via evaluating the limit of χ at y± ∈ Γ
or, equivalently, at t± ∈ [t−, t+]. When w ∈ W [τι∓], (10.4.b) and (10.2) easily
imply that 2Q−1Sw = (τι − τι∓)

−1w and, consequently, χ = (τι − τι∓)
−1g(w,w′) has

the value (and limit) ±(τι+− τι−)−1gy(w±, w′±) at y = y±, as required in (h1).

Let w,w′ now satisfy the hypotheses of (e). By (a), Q(y) = 0, where y = y±.
Also, Q−1Sw is bounded near the endpoint y of Γ�{y} (and similarly for w′); to see
this, we may assume that w ∈ W [c] with c �= τι±, cf. (e), and then (10.4.b) and (10.2)
give 2Q−1Sw = (τι − c)−1w, which is bounded as τι → τι± since, due to (b), w has a
limit at t = t±. Therefore, Q,Sw

′ and Q−1g(Sw, Sw′), restricted to Γ � {y±}, all
tend to 0 at y±. Using this and (b) we now evaluate the limit of χ = 2Q−1g(Sw,w′)
as t → t± via l’Hôpital’s rule: it coincides with the limit of 2dẋ[g(Sw,w

′)]/Q̇.
By (9.2.c) for ẋ rather than w, (10.3), (9.2.d) and (10.1.b), the last expression is the
sum of two terms, ψ−1Q−1/2g(R(u, ẋ)w, Jw′) and 2ψ−1Q−1g(Sw, Sw′). According
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to (11.1) and the above three limit relations at y±, only the first term contributes
to the limit and, as it equals ψ−1g(R(Jẋ, ẋ)w, Jw′), cf. (9.3) and Theorem 11.1 (vi),
relation (11.1) yields (h2). Finally, suppose that w,w′ ∈ W [τι±], and let y = y±.
As Q and w vanish at y (see (a), (d)), while (Q1/2)˙ = ψ by (10.1.b), and so
[∇̇xw]/(Q1/2)˙ = ψ−1∇̇xw, l’Hôpital’s rule and (11.1) now imply that Q−1/2w →
∓a−1[∇̇xw]± at y, and analogously for w′. Since Sy[∇̇xw]± = ∓a[∇̇xw]± from (d)
and Remark 11.2, this yields (h3), completing the proof of Theorem 11.6.

Remark 12.1. With the same notations and assumptions as in Theorem 11.6,

(12.2) d++ d− ≥ m− 1 ≥ d± ≥ 0, where m = dimCM and d±= dimCΣ
±.

Cf. the end of Section 13. In fact, denoting by k± and q the complex fibre dimen-
sions of the subbundles H∓ and H of TM ′, we have d++ d− = m − 1 + q, as one
sees adding the equalities d± = m−1−k± and m = 1+k++k−+q (the former due
to (11.3) and (11.6), the latter to (11.7)). Now (12.2) follows: d++ d− ≥ m − 1,
with equality if and only if the distribution H in (11.7) is 0-dimensional, that is,
if TM ′ = V ⊕ H+⊕ H−. The explicit descriptions of Σ± in (5.3.c)–(5.3.d) clearly
give d+ + d− = m − 1 for every CP triple (M, g, τι).

13. Examples: Nontrivial modifications

Whenever two functions τι 	→ Q and τ̂ι 	→ Q̂ have the properties listed in (6.1),
with the same values of τι± and a, there must exist an increasing C∞ diffeomor-

phism [τι−, τι+] � τι 	→ τ̂ι ∈ [τι−, τι+] which realizes the equality Q̂ d/dτ̂ι = Qd/dτι
of vector fields on [τι−, τι+] expressed in terms of the two diffeomorphically-related
coordinates τ̂ι and τι. Such a diffeomorphism is unique up to compositions from the
left (or, right) with transformations forming the flow of Q̂ d/dτ̂ι (or, Qd/dτι). Both
the existence and uniqueness are immediate, cf. Remark 13.1 in [6].

Lemma 13.1. For τι± and τι 	→ Q related via Remark 11.1 (i) to a given compact
geodesic-gradient Kähler triple (M, g, τι), and any increasing C∞ diffeomorphism
[τι−, τι+] � τι 	→ τ̂ι ∈ [τι−, τι+], there exists a C∞ function [τι−, τι+] � τι 	→ φ ∈ R,
unique up to additive constants, such that τ̂ι = τι + Qdφ/dτι.

With τ̂ι, φ treated, due to their dependence on τι, as functions on M, the formula
ĝ = g − 2(i∂∂φ)(J · , · ) then defines another Kähler metric on M, and

(a) (M, ĝ, τ̂ι) is a new geodesic-gradient Kähler triple.

Also, for the analog τ̂ι 	→ Q̂ of τι 	→ Q in Remark 11.1 (i) and the ĝ -gradient ∇̂τ̂ι
of τ̂ι, one has Q̂ d/dτ̂ι = Qd/dτι and ∇̂τ̂ι =∇τι.

Proof. See Theorem 13.2 of [6]. �

Let G be the group of all automorphisms of a given compact geodesic-gradient
Kähler triple (M, g, τι), in the sense of Section 4. Then every quadruple τι−, τι+, a,
τ̂ι 	→ Q̂ satisfying the analog of (6.1) arises from an application of Theorem 11.1 (i)
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to a suitably chosen G-invariant geodesic-gradient Kähler triple (M, ĝ, τ̂ι) with the
same underlying complex manifold M. Cf. Remark 13.3 in [6].

As a special case of the last paragraph, for the first triple using the Fubini–Stu-
dy metric g and G as in the lines preceding (5.2), all quadruples τι−, τι+, a, τι 	→ Q
with (6.1) are realized, via Theorem 11.1 (i), by CP triples (M, g, τι) having arbi-
trarily fixed values of m = dimCM and d± = dimCΣ

± that satisfy (12.2). Con-
versely, Lemma 13.1 and the lines preceding it allow us to canonically modify
any given CP triple, obtaining one with the Fubini–Study metric and the same
automorphism group G.

14. The normal-geodesic biholomorphisms

In this section (M, g, τι) is a fixed compact geodesic-gradient Kähler triple. We
use the notation of (9.1), denote by τι−, τι+, a,Q the data (6.1) associated with
(M, g, τι) (see Theorem 11.1 (i)), and choose for them the further data (6.1)–(6.2),
so that a sign ± is fixed as well. We also let Σ,N, h, 〈 , 〉 and D stand for Σ±, the
normal bundle NΣ±, the submanifold metric of Σ, the Riemannian fibre metric
in N induced by g, and the Chern connection of 〈 , 〉 in N, cf. (d) in Section 7. We
write (y, ξ) ∈ N when y ∈ Σ and ξ ∈ Ny.

Using the normal exponential diffeomorphism Exp⊥: N δΣ± →M�Σ∓ in (11.2),
we define Φ = Φ± : N →M�Σ∓, depending on the sign ±, to be

(14.1)
Φ = Exp⊥◦Δ for Δ:N → N δΣ± given by Δ(y, ξ) = y if ξ = 0
and Δ(y, ξ) = (y, tξ) otherwise, where t = σ/ρ for ρ = |ξ|, the
function σ of the variable ρ ∈ [0,∞) being chosen as in (6.2).

Note that Δ is a homeomorphism and, restricted to the complement N ′ = N �Σ
of the zero section, it becomes a diffeomorphism N ′ → N δΣ±� Σ±. In fact, tξ
with t = σ/ρ determines ξ (smoothly if ξ �= 0), since |tξ| = σ and σ determines ρ
according to the line preceding (6.2). Consequently, Φ : N → M�Σ∓ is a homeo-
morphism, and the restriction Φ : N ′ →M ′ a diffeomorphism. In addition,

(14.2) π±◦ Φ± equals the normal bundle projection NΣ±→ Σ±

due to (14.1), the fibre-preserving property of Δ, and the first line of Remark 11.3.

Remark 14.1. Suppose that a vector field w on N ′ is

(a) the D-horizontal lift of a vector field on Σ, or

(b) vertical, and has the form (y, ξ) 	→ Θξ for some complex-linear vector-bundle
morphism Θ : N → N, skew-adjoint relative to 〈 , 〉 at every point.

Then Δ, restricted to N ′, sends w onto its restriction to N ′ ∩N δΣ±.
In fact, let r 	→ (y(r), ξ(r)) be an integral curve of w. Then the function

r 	→ |ξ(r)| is constant, and so, by (14.1), Δ(y(r), ξ(r)) = (y(r), cξ(r)) with some
c ∈ R. This proves our claim since, in case (b), w restricted to every fibre Ny,

being a linear vector field on Ny, is invariant under multiplications by scalars.
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Theorem 14.2. For either critical manifold Σ∓ of τι in any compact geodes-
ic-gradient Kähler triple (M, g, τι), the triple (M�Σ∓, g, τι) is isomorphic to one
constructed in Section 8 from some data (6.1) and Σ, h,N, 〈 , 〉.

The data consist of (6.1) associated with (M, g, τι) as in Remark 11.1 (i), any
choice of τι 	→ ρ with (6.1) for our fixed sign ±, the submanifold metric h and
normal bundle N = NΣ± of Σ = Σ±, and the fibre metric 〈 , 〉 in N induced by g.
Furthermore,

(i) the required isomorphism N →M�Σ∓ is provided by the mapping Φ = Φ±

with (14.1), which, in particular, must be biholomorphic,

(ii) Φ sends the horizontal distribution of the Chern connection D of 〈 , 〉 in N,
cf. (d) of Section 7, onto the summand V ⊕H± in (11.7),

(iii) the leaves of V are precisely the same as the Φ-images of all punctured
complex lines through 0 in the normal spaces of Σ.

In the special case where TM ′ = V ⊕H+⊕H−, that is, the summand distribution H
of (11.7) is 0-dimensional, formula (8.3.c) in the construction of Section 8 may
be replaced by the following equality, with the simplified notation of (8.3.c):

(14.3) ĝ(w,w′) =
|τι − τι∓|
τι+− τι−

h(w,w′).

Proof. It suffices to prove that the restriction of Φ to N ′ = N � Σ is an isomor-
phism between the geodesic-gradient Kähler triples (N ′, ĝ , τ̂ι) and (M ′, g, τι), since
the analogous conclusion about Φ itself then follows from Lemma 16.1 in [5].

We start by establishing the equality τι ◦ Φ = τ̂ι. Namely, |ρξ| = ρ for any
ρ ∈ (0,∞) and any (y, ξ) ∈ N with |ξ| = 1, so that Φ(y, ρξ) = xσ, where xσ =
expy σξ and σ depends on ρ as in (6.2). As σ 	→ xσ is a unit-speed geodesic,

Theorem 11.1 (vi) and (10.1.b) give d[τι(xσ)]/dσ = ∓Q1/2, the sign factor being
due to the relation d(xσ)/dσ = ∓v/|v| (immediate from (1.1) with v = ∇τι). Here
Q = g(v, v) depends on τι(xσ) as in Theorem 11.1 (i). Remark 6.1 and the text
preceding (8.3.a) yield the same equation d[τ̂ι(y, ρξ)]/dσ = ∓Q1/2 when τι(xσ) is
replaced by τ̂ι(y, ρξ), with the same dependence of Q on the unknown function.
The uniqueness in Remark 6.1 thus gives τι(Φ(y, ρξ)) = τι(xσ) = τ̂ι(y, ρξ).

Next, one has two complex direct-sum decompositions, TM ′ = V ⊕ H∓⊕ H•

and TN ′ = V̂ ⊕ Ĥ∓⊕ Ĥ•, orthogonal relative to g and, respectively, ĝ . The former
arises from (11.7) if one sets H• = H±⊕ H. In the latter V̂, Ĥ∓ and Ĥ• are the
distributions introduced in the lines preceding (8.3). First, for û as in (8.4) and
our u = Jv, where v = ∇τι, we show that

(14.4)

i) Δ preserves V̂, Ĥ∓, Ĥ• and û,

ii) Exp⊥ sends V̂, Ĥ∓, Ĥ•, û to V, H∓,H•, u,
iii) both Δ and Exp⊥ act complex linearly on Ĥ∓ and Ĥ•.

More precisely, Δ (or, Exp⊥) appearing in (14.1) (or, (11.2)), restricted to N ′ (or,
N ′ ∩N δΣ±), sends V̂, Ĥ∓, Ĥ•, û onto their restrictions to N ′ ∩N δΣ± (or, respec-
tively, onto V, H∓,H•, u). The claims about V̂ in (14.4.i)–(14.4.ii) follow as Δ
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clearly preserves each leaf of V̂, that is, each punctured complex line through 0 in
the normal space NyΣ at any point y ∈ Σ, while, by Lemma 11.4 (a), Exp⊥ maps

the leaves of V̂ intersected with N ′∩N δΣ± onto leaves of V. This also proves (ii).
Next, the class of vertical vector fields of Remark 14.1 (b) obviously includes û and,
locally, some of them span Ĥ∓. Remark 14.1 thus yields the remainder of‘ (14.4.i),
while (14.4.iii) for Δ follows from complex-linearity of the D-horizontal lift opera-
tion (due to Lemma 7.1 (i)), and the fact that Δ acts on the vertical vector fields
in Remark 14.1 (b) as the identity operator. On the other hand, (14.4.ii) in the
case of Ĥ∓ and Ĥ• (or, of û) is an immediate consequence of the second (or,
third) claim in Theorem 11.6 (f). (To be specific, for Ĥ∓ and Ĥ• this is clear
from Remark 11.8 (ii) combined with (11.6)–(11.7).) Finally, the complex-linearity
assertion of Theorem 11.6 (f) implies (14.4.iii).

By (14.4), the diffeomorphism Φ = Exp⊥◦ Δ: N ′ → M ′ maps V̂, Ĥ∓ and Ĥ•

onto V,H∓ and H•. Proving the theorem is thus reduced to showing that Ĵ and ĝ ,
on each of the three summands V̂, Ĥ∓ and Ĥ•, correspond under the differential
dΦ to J and g on V, H∓ and H•, respectively. This last claim is easily verified; for
details, see formula (14.7) in [6]. �

Corollary 14.3. Suppose that (M, g, τι) is a compact geodesic-gradient Kähler
triple. Then, for V and H± appearing in (11.7), with either sign ±, the distribution
V ⊕H± is integrable and its leaves are totally geodesic in (M ′, g).

Proof. Use Theorem 14.2 and Lemma 8.1 (a) (or – for integrability – (11.6)). �

15. Immersions of complex projective spaces

In the next result the inclusions Ny ⊆ P(C×Ny) and PNy ⊆ P(C×Ny) come from

the standard identification (5.1) for V = Ny, where y ∈ Σ±. Note that, by (11.6)
and Corollary 14.3, the biholomorphism Φ : NΣ±→ M�Σ∓ (see Theorem 14.2),
when restricted to the normal space Ny = NyΣ

± ⊆ NΣ±, constitutes

(15.1) a totally geodesic holomorphic embedding Φ : Ny →M�Σ∓.

Theorem 15.1. Given a compact geodesic-gradient Kähler triple (M, g, τι), a fixed
sign ±, and a point y of the critical manifold Σ±, the following conclusions hold.

(a) The embedding Φ : Ny → M�Σ∓ with (15.1) has an extension to a totally

geodesic holomorphic immersion Ψ : P(C×Ny) →M.

(b) The restriction of Ψ in (a) to the hyperplane PNy ⊆ P(C ×Ny) at infinity

is a totally geodesic holomorphic immersion F : PNy → Σ∓ and, for a, τι±
of Theorem 11.1 (i), the metric induced by F on PNy equals 2(τι+− τι−)/a
times the Fubini–Study metric arising from the inner product gy in Ny .

(c) The images of the immersion F : PNy → Σ∓ in (b) and of its differential at
any point Cξ, where (y, ξ) ∈ NΣ± and ξ �= 0, coincide with the π∓-image
of the leaf of Kerdπ± in M ′ passing through x = Φ(y, ξ) and, respectively,
with the subspace dπ∓x (H∓

x ) = dπ∓x (Vx ⊕H∓
x ) of TyΣ

∓.
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Proof. By Theorems 14.2 and 11.6 (c), π∓◦Φ maps the complement NΣ±�Σ± of
the zero section in NΣ± holomorphically into Σ∓. Since the restriction of π∓◦ Φ
to Ny � {0} ⊆ NΣ±�Σ± is constant on each punctured complex line through 0,

cf. (11.5) and (14.1), it descends to a holomorphic immersion F : PNy → Σ∓, the
immersion property of F being an immediate consequence of the fact, established
below, that both π∓: Φ(Ny�{0}) → Σ∓ and π∓◦Φ : Ny�{0} → Σ∓ have constant

(complex) rank, equal to dimCNy − 1. As Φ is a biholomorphism, it suffices to

verify this last claim for the former mapping; we do it noting that Π = Φ(Ny�{0})
coincides with the π±-preimage of y (due to (14.2) and Remark 11.3), and hence
forms a leaf of Kerdπ± = V ⊕H∓ restricted to M ′, cf. (11.6). That π∓ : Π → Σ∓

satisfies the required rank condition is now clear: its differential at any point x
has, by (11.6)–(11.7), the kernel Vx , while V = Span(v, u).

The mapping Ψ : P(C ×Ny) → M, equal to Φ on Ny and to F on PNy, is

continuous. Namely, if it were not, we could pick a sequence ξj ∈ Ny, j = 1, 2, . . . ,

such that |ξj | → ∞ and ξj/|ξj | → ξ as j → ∞ for some unit vector ξ ∈ Ny, while

no subsequence of the image sequence Ψ(ξj) tends to F (Cξ). The resulting limit

relation σj → δ, where σj corresponds to ρj = |ξj | as in the line preceding (6.2),

combined with (14.1), now gives Ψ(ξj) = Φ(ξj) = Exp⊥(y, σj ξj/ρj) which – due

to continuity of Exp⊥ and (11.5) – converges to Exp⊥(y, δξ) = y∓, for a specific
point y∓. However, Lemma 11.4 and the definition of F also give y∓ = F (Cξ),
which contradicts our choice of ξj , proving continuity of Ψ .

Holomorphicity of Ψ is now obvious from Lemma 3.2 applied to Π = P(C×Ny)

and its codimension-one complex submanifold Λ = PNy. Furthermore, Ψ is an

immersion. To see this, first note that Ψ has two restrictions, F to PNy and Φ

to the dense open submanifold Ny, already known to be immersions, cf. (15.1), the

former into Σ∓. Next, for any unit vector ξ ∈ Ny, if Λ
′ denotes the projective

line in P(C ×Ny) joining C(1, 0) to the point Cξ ∈ PNy (identified via (5.1) with
C(0, ξ)), then the restriction of Ψ to Λ′ is an embedding with the image Λ = Ψ(Λ′)
forming a complex submanifold ofM, biholomorphic to CP1, and intersecting each
of Σ+ and Σ− orthogonally at a single point. Namely, Lemma 11.4 yields all the
claims just made except the ‘embedding’ property. To obtain the latter, we invoke
the well-known fact that the only injective holomorphic mappings CP1→ CP1 are
biholomorphisms, applied here to the resulting holomorphic mapping Ψ: Λ′ → Λ,
the injectivity of which follows from that of Φ. Thus, Ψ is in fact an immersion.

Due to obvious reasons of continuity, (15.1) implies that the holomorphic im-
mersion Ψ : P(C×Ny) → M is totally geodesic, which establishes (a). Finally, as
the intersection of two totally geodesic submanifolds must itself be totally geodesic,
Remarks 8.4, 11.1 (iii) and Theorem 14.2 imply (b). �

Remark 15.2. For m, d±, k±, q as in Remark 12.1, the codimension dimCΣ
∓−

dimCNy of the immersion F in Theorem 15.1(b) equals q. Namely, dimCNy =

m−d±−1, and so, from Remark 12.1, dimCΣ
∓−dimCNy = (m−d±−1)−d∓ = q.
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Remark 15.3. Suppose that the distribution H in (11.7) is 0-dimensional or,
in other words, TM ′ = V ⊕ H+ ⊕ H−. Then, for either sign ±, the critical
manifold Σ±, with its submanifold metric, must be biholomorphically isomet-
ric to a complex projective space carrying the Fubini–Study metric multiplied
by 2(τι+− τι−)/a.

In fact, the isometric immersion F of Theorem 15.1(b), having codimension
zero (cf. Remark 15.2), is necessarily a biholomorphism (Remark 3.5).

16. Consequences of condition (1.3)

The results stated and proved below use the notations of (9.1), (11.3), (11.6), and
the notion of projectability introduced in Section 2.

Lemma 16.1. For a compact geodesic-gradient Kähler triple (M, g, τι), the follow-
ing three conditions, involving distributions on M ′, are mutually equivalent.

(i) The span Z = V ⊕H+⊕H− of Kerdπ+ and Kerdπ− is integrable.

(ii) Kerdπ− = V ⊕H+ is π+-projectable.

(iii) Kerdπ+ = V ⊕H− is π−-projectable.

In (ii)–(iii) one may also replace V ⊕H± by H± or Z. If (i)–(iii) hold, then:

(iv) The immersions of Theorem 15.1 (c) are all embeddings.

(v) The π±-images Z± of the integrable distribution Z on M ′ are integrable
holomorphic distributions on Σ± and have totally geodesic leaves biholomor-
phically isometric to complex projective spaces carrying 2(τι+−τι−)/a times the
Fubini–Study metric, cf. Theorem 15.1 (b). These leaves coincide with the
images of the embeddings in (iv), and form the fibres of holomorphic bundle
projections pr±: Σ±→ B± for some compact complex base manifolds B±.

(vi) The summand H in (11.7) is π±-projectable and its π±-image coincides with
the orthogonal complement of Z± in TΣ±.

(vii) The leaf space B =M ′/Z has a unique structure of a compact complex mani-
fold making the quotient projection M ′ →M ′/Z a holomorphic fibration. For
either sign ± and pr± : Σ±→ B± as in (v), the mapping B → B± sending
each leaf of Z to its pr±◦ π±-image is a biholomorphism.

(viii) There exists a unique holomorphic bundle projection π : M → B with Kerdπ
= Z on M ′ such that, for both signs ±, the restriction of π to M ′ equals
β±◦ pr±◦ π±, where β± is the inverse of B → B± in (vii).

(ix) RD(w,w′) = −ia(τι+− τι−)
−1h(Jw,w′) : N → N, with the notation of Sec-

tion 2, for the submanifold metric h of Σ±, the normal connection D in its
normal bundle N = NΣ±, and any sections w of Z±, and w′ of TΣ±.

Proof. Since V ⊕H± are both integrable by (11.6), the mutual equivalence of (i),
(ii), (iii) and the integrability claim in (v) are all immediate from Lemma 2.2
applied to E± = V ⊕ H±, along with (11.6)–(11.7). The immersions mentioned
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in Theorem 15.1 (c) thus have nonsingular images, namely, the leaves Π of the
distribution Z± in (v), so that (iv) follows from Remark 3.5 applied to PNy standing

for CPl, with l = k∓ defined in Remark 12.1, and such a leafΠ. The remaining part
of (v) is a direct consequence of Theorem 15.1 (b), since an integrable distribution
with compact simply connected leaves constitutes the vertical distribution of a
bundle projection, cf. Remark 3.3 of [6]. At any y ∈ Σ±, the image dπ±

x (H±
x )

is now independent of the choice of x ∈ M ′ with π±(x) = y, and hence so is its
orthogonal complement dπ±

x (Hx) in TyΣ
± (see Remark 11.8 (iii)), proving (vi).

The mappings B → B± in (vii) are obviously bijective, and lead to an identifi-
cation B+= B− which is a biholomorphism, as one sees restricting π± to “local”
complex submanifolds ofM ′, sent biholomorphically, by the composite bundle pro-
jectionsM ′→ Σ±→ B± (having the leaves of Z as fibres), onto open submanifolds
of B±. This yields (vii). For (viii), it suffices to note that the two composite bundle
projections pr± ◦ π± :M�Σ∓→ B agree, by (vii), on the intersection M ′ of their
domains, cf. Theorem 11.1(iv), while the union of their domains is M.

For (ix), Theorem 14.2 allows us to identify M �Σ∓ with N so that (8.3.c)
and (8.5) hold under the assumptions following (8.3). As w lies in the π±-ima-
ge Z± of H±, cf. (ii), (iii), (v), formula (11.7) gives 2Sw = Qw/(τι − τι∓) for its
D-horizontal lift, also denoted by w. Replacing 2Sw in (8.5) with Qw/(τι−τι∓) and
multiplying the result by (τι − τι∓)Q

−1, we get an expression for g(w,w′) which,
equated to (8.3.c), yields 〈RD(w, Jw′)ξ, iξ〉 = −a(τι+− τι−)

−1〈ξ, ξ〉h(w,w′), since
ρ2 = 〈ξ, ξ〉 while, clearly, |τι − τι±| = ∓(τι − τι±). Assertion (ix) now follows if we
apply the last equality to Jw rather than w, and use (b) of Section 7 along with
Hermitian symmetry of 〈RD(w,w′)ξ, iη〉 = −〈iRD(w,w′)ξ, η〉 in ξ, η. �

Let us now fix a Kähler manifold (Σ̂, ĥ), and consider pairs N, 〈 , 〉 formed by a
holomorphic complex vector bundle N over Σ̂ and the real part 〈 , 〉 of a Hermitian
fibre metric in N, the Chern connection of which – see Section 7 – is assumed to
satisfy the curvature condition RD(w,w′) = 2iĥ(Jw,w′) : N → N for any vector
fields w,w′ tangent to Σ̂, the conventions about the sign of RD and the operators
RD(w,w′) being the same as in Section 2.

Lemma 16.2. If Σ̂ is simply connected and such N, 〈 , 〉 exist, they are essentially
unique, in the sense that, given another pair N ′, 〈 , 〉′ with the same property, some
holomorphic vector-bundle isomorphism N → N ′ takes 〈 , 〉 to 〈 , 〉′.

Proof. See Lemma 16.2 of [6]. �

Theorem 16.3. For a compact geodesic-gradient Kähler triple (M, g, τι), the fol-
lowing two conditions are equivalent.

(i) (M, g, τι) is isomorphic to a CP triple, defined as in Section 5.

(ii) d++ d− = m − 1, where (m, d±) = (dimCM, dimCΣ
±). In other words, cf.

Remark 12.1, TM ′ = V ⊕ H+⊕ H−, that is, H in (11.7) is 0-dimensional.

In this case, the assertion of Theorem 14.2, including equation (14.3), is satisfied
by (M�Σ∓, g, τι), with either fixed sign ± and (Σ, h) biholomorphically isometric to
a complex projective space carrying 2(τι+−τι−)/a times the Fubini–Study metric, N
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and 〈 , 〉 being, up to a holomorphic vector-bundle isomorphism, the normal bundle
of the latter treated as a linear variety in CPm and its Hermitian fibre metric
induced by the Fubini–Study metric of CPm.

Furthermore, the isomorphism types of CP triples (M, g, τι) having any given
values of d± and m in (ii) are in a natural bijective correspondence, obtained by
applying Remark 11.1 (i), with quadruples τι−, τι+, a, τι 	→ Q that satisfy (6.1).

Proof. First, (i) implies (ii) according to the last line of Section 12. Assuming
now (ii), we use the end of Section 13 to select a CP triple (CPm, g′, τι′) realizing
the same data d±, τι±, a and τι 	→ Q, in (ii) above and Theorem 11.1(i), as our
(M, g, τι) (which also establishes the surjectivity part of the final clause). With
either fixed sign ±, denoting Σ∓, Σ± by Σ,Π , and their analogs for (CPm, g′, τι′) by
Σ′, Π ′, we choose the isomorphisms N →M�Π and N ′ → CPm�Π ′ by applying
Theorem 14.2(i) to both triples. As (i) has already been shown to yield (ii),
we may now also apply Remark 15.3 to both of them, identifying the critical
manifolds Σ,Σ′ (and their submanifold metrics) with a complex projective space Σ̂

(and, respectively, with the Fubini–Study metric ĥ multiplied by 2(τι+− τι−)/a).
Next, (ix) in Lemma 16.1 holds for both triples, so that the pairs N, 〈 , 〉 and
N ′, 〈 , 〉′ associated with them via Theorem 14.2 satisfy, along with Σ̂ = Σ = Σ′

and ĥ, the assumptions – as well as the conclusion – of Lemma 16.2. Thus, some
holomorphic vector-bundle isomorphism N → N ′ takes 〈 , 〉 to 〈 , 〉′ and, since the
metrics ĝ , ĝ ′ on N and N ′ constructed in Section 8 depend only on 〈 , 〉, 〈 , 〉′ (aside
from the data fixed above and shared by both triples), this isomorphism is a hol-
omorphic isometry of (N, ĝ) onto (N ′, ĝ ′), sending τι to its analog on N ′. As a
consequence of Lemma 16.1 in [5], it can be extended to an isomorphism between
the triples (M, g, τι) and (CPm, g′, τι′). We thus obtain injectivity in the final clause
and the fact that (ii) yields (i). �

17. Horizontal extensions of CP triples

Once again, we use the notation of (9.1), (1.1) and (11.2), assuming (M, g, τι) to
be a compact geodesic-gradient Kähler triple.

Lemma 17.1. Suppose that conditions (i)–(iii) along with the other assumptions
of Lemma 16.1 hold for a triple (M, g, τι), and π,B are as in Lemma 16.1(viii).

(a) Given a π-projectable local section w of the distribution H in (11.7),

(a1) w commutes with the vector fields v = ∇τι and u = Jv,

(a2) w is π±-projectable for both signs ±,

(a3) the local flow of w in M ′ preserves the distributions V,H+ and H−.

(b) The leaves of the integrable distribution Z = V ⊕H+⊕H− on M ′ are totally
geodesic complex submanifolds of M ′ and all the local flows mentioned in (a3)
act between them via local isometries.

Proof. See Lemma 17.1 of [6]. �
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We say that a (locally-trivial) holomorphic fibre bundle carries a specific local-
type fibre geometry if such a geometric structure is selected in each of its fibres and
suitable local C∞ trivializations make the structures appear the same in all nearby
fibres. For instance, holomorphic complex vector bundles endowed with Hermitian
fibre metrics may be referred to as

(i) holomorphic bundles of Hermitian vector spaces.

The fact that (i) leads to the presence of the distinguished Chern connection (Sec-
tion 7) has obvious generalizations to two situations (ii)–(iii) discussed below.

By a horizontal distribution for a holomorphic bundle projection π : M → B
between complex manifolds, also called a connection in the holomorphic bundle M
over B, we mean any C∞ real vector subbundle H of TM such that TM is the
direct sum of the vertical distribution Kerdπ and H. Horizontal lifts of vectors
tangent to B, and of piecewise C1 curves in B, as well as parallel transports along
such curves, are then defined in the usual fashion, although the maximal domain of
a lift of a curve (or, of a parallel transport) may in general be a proper subinterval
of the original domain interval. This last possibility does not, however, occur in
bundles with compact fibres, or in vector bundles with linear connections, where
horizontal lifts of curves and parallel transports are all global.

The Chern connection H naturally arises in the cases of

(ii) holomorphic bundles of Fubini–Study complex projective spaces, and

(iii) holomorphic bundles of CP triples, over any complex manifold B.

See Section 17 of [6]. The fibre geometries consist here of Fubini–Study metrics
and, respectively, the structures of a CP triple (Section 5). In case (ii), or (iii),

(17.1)
the H parallel transports are holomorphic isometries or,
respectively, CP triple isomorphisms between the fibres,

which holds for (ii) since it does for (i), cf. Section 7, and thus extends to (iii) via
the canonical modifications in the two final paragraphs of Section 13. Case (iii)
leads to a special situation: the critical manifolds – analogs of (1.1) – in the fibres
now constitute two holomorphic bundles Σ± of Fubini–Study complex projective
spaces over B (with nonnegative fibre dimensions; see Remark 15.3), contained as
subbundles in the original bundle, and invariant under all H-parallel transports.

The following assumptions and notations will now be used to construct compact
geodesic-gradient Kähler triples, each of which we call a horizontal extension of
the CP triple provided by any fibre (π−1(z), gz, τιz).
(a) π : M → B and H are the bundle projection and the Chern connection of a

holomorphic bundle of CP triples with a compact base B and the CP-triple
fibres (π−1(z), gz, τιz), z ∈ B, while Σ± stand for the above subbundles of Fu-
bini–Study complex projective spaces, invariant under H-parallel transports.

(b) We let τι±, a be the data associated with some/any fibre (π−1(z), gz, τιz)
as in Theorem 11.1(i), and τι : M → R (or π±: M � Σ∓→Σ±) be the
C∞ function (or holomorphic bundle projection) which, restricted to each
π−1(z), equals τιz or, respectively, the version of (11.3) corresponding to
(π−1(z), gz, τιz). We also set M ′ =M � (Σ+∪Σ−).
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(c) One is given two Kähler metrics h± on the total spaces Σ± of our holomor-
phic bundles of Fubini–Study complex projective spaces such that either h±

makes the fibres Σ±
z , z ∈ B, orthogonal to H along Σ± and, restricted to

each fibre, h± equals 2(τι+− τι−)/a times the Fubini–Study metric of Σ±
z .

(d) We define a Riemannian metric g onM ′ by requiring that H be g-orthogonal
to the vertical distribution Kerdπ, that g agree on the fibres π−1(z) with the
metrics gz, and that (τι+−τι−)g = (τι−τι−)h++(τι+−τι)h− on H, the symbols h±

being also used for the π±-pullbacks of h±, cf. (b)–(c).

(e) Our final assumption: the Riemannian metric g on the dense open subman-
ifold M ′ has an extension to a Kähler metric on M, still denoted by g.

Remark 17.2. Let a horizontal extension (M, g, τι) arise as above, under the
hypotheses (a)–(e). The following is easily verified, cf. Remarks 17.2, 17.3 in [6].

(i) (M, g, τι) actually constitutes a geodesic-gradient Kähler triple.

(ii) Compactness ofM implies integrability of the distribution Z = V ⊕H+⊕H−

coming from the decomposition in (11.7) for (M, g, τι), and Z coincides, on
M ′, with the vertical distribution Kerdπ of the bundle projection π:M →B.

Theorem 17.3. A geodesic-gradient Kähler triple (M, g, τι), with compact M,
satisfies one/all of the mutually-equivalent conditions (i)–(iii) of Lemma 16.1, if
and only if it is isomorphic to a horizontal extension of a CP triple, defined as
above using (a)–(e).

Proof. Remark 17.2 (ii) clearly yields the ‘if’ part of our claim.

Conversely, let (M, g, τι) satisfy (i)–(iii) in Lemma 16.1. Lemma 16.1(viii) states
that Z = V ⊕H+⊕H− coincides, onM ′, with the vertical distribution Kerdπ of the
holomorphic bundle projection π : M → B. Also, in view of Remark 4.3, the leaves
of Z form geodesic-gradient Kähler triples, due to their being complex submani-
folds of M tangent to v = ∇τι (since V = Span(v, u)) and, as they are also totally
geodesic (see Lemma 17.1 (b)), (11.7) and the S-invariance in (11.7), with S = ∇v,
imply via Theorem 16.3 that they are all isomorphic to CP triples. The local
isometries of Lemma 17.1 (b) can obviously be made global due to compactness
(see the lines preceding (ii) above) which, consequently, turns M into a holomor-
phic bundle of CP triples over B, in the sense of (iii).

On the other hand, the g-orthogonal complement of Z = Kerdπ is equal, onM ′,
to the summand H in (11.7). Thus, H constitutes a connection in the bundle M
over B, as defined in the lines following (i), and – being the intersection of the
horizontal distribution of the Chern connections V ⊕ H± in the normal bundles
N = NΣ±, cf. Theorem 14.2 (ii) – H itself is, according to (a) in Section 7, the
Chern connection of the holomorphic bundle M of CP triples over B.

This provides parts (a)–(b) of the data (a)–(e) required above, with Σ± and
τι±, a given by (1.1) and, respectively, Theorem 11.1 (i). The submanifold met-
rics h± of Σ± have, by (v)–(vi) in Lemma 16.1 and the final clause of Theo-
rem 11.6 (b), all the properties needed for (c).

To show that g satisfies (d), consider two π-projectable nonzero local sections
w,w′ of the distribution H = Z⊥, cf. (11.7). According to Lemma 17.1 (a) and
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Remark 2.1, w and w′ are projectable along V andH±, as well as π±-projectable, for
either sign ±. Their restrictions to any fixed normal geodesic segment Γ emanating
fromΣ± thus lie in the spaceW (cf. Theorem 11.1 (vi) and (i)–(ii) in Theorem 10.1)
and, by Theorem 11.6 (g), g(w,w′) restricted to Γ is a (possibly nonhomogeneous)
linear function of τι. The same linearity condition obviously holds for g(w,w′)
when g is defined as in (d), rather than being the metric of our triple (M, g, τι).
The two definitions of g(w,w′) must now agree, as the two linear functions have
– in view of Remark 11.8 (iii) and the final clause of Theorem 11.6 (b) – the same
values h±(w,w′) at the endpoints τι± of the interval [τι−, τι+]. �

All compact SKRP triples of Class 1 (cf. Section 8) must be isomorphic to
horizontal extensions of CP triples of complex dimension 1, while those of Class 2
are themselves CP triples of a special type. The former claim is easily verified
using Theorem 16.3 of [5]; for the latter, see Lemma 8.2. The classification result
of Theorem 6.1 in [4] may be rephrased as the conclusion that all compact geodesic-
gradient Kähler triples (M, g, τι) with dimCM = 2, other than Class 2 SKRP triples,
are isomorphic to horizontal extensions of CP triples of complex dimension 1. The
same conclusion holds – by their very construction – for the Koiso–Cao gradient
Kähler–Ricci solitons [9], [3], mentioned in the Introduction.

18. Constant-rank multiplications

In this section vector spaces are finite-dimensional and complex. Bilinear mappings
of the type discussed here arise in any compact geodesic-gradient Kähler triple
(Theorem 18.3), leading to the dichotomy conclusion of Theorem 19.1.

A constant-rank multiplication is any bilinear mapping μ : N ×T → Y, where
N , T ,Y are vector spaces, such that the function N � {0} � ξ 	→ rankμ(ξ, · ) is
constant or, equivalently, dim Ker μ(ξ, · ) is the same for all nonzero ξ ∈ N. If
dim Ker μ(ξ, · ) = k whenever ξ ∈ N � {0}, we also say that μ : N ×T → Y has
the constant rank dim T − k. Using the notations of Section 5, we see that μ then
gives rise to a mapping

(18.1) ε : PN → GrkT defined by ε(Cξ) = Ker μ(ξ, · ) for ξ ∈ N � {0}.

Lemma 18.1. For μ and ε as above, N � {0} � ξ 	→ Ker μ(ξ, · ) ∈ GrkT and ε
are both holomorphic. The differential of ξ 	→ Ker μ(ξ, · ) at any point ξ ∈ N�{0}
sends η ∈ N, in terms of the identification (5.4), to the unique H ∈ Hom(W, T/W)
such that μ(η, w) = μ(ξ,−H̃w) whenever w ∈ W = ε(Cξ), where H̃ : W → T is
any linear lift of H.

Proof. This is obvious from (5.5) with F (ξ) = μ(ξ, · ). �

Lemma 18.2. If μ : N ×T → Y has the constant rank dim T − k and ε given
by (18.1) is nonconstant, then ε is a holomorphic embedding.

Whether ε is constant, or not, the same is the case for all multiplications
N×T → Y of the constant rank dim T − k, sufficiently close to μ.
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Proof. Let W ∈ GrkT . The subset of N consisting of 0 and all ξ ∈ N � {0} with
ε(Cξ) = W is a vector subspace. In fact, if ξ, η ∈ N � {0} and W = Ker μ(ξ, · ) =
Ker μ(η, · ), then W ⊆ Ker μ(ζ, · ) for any ζ ∈ Span(ξ, η) and, unless ζ = 0, the
last inclusion is actually an equality due to the constant-rank property of μ.

Thus, ε-preimages of points of GrkT are linear subvarieties in PN . If ε is non-
constant, all these subvarieties are zero-dimensional, that is, ε has to be injective.
Namely, a projective line L in PN cannot lie in the ε-preimage of a point: ε∗ω has
a nonzero integral over L, for the Kähler form ω of any Kähler metric on GrkT
(Lemma 3.1). Also, Lemma 18.1 gives holomorphicity of ε.

Let ε now be nonconstant. Then ε must be an embedding, that is, dε
Cξ is

injective at any Cξ ∈ PN or, equivalently, the differential of ξ 	→ Ker μ(ξ, · ) at
any ξ ∈ N � {0} has the kernel Cξ. Namely, in Lemma 18.1 we may set H̃ = 0
when H = 0, and so η lies in the kernel if and only if the inclusion W ⊆ Ker μ(η, · )
holds for W = ε(Cξ). Unless η = 0, this inclusion is, as before, an equality, and
injectivity of ε then yields η ∈ Cξ, which completes the proof, the final clause
being an immediate consequence of that in Lemma 3.1. �

Given a compact geodesic-gradient Kähler triple (M, g, τι), we use the notation
of (9.1) and (1.1) to set Z±

y (ξ, η)w = agy(ξ, η)w + (τι+− τι−)Ry(ξ, Jyη)Jyw for ξ, η

in NyΣ
± and w ∈ TyΣ

±, with either fixed sign ±. Thus, Z±
y (ξ, η)w ∈ TyΣ

±, as
ξ, η are tangent, and w normal, to the totally geodesic leaf through y of the J-
invariant integrable distribution Kerdπ± = V ⊕ H∓, cf. (11.6), Theorem 11.6 (c),
Corollary 14.3, and the first line of Remark 11.3. As a consequence of (3.1.b),

(18.2) Z±
y (ξ, η) = Z±

y (η, ξ) = Z±
y (Jyξ, Jyη)w, Jy[Z

±
y (ξ, η)] = [Z±

y (ξ, η)]Jy ,

where Z±
y (ξ, η) denotes the endomorphism w 	→ Z±

y (ξ, η)w of TyΣ
±. We now define

a complex-bilinear mapping μ±
y : NyΣ

±× TyΣ
± → HomC(NyΣ

±, TyΣ±) by

μ±
y (ξ, w) = Z±

y (Jyξ, · )w + Z±
y (ξ, · )Jyw.(18.3)

Here HomC means ‘the space of antilinear operators’ and HomC(NyΣ
±, TyΣ

±)
is treated as a complex vector space in which the multiplication by i acts via
composition with Jy from the left. (The product thus equals the given operator

NyΣ
± → TyΣ

± followed by Jy .) Antilinearity of μ±
y (ξ, w) and complex-bilinearity

of μ±
y are both obvious from (18.2).

Theorem 18.3. For a compact geodesic-gradient Kähler triple (M, g, τι), a fixed
sign ±, and any point y ∈ Σ±, the mapping μ±

y with (18.3) is a constant-rank
multiplication. Furthermore, if ε = ε±y corresponds to μ = μ±

y via (18.1) and ξ is

any nonzero vector normal to Σ± at y, then ε±y (Cξ) = dπ±
x (H±

x ) = dπ±
x (Vx ⊕H±

x ),
where x = Φ(y, ξ), and ε±y (Cξ) = KerZ±

y (ξ, ξ) for Z±
y (ξ, ξ) as in (18.2), so that

(18.4) KerZ±
y (ξ, ξ) = dπ±

x (H±
x ) = dπ±

x (Vx ⊕H±
x ).

Proof. Let x = x(t) ∈ Γ as in Theorem 11.6, with some fixed t ∈ (t−, t+). Accord-
ing to (11.7) and parts (iii), (iv), (vi) of Theorem 10.1, the vectors forming H±

x are
precisely the values w(t) for all w as in Theorem 11.6 (e) which also have the prop-
erty that 2(τι − τι∓)Q

−1g(Sw,w′) = g(w,w′) whenever w′ satisfies the hypotheses
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of Theorem 11.6 (e). Since the values w′± in Theorem 11.6 (h2) fill TyΣ
± (cf.

assertions (d)–(f) of Theorem 11.6), replacing g(w,w′) and g(Sw,w′) in the last
equality with the expressions provided by Theorem 11.6 (h2) and Remark 11.7,
we easily verify, using (3.1.b) and Remark 11.8 (i), that w(t) ∈ H±

x if and only if
Z±
y (ξ, η)w± = 0. Now the final clause of Theorem 11.6 (b) (or, Remark 11.9) yields

the first (or, second) equality in (18.4).
To simplify notations, let us write g, Z, J rather than gy, Z

±
y , Jy. Since x =

Φ(y, ξ) in (18.4) and Φ is holomorphic (Theorem 14.2), (18.4) and Remark 11.9
clearly imply that, for a suitable integer k = k±, the resulting mapping

(18.5) NyΣ
±
� {0} � ξ 	→ KerZ(ξ, ξ) ∈ Grk(TyΣ

±) is holomorphic.

The C∞ version of the assumptions preceding (5.5) thus holds for U, T ,Y equal to
NyΣ

± � {0}, TyΣ±, TyΣ
± and F (ξ) = Z(ξ, ξ). By (5.5), the differential of (18.5)

at any ξ ∈ NyΣ
± � {0} sends η ∈ NyΣ

± to the unique H : W → T/W, where

W = KerZ(ξ, ξ), with a linear lift H̃ : W → T = TyΣ
± such that Z(ξ, ξ)◦H̃ equals

the restriction of −2Z(ξ, η) to W. (We have dFξ = 2Z(ξ, · ) since Z(ξ, η) is real-bi-
linear and symmetric in ξ, η, cf. (18.2).) Hence 2Z(ξ, η)w = −Z(ξ, ξ)H̃w for all w ∈
KerZ(ξ, ξ). Complex-linearity of the differential, due to (18.5), means that this will
still hold if we replace η with Jη and H̃ with JH̃ . Then, from (18.2), 2Z(Jξ, η)w =
−2Z(ξ, Jη)w = Z(ξ, ξ)JH̃w = J [Z(ξ, ξ)H̃w] = −2J [Z(ξ, η)w] = −2Z(ξ, η)Jw.
In other words, Z(Jξ, η)w + Z(ξ, η)Jw = 0 whenever w ∈ KerZ(ξ, ξ) and η ∈
NyΣ

±. Therefore, by (18.3), KerZ(ξ, ξ) ⊆ ε±y (Cξ) = Ker μ±
y (ξ, · ), while the

opposite inclusion is obvious since (18.2) gives Z(ξ, Jξ) = 0, and so the expression
Z(Jξ, η)w + Z(ξ, η)Jw for η = Jξ equals Z(ξ, ξ)w.

The equality KerZ(ξ, ξ) = ε±y (Cξ) and (18.4)–(18.5) complete the proof. �

19. The dichotomy theorem

This section uses the notations listed at the beginning of Section 11 and the symbols
k± of Remark 12.1. With Φ = Φ∓ as in (14.1), any y ∈ Σ∓ leads to the assignment

(19.1) NyΣ
∓
�{0} � ξ 	→ dπ∓

x (H∓
x ) ∈ Grk(TyΣ

∓), where x= Φ(y, ξ) and k = k± .

(Due to (11.6)–(11.7), dπ∓
x must be injective on H∓

x .) Under the identification,
via Φ, between NyΣ

∓�{0} and the π∓-preimage of y, which forms a leaf of Kerdπ∓

in M ′, the mapping (19.1) is obviously the restriction of (1.2) to the leaf.

Theorem 19.1. Given any compact geodesic-gradient Kähler triple (M, g, τι), one
and only one of the following two cases occurs.

(a) Either the mappings (19.1) are all constant, for all y and both signs ±, or

(b) each of (19.1), for both signs ±, descends to a nonconstant holomorphic
embedding PNy → Grk(TyΣ

∓) of the projective space PNy of Ny = NyΣ
∓.

Condition (a) holds if and only if (M, g, τι) satisfies (i)–(iii) in Lemma 16.1.
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Proof. In view of Theorem 18.3, we may use Lemma 18.2 for ε = ε∓y corresponding
to μ = μ∓

y as in (18.1), concluding (from an obvious continuity argument) that,
with either fixed sign ±, all the mappings (19.1) descend to holomorphic embed-
dings of PNy unless they are all constant. Their constancy for one sign implies,
however, the same for the other, since it amounts to (ii) or (iii) in Lemma 16.1,
while (ii) and (iii) are equivalent. This completes the proof. �

Remark 19.2. Case (a) of Theorem 19.1 is equivalent to (1.3), as one sees com-
bining Lemma 16.1 (i) with (11.6). According to (iv)–(vi) in Lemma 16.1, the
immersions of Theorem 15.1 (c) are then embeddings and their images form the
leaves of foliations on Σ∓, both of which have the same leaf space B. On the other
hand, when (b) holds in Theorem 19.1, images of the totally geodesic holomorphic
immersions of Theorem 15.1 (c) pass through every point y ∈ Σ±, realizing an
uncountable family of tangent spaces: the image of the embedding (19.1).

Lemma 19.3. The leaf space M ′/V of the integrable distribution V = Span(v, u)
on M ′ = M � (Σ+∪ Σ−), cf. Lemma 9.1 (a), carries a natural structure of a
compact complex manifold of complex dimension m − 1, with m = dimCM, such
that the quotient-space projection M ′ → M ′/V forms a holomorphic fibration and,
for either sign ±, the projectivization PN of the normal bundle N = NΣ±, defined
as in Section 5, is biholomorphic to M ′/V via the biholomorphisms sending each
complex line L through 0 in the normal space of Σ± at any point to the Exp⊥-im-
age of the punctured radius δ disk in L, the latter image being a leaf of V according
to Lemma 11.4 (a).

Restricted to M ′, (11.3) descend to further holomorphic bundle projections
π±: M ′/V → Σ± which, under the biholomorphic identifications M ′/V = P(NΣ±)
of the preceding paragraph, coincide with the bundle projections P(NΣ±) → Σ±.

Proof. The restrictions Φ± = Φ : NΣ±�Σ± → M ′ given by (14.1) with the two
possible signs ± are biholomorphisms (Theorem 14.2), and hence so is the com-
posite of one of them followed by the inverse of the other. At the same time, by
Theorem 14.2 (iii), either of them descends to a bijection P(NΣ±) →M ′/V, and the
composite just mentioned yields a biholomorphism between P(NΣ±) and P(NΣ∓).
This turns M ′/V into a compact complex manifold in a manner independent of the
bijection used. Our assertion is now immediate from (14.2). �

Remark 11.5 (d) trivially implies that, for a Grassmannian triple (M, g, τι) ob-
tained in Section 5 from data (5.2.i), with Σ± described by (5.3.a), and Y = L⊥,
one has a natural biholomorphic identification, written as the equality

(19.2)
M ′/V = {(W,W′) ∈ GrkY ×Grk−1Y : W′ ⊆ W}, under which π±

of Lemma 19.3 correspond to (W,W′) 	→ W and (W,W′) 	→ W′,

If (M, g, τι) is in turn a CP triple, arising from (5.2.ii), Σ± must satisfy (5.3.b),
and (19.2) is replaced by M ′/V = Σ+×Σ−, with π± in Lemma 19.3 becoming the
factor projections. For (easy) proofs of the next two claims, see Section 20 of [6].
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Lemma 19.4. For a complex vector space Y, any k with 1 ≤ k ≤ dimY < ∞,
and M ′/V given by (19.2), let (W0,W

′
0), (W,W′) ∈ M ′/V. Then there exist an

integer p ≥ 1 and (Wj ,W
′
j) ∈ M ′/V, j = 0, 1, . . . , p, with (Wp,W

′
p) = (W,W′) and

(Wj−1,W
′
j−1) ∼ (Wj ,W

′
j) whenever j = 1, . . . , p, the notation (W̃, W̃′) ∼ (W,W′)

meaning that W = W̃ or W′ = W̃′.

Corollary 19.5. Let (M, g, τι) be any Grassmannian triple, cf. Section 5. Then
the direct sum V ⊕H+⊕H− of Lemma 16.1 (i) constitutes a strongly bracket-gen-
erating distribution on M ′, in the sense that any two points of M ′ can be joined
by a piecewise C∞ curve tangent to V ⊕H+⊕H−.

Remark 19.6. A compact geodesic-gradient Kähler triple need not, in general,
satisfy conditions (i)–(iii) of Lemma 16.1, that is, (1.3). Examples are provided by
all Grassmannian triples (M, g, τι) arising via Lemma 4.4 from data (5.2.i) such that
2 ≤ k ≤ n − 2, where n = dimCV. Namely, the equality d+ + d− = m − 1 + q
in Remark 12.1 gives q = (k − 1)(n − 1 − k) as m = (n − k)k and, similarly,
{d+, d−} = {(n − k)(k − 1), (n − 1 − k)k} from (5.3.a)–(5.3.b), where dimCL = 1
by (5.2.i). Thus, q > 0 and V ⊕ H+⊕H− in (11.7) is a proper subbundle of TM ′.
Corollary 19.5 now implies that it cannot be integrable.
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