
appeared inWiadomości Matematyczne, vol.48 (2012), no. 1, pp. 1-32
c© 2012 Polskie Towarzystwo Matematyczne

Andrzej Derdzinski (Columbus, Ohio, USA)

Ricci solitons*

1. The Ricci flow

In 1981 Richard Hamilton [20] initiated the study of the equation
d

dt
g(t) = −2 Ricg(t) . (1)

Equation (1) – the solutions of which are usually said to form the Ricci
flow – is a condition imposed on an unknown smooth curve t 7→ g(t)
of Riemannian metrics on a fixed manifold M . The condition consists
in requiring the curve to have, at every t in its domain interval, the
derivative with respect to t equal to −2 times the Ricci tensor of the
metric g(t).

Solutions (trajectories) of the Ricci flow are curves t 7→ g(t) emana-
ting from a given initial metric g(0), and defined on a maximal interval
[0, T ) of the variable t, where 0 < T ¬ ∞.

In local coordinates xj, j = 1, . . . ,dimM , (1) constitutes a system
of nonlinear partial differential equations of parabolic type, imposed on
the componente gjk = g(ej , ek) of the metrics g = g(t) belonging to our
unknown curve. The symbol ej denotes here the jth coordinate vector
field (so that the directional derivative in the direction of ej coincides
with the partial derivative ∂j with respect to the jth coordinate). The
functions gjk depend on t and on the variables xj. The coordinate
version of condition (1) is rather complicated:

∂gjk
∂t

= −2Rjk , where Rjk = ∂pΓ
p
jk − ∂jΓ

p
pk + Γ pqpΓ

p
jk − Γ

p
jqΓ

q
pk,
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Γ pjk being the Christoffel symbols of the metric g = g(t), given by
2Γ pjk = gpq(∂jgkq+∂kgjq−∂qgjk), with gjk standing for the contravariant
components of the metric (meaning that, at every point of the coordinate
domain, the matrix [gjk] is the inverse of the matrix [gjk]). In the
above expressions for Rjk and 2Γ pjk we have used the Einstein summing
convention, so that repeated indices are summed over.

2. The Ricci flow in the proof of Poincaré’s conjecture

In [20] Hamilton proved the existence and uniqueness of a maximal
Ricci flow trajectory with any given initial metric g(0), on every compact
manifold. He also attempted to use this fact for proving the three-di-
mensional Poincaré conjecture.

His proposed outline of such a proof (known as “the Hamilton
programme”) consisted of a specific series of steps. The last of those
steps were only carried out in 2002 by Grigori Perelman [29–31].

At the same time Perelman also proved the much more general
Thurston geometrization conjecture for three-dimensional manifolds.

A crucial part of Perelman’s argument was provided by surgeries,
needed when the Ricci flow runs into a singularity in finite time (T <∞).
After the surgery the Ricci flow is used again, in a topologically simpler
situation.

3. Ricci solitons – “fixed points” of the Ricci flow

A Ricci soliton is a Riemannian metric g = g(0) on a manifold M ,
evolving under the Ricci flow in an inessential manner, in the sense
that all the stages g(t) coincide with g(0) up to diffeomorphisms and
multiplications by positive constants (“rescalings”). In other words, such
a metric represents a fixed point of the Ricci flow in the quotient of the
space of metrics on M under the equivalence relation just described.

It is clear what the above definition means in the case of compact
manifolds, due to the existence and uniqueness of a maximal Ricci
flow trajectory with any given initial metric. Without the compactness
assumption, by a Ricci soliton one means a Riemannian metric g on a
manifold M , for which equation (1) has a solution satisfying the initial
condition g(0) = g and constituting an inessential evolution of the
metric.

In §5 we will discuss a different characterization of Ricci solitons,
having the form of a differential equation.
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4. Blow-up limits
Complete noncompact Ricci solitons often arise as by-products of the

Ricci flow on compact manifolds – blow-up limits (or, rescaling limits)
of the metrics g(t) restricted to suitable open sets, when the variable
t ∈ [0, T ) tends to T (defined in §1), while T is finite.

The following result of Perelman [29] (known as the “no-breathers
theorem”) states that on compact manifolds one can eqivualently cha-
racterize Ricci solitons by a condition seemingly much weaker than their
original definition:

Theorem 4.1. If in a trajectory t 7→ g(t) of the Ricci flow on a compact
manifold there exist two distinct values of t such that the corresponding
stages of the flow coincide up to a diffeomorphism and rescaling, then
the trajectory is a Ricci soliton.

In dimension 3 this was first proved by Thomas Ivey [22].

5. The Ricci-soliton equation
One easily verifies that a metric g on a manifold M is a Ricci soli-

ton if and only if some vector field w on M satisfies the Ricci-soliton
equation

£wg + Ric = λg, where λ is a constant, (2)

with Ric denoting the Ricci tensor of g, and £wg the Lie derivative of
g along w.

The term Ricci soliton is also used for a Riemannian manifold (M, g)
satisfying (2) with some w, as well as for a Ricci flow trajectory t 7→ g(t)
in which the initial stage g(0) (or, equivalently, every stage g(t)) has
the property (2); the field w may here depend on t.

The objects w and λ appearing in (2) will be called the soliton
vector field and soliton constant.

The coordinate version of condition (2) reads

wj,k + wk,j + Rjk = λgjk .

Instead of wj,k one also writes ∇kwj . One may express (2) directly in
terms of the components gjk of g, and wj of w, by replacing Rjk with
the formula in §1, and the sum wj,k + wk,j with ∂kwj + ∂jwk − 2Γ pjkwp,
for wj = gjkw

k.

6. The topics discussed below
Ricci solitons are of obvious interest, due to their close relation with

the Ricci flow (§§3–4). Their characterization as Riemannian metrics
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satisfying a specific system of partial differential equations (§5) suggests
applying to their study the methods of geometric analysis that were
used previously in similar situations.

The remaining part of this text deals with a few selected cases in
which the approach just mentioned leads to better understanding of
Ricci solitons on compact manifolds. Examples of such Ricci solitons
are provided by Einstein metrics (§7), Kähler-Ricci solitons (§8), and
some Riemannian products (§9). In contrast with the lowest dimensions,
n = 2 and n = 3, where compact Ricci solitons have long been classified
(§7), the case n ­ 4 is largely a terra incognita, as illustrated by the
open problem described in §9.

§§11–15 are devoted to stating and proving a result of Perelman
which – despite its rather esoteric nature – is a substantial step toward
understanding compact Ricci solitons. In §16 we in turn discuss theorems,
proved in the years 1957–2004 by eight mathematicians, and together
showing that Kähler-Ricci solitons form a natural class of canonical
metrics on compact complex surfaces with positive or negative first
Chern class.

The final part of this article (§§17–26) presents two classes of examples
of Ricci solitons on compact manifolds. They are, namely, Page’s and
Bérard Bergery’s Einstein metrics [4, 28], and the Koiso-Cao Kähler
metrics [8, 24]. Their description is rather technical and to go through
it one has to “roll up the sleeves” – in contrast, for instance, to the
case of homogeneous Einstein manifolds with an irreducible isotropy
representation, where the discussion and justification is very brief (§7).
The constructions in §§17–26 use conformal changes of Kähler metrics,
that is, their multiplication by suitable positive functions. Conditions
sufficient for such a change to yield a Ricci soliton, introduced in §20,
constitute a system of second-order ordinary differential equations with
boundary conditions. Known solutions of this system form three families,
two of which correspond (see §§23,25) to the two classes of examples
mentioned above, while the third one yields nothing new – the Ricci
solitons arising in it are isometric to the Koiso-Cao metrics, as shown
by Gideon Maschler [27]. A proof of Maschler’s result is given in §26.

7. Einstein metrics

The most obvious class of Ricci solitons on compact manifolds is
provided by Einstein metrics. They are defined to be Riemannian metrics
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g satisfying (2) with w = 0, that is, the Einstein condition

Ric = λg for some constant λ. (3)

The soliton constant λ is then called the Einstein constant.
In dimensions n < 4, every compact Ricci soliton is an Einstein

metric; this was proved by Hamilton [21] for n = 2 and by Ivey [22]
for n = 3. For purely algebraic reasons, when n < 4, equation (3)
implies that the metric g has constant sectional curvature. Locally, up
to isometries and rescalings, such low-dimensional manifolds are thus
standard spheres, Euclidean spaces, or hyperbolic spaces.

By an Einstein manifold one means a Riemannian manifold (M, g)
such that g is an Einstein metric.

The Einstein property of the constant-curvature metrics mentioned
above (spherical, Euclidean, hyperbolic) also follows for much more ge-
neral reasons. Namely, every homogeneous Riemannian manifold (M, g)
with an irreducible isotropy representation is an Einstein manifold. The
homogeneity assumption means that the isometry group of g acts on
M transitively, while irreducibility refers here to the group Hx of those
isometries keeping a given point x ∈M fixed; Hx acts, infinitesimally,
on the tangent space TxM . The Einstein condition is here a trivial
consequence of Schur’s lemma and the fact that the Ricci tensor – being
a natural invariant of the metric – is preserved by all isometries.

Besides the spherical, Euclidean and hyperbolic metrics, the above
theorem also applies, for instance, to the canonical (Fubini-Study) me-
trics on complex projective spaces CPm, showing that, consequently,
they are Einstein metrics.

8. Kähler-Ricci solitons
First examples of non-Einstein compact Ricci solitons, representing

all even dimensions n ­ 4, were constructed in the early 1990s by
Norihito Koiso [24] and (independently) Huai-Dong Cao [8]. All their
examples, as well as generalizations of those examples found by other
authors [11, 16, 25], are Kähler-Ricci solitons, in the sense of being,
simultaneously, Ricci solitons and Kähler metrics.

A special case of Kähler-Ricci solitons is provided by Kähler-Einstein
metrics, that is, Kähler metrics which are also Einstein metrics.

Recall that one of the possible (mutually equivalent) definitions
of a Kähler metric can be phrased as follows. It is a metric g on
a manifold M such that some fixed linear automorphism J of the
tangent bundle TM (that is, some smooth family x 7→ Jx of linear
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automorphisms Jx : TxM → TxM) satisfies the conditions J(Jv) = −v,
g(Jv, Jw) = g(v, w) and ∇v(Jw) = J(∇vw) for all smooth vector fields
v and w, where ∇ denotes the Levi-Civita connection of the metric g.

By a Kähler metric on a complex manifold M we in turn mean a
Kähler metric, in the above sense, on M (treated as real manifold), for
which the automorphism J : TM → TM with the required properties
is the operator of multiplication by i in the tangent spaces (naturally
constituting complex vector spaces).

The details of the Koiso-Cao construction will be discussed in §25.
For now it should be mentioned that the Koiso-Cao examples are Kähler
metrics on compact complex manifolds Mm

k which, for integers m, k

with m > k > 0, are defined as follows:

Mm
k is the total space of the holomorphic CP1 bundle over the

projective space CPm−1, arising as the projective compactifica (∗)
tion of the k th tensor power of the tautological line bundle.

Thus, m is the complex dimension of Mm
k . Note that Mm

1 can also be
obtained by blowing up a point in CPm.

The same complex manifolds Mm
k carry other, no less interesting

Ricci solitons, which are conformally-Kähler (though non-Kähler) Ein-
stein metrics. They were constructed by Don N. Page [28] for m = 2
and by Lionel Bérard Bergery [4] in dimensions m ­ 3.

By a conformally-Kähler metric on a manifold M we mean a Rie-
mannian metric g on M admitting a positive function µ : M → IR
such that the product µg is a Kähler metric.

For details of Page’s and Bérard Bergery’s examples, see §23.
In complex dimensions m ­ 3, the constructions presented here can

be directly generalized – as pointed out by their authors themselves
[4, 8, 24] – to a class of compact complex manifolds slightly larger than
the family Mm

k described above. Our discussion focuses on the manifolds
Mm
k for a practical reason: the definition of the larger class is rather

cumbersome. That definition will, however, be introduced in the proof
of Lemma 17.1, which constitutes the initial step of the construction,
thus allowing the reader to carry out the generalization just mentioned.

9. An open problem

The Riemannian product of two Ricci solitons having the same
soliton constant λ is again a Ricci soliton. Using this fact, the Koi-
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so-Cao examples (§8), and Einstein metrics (§7), one easily constructs
non-Einstein, non-Kähler compact Ricci solitons of any dimension n ­ 7.

Gang Tian [34], in various lectures, and Huai-Dong Cao, in the paper
[9], raised the following

Question 9.1. Does there exist a compact Ricci soliton which is neither
Einstein nor locally Kähler, and is not locally decomposable into a
Riemannian product of lower-dimensional manifolds?

If such an example exists, it must have a positive soliton constant; a
finite fundamental group; and a scalar curvature which is both noncon-
stant and positive. The reason is that compact Ricci solitons which fail
to satisfy one of the conditions just listed are necessarily Einstein metrics.
These four facts were proved, respectively, by Jean-Pierre Bourguignon
[6], back in 1974; Xue-Mei Li [26] in 1993 (and, independently, Manuel
Fernández-López and Eduardo Garćıa-Ŕıo [17] in 2004, as well as Zhenlei
Zhang [38] in 2007); Daniel H. Friedan [18] in 1985; and Ivey [22] in
1993. The results of Hamilton [21] and Ivey [22] mentioned in §7 also
show that such an example would be of dimension n ­ 4.

10. Some notations and identities
To simplify our discussion, we introduce some symbols. Given a

Riemannian manifold (M, g), we let FM,XM,ΩM and SM denote
the vector spaces of all smooth functions M → IR, smooth vector fields
on M , smooth 1-forms on M (that is, sections of the cotangent bundle)
and, respectively, smooth symmetric 2-tensor fields on M . Examples
of the latter are the metric g, its Ricci tensor Ric, and the Hessian
∇df of any function f ∈ FM , that is, the covariant derivative of
its differential df . Besides the gradient ∇ : FM → XM and the
differential d : FM → ΩM , interesting linear operators between pairs
of these spaces also include the g-trace trg : SM → FM , as well as
the g-divergence δ : SM → ΩM , the interior product ıv : SM → ΩM

by any v ∈ XM , and the g-Laplacian ∆ : FM → FM , characterized
by trgb = trB, if b ∈ SM and B is the linear endomorphism of the
tangent bundle TM such that

g(Bv,w) = b(v, w) for v, w ∈ XM, (4)

and (δb)j = gpq∇pbpj , ıvb = b(v, · ) and ∆f = trg∇df .
The g-traceless part of a symmetric 2-tensor field b ∈ SM is, by

definition, the tensor field {b}0 ∈ SM given by

{b}0 = b − (trgb)g/n, where n = dimM. (5)
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The function s = trgRic is called the scalar curvature of the metric g.
The well-known identities (see, e.g., [12, formulae (2.4) and (2.9)])

a) 2δRic = ds, b) δb = dY + ıvRic, c) 2ıvb = dQ (6)

hold for any function f ∈ FM , its gradient v = ∇f, Hessian b = ∇df,
its Laplacian Y = ∆f, and Q = g(v, v). We will also use the nonli-
near differential operator R : FM → FM , given, in any Riemannian
manifold (M, g), by

Rf = ∆f − |∇f |2/2. (7)

One says that a symmetric 2-tensor field b ∈ SM on a Kähler manifold
(M, g) is Hermitian if the endomorphism B : TM → TM characterized
by (4) above is C-linear (that is, commutes with J). This is equivalent
to skew-symmetry of the 2-tensor field b(J · , · ). For every x ∈ M

the operator Bx : TxM → TxM must then be diagonalizable and its
eigenvalues have even multiplicities over IR. In particular,

g and Ric are always Hermitian. (8)

Below – and in the sequel – the symbols t and T will be used in a way
which has nothing to do with their meanings in §§1–5.

For functions t, χ : M → IR on a manifold M , we will call χ a
smooth function of t if t is nonconstant and χ = G ◦ t, where G is
a smooth function on the interval Λ = t(M), that is, on the range of
t. Writing ( )˙ = d/dt, we will form the first and second derivatives
χ̇ = Ġ ◦ t, χ̈ = G̈ ◦ t, treating them simultaneously as functions M → IR
and as functions of the variable t ∈ Λ. With a fixed Riemannian metric
g on M , for χ, σ, which are smooth functions of a nonconstant function
t : M → IR, setting φ = etg(∇t,∇t)/2, we have the obvious equalities
∇χ = χ̇∇t and

i) g(∇σ,∇χ) = 2e−tσ̇χ̇φ, ii) dχ = χ̇ dt. (9)

In addition, ∇dχ = χ̇∇dt+ χ̈ dt⊗ dt. so that ∇det = et(∇dt+ dt⊗ dt)
which, for τ = et, gives ∇dt = e−t∇dτ − dt⊗ dt, and

∇dχ = χ̇e−t∇dτ + (χ̈− χ̇)dt⊗ dt. (10)

11. Gradient Ricci solitons

One says that a given Ricci soliton (M, g) is of the gradient type
when the soliton vector field w with (2) (for some constant λ), may be
chosen so as to be the gradient of a function. A Riemannian manifold
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(M, g) is a gradient (type) Ricci soliton if and only if there exists a
soliton function f : M → IR satisfying the gradient soliton equation

∇df + Ric = λg, where λ is a constant. (11)

The symbol ∇ denotes here the Levi-Civita connection of the metric g

(but will also be used for the g-gradient operator), while ∇df is, as in
§10, the Hessian of f .

That (2) becomes (11) if 2w = ∇f (that is, when 2w is the gradient
of a function f) follows from the identity £vg = 2∇df , valid for any
function f and its gradient v = ∇f .

The gradient soliton equation (11) has the following interesting
consequences, first noted by Hamilton, cf. also [10, p. 201]:

Lemma 11.1. Condition (11) for a function f on a Riemannian ma-
nifold (M, g) implies constancy of three functions: ∆f + s, ∆f −
g(∇f,∇f) + 2λf , and Rf + λf + s/2, where s is the scalar curvature,
and Rf = ∆f − |∇f |2/2.

Proof. Applying to both sides of (11) the operators trg, d◦ trg−2δ+ 2ıv
and δ − ıv, we get our three claims as trivial consequences of (6).

Constancy of the last two functions in the lemma is due to vanishing of
their differentials, since all manifolds are here – by definition – connected.

Perelman [29] proved the gradient property of compact Ricci solitons:

Theorem 11.2. Every compact Ricci soliton is of the gradient type.

The proof of this theorem in §15 is based on solvability of certain
quasi-linear elliptic equations, established by Oscar S. Rothaus [33] in
1981. Rothaus’s result may be stated as follows:

Theorem 11.3. For a compact Riemannian manifold (M, g) of dimen-
sion n ­ 3, the operator R given by (7), and any positive real number
λ, the assignment f 7→ Rf + λf is a surjective mapping of the space
of smooth functions M → IR onto itself.

The proof of Theorem 11.3, outlined in §14, uses the fact presented
in the next section.

12. Logarithmic Sobolev inequalities

The above term refers to a type of estimates, first studied in the late
1960s [15,19]. Rothaus’s version [33] may be phrased as part (c) of the
following lemma, in which, for p ∈ [1,∞) and a compact Riemannian
manifold (M, g) of dimension n, we denote by by ‖ ‖p and ‖ ‖p,1 the Lp
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norm and its associated first Sobolev norm: ‖ϕ‖pp,1 =
∫
M [|∇ϕ|p +ϕp] dg

whenever ϕ ∈ FM , where FM is the space of all smooth functions
M → IR, and dg the volume element of the metric g. In addition, we
use the symbol Lp1M for the Sobolev space obtained as the completion
of FM in the norm ‖ ‖p,1, and identified in an obvious manner with
a subspace of LpM . The classical Sobolev inequality and the resulting
inclusion state that, whenever p ∈ (1, n) and ϕ ∈ FM ,

‖ϕ‖r ¬ C‖ϕ‖p,1 and Lp1M ⊂ L
rM, if 1 ¬ r ¬ np/(n− p), (12)

for a constant C depending only on (M, g), p and r.

Lemma 12.1. For a compact Riemannian manifold (M, g) of dimen-
sion n ­ 3, a constant ε ∈ IR, and a smooth function χ :M → IR, let

Iχε (ϕ) =
∫
M

(ε|∇ϕ|2 − ϕ2 log |ϕ|+ χϕ2) dg, (13)

where ϕ log |ϕ| by definition equals 0 on the zero set of ϕ. Then the
functional Iχε : L21M → IR, defined by (13),
(a) is well defined, since ϕ2 log |ϕ| ∈ L1M whenever ϕ ∈ L21M ,
(b) is continuous with respect to the Sobolev norm ‖ ‖2,1,
(c) assumes a minimum value on the set Σ = {ϕ ∈ L21M : ‖ϕ‖2 = 1},

provided that ε > 0.
Every ϕ ∈ Σ realizing the minimum κ of the functional Iχε on Σ,
when ε > 0, is in addition a distributional solution of the equation

ε∆ϕ + ϕ log |ϕ| + (κ− χ)ϕ = 0. (14)

To prove both Lemma 12.1 (in §13), and Theorem 11.3 (in §14), we
will need the obvious equality

Iχε (ψ) = ε‖ψ‖22,1 + I00 (ψ) + 〈(χ− ε)ψ,ψ〉2 for ψ ∈ L21M, (15)

where 〈 , 〉2 is the inner product of L2M , along with the (well known)

Lemma 12.2. If a sequence ϕj, j = 1, 2, 3, . . ., in the Sobolev space
L21M of a compact Riemannian manifold (M, g) of dimension n ­ 3
is bounded in the Sobolev norm ‖ ‖2,1, then, after ϕj has been replaced
by a suitable subsequence, there will exist a function ψ ∈ L21M such
that, as j →∞, one has simultaneously the convergences ϕj → ψ in
the L2 and Lr norms, with any fixed r ∈ (2, 2n/(n − 2)), the weak
convergence ϕj → ψ in the norm ‖ ‖2,1, and convergence of the norms
‖ϕj‖2,1 to some real number γ ­ ‖ψ‖2,1.

Proof. Except for the last inequality γ ­ ‖ψ‖2,1, the existence of a
subsequence with the required properties is an obvious consequence
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of the Rellich-Kondrashov and Banach-Alaoglu theorems; note that
L21M is a Hilbert space. On the other hand, the Schwarz inequality
|〈ψ,ϕj〉2,1| ¬ ‖ψ‖2,1‖ϕj‖2,1 in L21M and the weak convergence ϕj → ψ

imply, in the limit, that ‖ψ‖22,1 ¬ γ‖ψ‖2,1 and either ‖ψ‖2,1 = 0 ¬ γ,
or ‖ψ‖2,1 6= 0 and both sides may be divided by ‖ψ‖2,1.

13. Proof of Lemma 12.1
Setting H(ϕ) = ϕ2 log |ϕ| if ϕ ∈ IRr {0} and H(0) = 0, we obtain

a function H of the variable ϕ ∈ IR having a continuous derivative H ′.
With any fixed r ∈ (2,∞), both H(ϕ)/|ϕ|r and H ′(ϕ)/|ϕ|r−1 tend to
zero as |ϕ| → ∞, leading to the estimates |H(ϕ)| ¬ c(1 + |ϕ|r)] and
|H ′(ϕ)| ¬ cmax (1, |ϕ|r−1) for ϕ ∈ IR, where c > 0 depends only on r.

Let ϕ,ψ ∈ IR and r ∈ (2,∞). Since |H ′(ϕ)| ¬ cmax (1, |ϕ|r−1),
Lagrange’s classical mean value theorem implies that |H(ϕ)−H(ψ)| ¬
c|ϕ − ψ|max (1, |ζ|r−1), for some ζ lying between ϕ and ψ. Thus,
|H(ϕ)−H(ψ)| ¬ c|ϕ− ψ|max (1, |ϕ|r−1, |ψ|r−1). The Hölder inequality,
with q given by r−1+ q−1 = 1, that is, q = r/(r − 1), now yields, for
functions ϕ,ψ ∈ L21M and r ∈ (2,∞), the integral estimate

‖H(ϕ)−H(ψ)‖1 ¬ c‖ϕ− ψ‖r (1 + ‖ϕ‖rr + ‖ψ‖rr)1/q, (16)

in which c depends on r (and the right-hand side may be infinite).
Let r = 2n/(n − 2). The relation |H(ϕ)| ¬ c(1 + |ϕ|r), and the

inclusion L21M ⊂ LrM in (12) imply integrability of |ϕ|r for ϕ ∈ L21M ,
proving (a). Since |I00 (ϕ) − I00 (ψ)| = ‖H(ϕ) − H(ψ)‖1, while ‖ψ‖r ¬
‖ϕ‖r + ‖ϕ − ψ‖r, convergence of ψ to ϕ in the Sobolev norm ‖ ‖2,1
implies, via (12), convergence in the norm ‖ ‖r and, consequently, also
the relation I00 (ϕ) → I00 (ψ). The functional I00 : L21M → IR is thus
continuous, and (b) easily follows in view of (15).

To obtain (c), we begin with convexity of the exponential function,
that is, the Jensen inequality, which states that

∫
MF dµ ¬ log

∫
Me

Fdµ

for any integrable function F : M → IR on a space M carrying
a probability measure µ. Proof: it suffices to show this in the case of
simple functions or, equivalently, verify that qc11 . . . q

ck
k ¬ c1q1+. . .+ckqk

whenever qj ∈ (0,∞) and cj ∈ [0,∞), j = 1, . . . , k, with
∑k
j=1 cj = 1,

which is easily achieved by applying ∂/∂q1 to maximize the difference
qc11 . . . q

ck
k − c1q1 − . . .− ckqk for fixed q2, . . . , qk and c1, . . . , ck.

Obviously, a
∫
M ϕ2 logϕdg =

∫
M ϕ2 logϕadg if a, ε ∈ (0,∞) and

ϕ ∈ Σ (notation as in (c)). Thus,
∫
M ϕ2 logϕadg ¬ (2 + a) log ‖ϕ‖2+a

from Jensen’s inequality
∫
MF dµ ¬ log

∫
Me

Fdµ for dµ = ϕ2dg and
F = logϕa. Setting a = 4/(n− 2) and choosing p = 2 in the Sobolev
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inequality (12), we get 2
∫
M ϕ2 logϕ dg ¬ n log C‖ϕ‖2,1. Since ‖ϕ‖22,1 =∫

M (|∇ϕ|2 + ϕ2) dg, this last inequality yields Iχε (ϕ) ­ Φ(ξ) + min χ,

where Φ(ξ) = ε(ξ2−1)− (1+2/a) log Cξ for ξ = ‖ϕ‖2,1 ­ ‖ϕ‖2 = 1. In
addition, inf{Φ(ξ) : ξ ∈ [1,∞)} > −∞, so that, if ε > 0, the functional
Iχε is bounded from below on the set Σ.

Let ε > 0. Using the above italicized conclusion, we denote by κ

the infimum of the functional Iχε on Σ and fix a sequence ϕj ∈ Σ,

j = 1, 2, 3, . . ., for which Iχε (ϕj) → κ as j → ∞. The sequence ϕj is

thus bounded in the Sobolev norm ‖ ‖2,1, since in the obvious equality
ε‖∇ϕ‖2 = 2Iχε (ϕ)− 2Iχε/2(ϕ), for ϕ = ϕj , the terms 2Iχε (ϕ) converge,
and 2Iχε/2(ϕ) are bounded from below (as we just saw). Let us now

replace the sequence ϕj with a subsequence chosen as in Lemma 12.2
for some real γ and a limit function in L21M , denoted by ϕ (rather
than ψ). The estimate (16) and the inclusion L21M ⊂ LrM in (12)
give I00 (ϕj) → I00 (ϕ). As j → ∞, (15) for ψ = ϕj therefore yields
κ = εγ + I00 (ϕ) + 〈(χ− ε)ϕ,ϕ〉2 = Iχε (ϕ) + ε(γ2−‖ϕ‖22,1). Consequently,

κ − Iχε (ϕ) = ε(γ2− ‖ϕ‖22,1). (17)

Since κ ¬ Iχε (ϕ), we have γ ¬ ‖ϕ‖2,1 while, by Lemma 12.2, γ ­ ‖ϕ‖2,1,
and so γ = ‖ϕ‖2,1. Thus, (17) gives κ = Iχε (ϕ), proving (c).

Let us now fix ϕ ∈ Σ such that Iχε (ϕ) has the minimum value κ.

If ψ ∈ Σ and 〈ϕ,ψ〉2 = 0, putting ψθ = (cos θ)ϕ+ (sin θ)ψ, for θ ∈ IR,
we obtain a curve θ 7→ ψθ ∈ Σ. The function θ 7→ Iχε (ψθ) is then
differentiable and its derivative can be evaluated by differentiation under
the integral symbol, yielding d[Iχε (ψθ)]/dθ =

∫
M (∂Πθ/∂θ) dg, where Πθ

denotes the integrand in (13) with ϕ replaced by ψθ.

This is immediate from Lebesgue’s dominated convergence theorem,
since the absolute value |∂Πθ/∂θ| is bounded from above, uniformly in
θ, by an integrable function. In fact, the first and third terms in Πθ,
differentiated with respect to θ, yield a linear combination of cos 2θ
and sin 2θ with coefficients that are integrable functions; note that due
to the definition of Lp1M , preceding formula (12), the distributional
gradient ∇ψ of any function ψ ∈ Lp1M is a measurable vector field
with a square-integrable g-norm |∇ψ| : M → IR. The derivative with
respect to θ of the second term in Πθ has in turn the absolute value
|∂ψθ/∂θ| |H ′(ψθ)|, for H as at the beginning of the proof; the inequality
|H ′(ϕ)| ¬ cmax (1, |ϕ|r−1) established there, along with the obvious fact
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that |ψθ| and |∂ψθ/∂θ| do not exceed 2max (|ϕ|, |ψ|), gives

|∂ψθ/∂θ| |H ′(ψθ)| ¬ cmax (1, |ϕ|r, |ψ|r) ¬ c(1 + |ϕ|r + |ψ|r)
with a new constant c > 0. For r = 2n/(n− 2) we now note that the
inclusion L21M ⊂ LrM in (12) yields integrability of |ϕ|r and |ψ|r.

As ϕ minimizes Iχε on Σ, the derivative d[Iχε (ψθ)]/dθ at θ = 0
equals 0. Differentiating the integrand, one consequently gets

−ε〈∇ϕ,∇ψ〉2 + 〈ϕ log |ϕ| + (κ− χ)ϕ, ψ〉2 = 0 (18)

for ψ ∈ L21M such that 〈ϕ,ψ〉2 = 0. On the other hand, (18) also holds
for ψ = ϕ, since Iχε (ϕ) = κ. We thus have (18) whenever ψ ∈ L21M
and – in particular – for test functions ψ ∈ FM , which proves (14).

14. Outline of the proof of Rothaus’s theorem (Thm. 11.3)

We need another, well-known

Lemma 14.1. Let ϕ be any function in the Sobolev space L21M of a
compact Riemannian manifold (M, g) of dimension n ­ 3. The function
ψ = |ϕ| then satisfies the conditions ψ ∈ L21M and ‖ψ‖2,1 ¬ ‖ϕ‖2,1.

Proof. Suppose first that ϕ is smooth, and denote by θ any term of
a fixed sequence of positive numbers tending to 0. For the sequence
ϕθ =

√
ϕ2+ θ2 of positive smooth functions, the obvious equality

ϕθ − ψ = θ2/(ϕθ + ψ) gives |ϕθ − ψ| ¬ θ. One thus has uniform
convergence ϕθ → ψ, which also yields ‖ϕθ − ψ‖2 → 0 and ‖ϕθ‖2 →
‖ψ‖2. On the other hand, ∇ϕθ = (ϕ/ϕθ)∇ϕ, while |ϕ/ϕθ| ¬ 1. so that
|∇ϕθ| ¬ |∇ϕ| and ‖∇ϕθ‖2 ¬ ‖∇ϕ‖2. Replacing our sequence with a
suitable subsequence, we obtain ‖∇ϕθ‖2 → c for some c ¬ ‖∇ϕ‖2.
The sequence ‖ϕθ‖22,1 = ‖∇ϕθ‖22 + ‖ϕθ‖22 thus converges to γ2, for
γ = (‖ψ‖22+c2)1/2. In view of Lemma 12.2, replacing our subsequence by
a further subsequence allows us to assume convergence of ϕθ in the norm
L2 to some limit function lying in L21M . Since we already know that
‖ϕθ − ψ‖2 → 0, this limit function must be ψ = |ϕ|, which implies that
ψ ∈ L21M . The inequalities γ ­ ‖ψ‖2,1 (in Lemma 12.2) and c ¬ ‖∇ϕ‖2
in turn show that ‖ψ‖22,1 ¬ γ2 = ‖ψ‖22 + c2 ¬ ‖ψ‖22 + ‖∇ϕ‖2 = ‖ϕ‖22,1,
proving our claim in the case where ϕ is smooth.

For any function ϕ ∈ L21M we have ϕj → ϕ as j → ∞, in the
norm ‖ ‖2,1, with some sequence ϕj , j = 1, 2, 3, . . ., of smooth functions.
Let ψj = |ϕj | and ψ = |ϕ|. Thus, ψj ∈ L21M , and the sequence
‖ψj‖2,1 ¬ ‖ϕj‖2,1 of norms is bounded; replacing it by a convergent
subsequence, we obtain ‖ψj‖2,1 → γ ¬ ‖ϕ‖2,1 (since ‖ϕj‖2,1 → ‖ϕ‖2,1).
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Lemma 12.2 for the sequence ψj allows us to choose a limit function
in L21M , which must coincide with ψ due to the convergence ψj → ψ

in the L2 norm (obvious in view of the convergence ϕj → ϕ in L2M ,
as |ψj −ψ| ¬ |ϕj −ϕ|), while the inequality ‖ψ‖2,1 ¬ γ in Lemma 12.2
gives ‖ψ‖2,1 ¬ ‖ϕ‖2,1.

With the same assumptions and notations as in Lemma 12.1, given
ε > 0, let ϕ minimize Iχε on the set Σ. Then ψ = |ϕ| also minimizes
Iχε on Σ. Namely, Lemma 14.1 shows that ψ ∈ Σ and ψ satisfies

the inequality ‖ψ‖2,1 ¬ ‖ϕ‖2,1, while Iχε (ψ) ¬ Iχε (ϕ) as a consequence
of this inequality and (15), since the two final terms in (15) remain
unchanged if ψ is replaced by |ψ|.

In other words, we may also assume that the function ϕ minimizing
Iχε on Σ is nonnegative. It then follows that ϕ is positive everywhere
and smooth. The reasons for the last conclusion can only be outlined
here. First, using the De Giorgi and Nash method, one shows that ϕ is of
class C2 with locally-Hölder second partial derivatives. Next, a suitable
version of a local maximum principle, using geodesic coordinates, proves
that the zero set of ϕ is open. Its openness – along with the condition
‖ϕ‖2 = 1 (which is a part of the definition of Σ, and prevents ϕ from
vanishing identically) – implies positivity of ϕ. A bootstrapping-type
argument in spaces of multiply differentiable functions with Hölder
derivatives yields in turn smoothness of ϕ.
Proof of Theorem 11.3. Let us fix (M, g) and λ satisfying the hypotheses
of the theorem, and a smooth function ψ : M → IR. For ε = 1/λ and
χ = −ψ/(2λ) there exists – as we saw earlier – a positive smooth
solution ϕ of (14) with some constant κ. Setting f = −2(κ + log ϕ),
one easily verifies that (14) takes the form Rf + λf = ψ.

15. Proof of Perelman’s gradient-type theorem (Thm. 11.2)

Assumption. (M, g) is a compact Riemannian manifold and (2) holds
for a fixed real number λ and a fixed vector field w.

Objective. To find a function f satisfying equation (11): ∇df+Ric = λg.
We may assume here that n = dimM ­ 3 and the soliton constant
λ is positive, since – as shown by Hamilton [21] and, back in 1974,
Bourguignon [6] – in the compact case condition (2) with n = 2, or with
λ ¬ 0, always gives (3), that is, (11) for f = 0.

How to proceed. The function f is supposed to satisfy (11); where to
get it from? Lemma 11.1 suggests an answer – three functions, naturally
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associated with f should, ex post facto, turn out to be constant, which
(with the right choice of their constant values) leads to three second-order
elliptic equations, imposed on the required function f . One can thus try
to show first that one of the three equations has a solution f , and then
– that such f also satisfies (11). In the first equation, the constant in
question must obviously be the mean value savg of the scalar curvature
s (since

∫
M ∆f dg = 0), and f such that ∆f + s = savg exists due to

the general solvability criterion for linear elliptic equations. However,
nobody knows how to get from here to (11). Things look better for
the third equation, in which, since λ > 0, by adding to f a suitable
constant we may require that the constant on the right-hand side be
zero. As we will see, solvability follows here from Rothaus’s theorem.

Argument. For any compact Riemannian manifold (M, g), any function
f , constant λ and vector field w, let us set

h = ∇df + Ric − λg, b = £w g + Ric − λg, ψ = ∆e−f + 2δ[e−fw],

where δ is the divergence operator acting on vector fields. Then (with
no further assumptions!), for the operator R given by (7),∫

M

|h|2e−fdg +
∫
M

(Rf + λf + s/2)ψ dg =
∫
M

〈h, b〉e−fdg.

(Proof – a trivial, though tedious, integration by parts.) In our situation,
with λ and w satisfying (2), the integral on the right-hand side vanishes,
since b = 0, and Rothaus’s theorem (Thm. 11.3) allows us to choose f

such that Rf + λf + s/2 = 0. Thus, h = 0, which completes the proof.

16. Canonical Kähler metrics

Let g be a Kähler metric on a fixed compact complex manifold M .
The formulae ω = g(J · , · ) and ρ = Ric(J · , · ) then define the Kähler
form and Ricci form of the metric g. Both of them are closed 2-forms,
that is, skew-symmetric 2-tensor fields (due to (8)) with dω = dρ = 0.
If a function f on M satisfies the gradient-soliton equation (11), then
i∂∂f + ρ = λω, since the form i∂∂f is exact (being the exterior
derivative of i∂f ). This implies equality of de Rham cohomology classes:
[ρ] = λ[ω] ∈ H2(M, IR). On the other hand, [ρ] is always equal to the
first Chern class c1 of M multiplied by 2π, so that it only depends on
the complex structure – and not, for instance, on g.

For a compact complex manifold to admit a Kähler-Ricci soliton
with a positive (or negative) soliton constant λ it is thus necessary
that its first Chern class c1 be positive (or negative), in the sense of
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realizability of c1 (or −c1) as the cohomology class of the Kähler form
of some Kähler metric.

In complex dimension 2 this necessary condition is also sufficient.
In addition, on compact complex surfaces with positive or negative first
Chern class c1, Kähler-Ricci solitons constitute a natural choice of a
distinguished, or canonical, Kähler metric.

More precisely, such a surface always admits a Kähler-Ricci soliton,
which is in addition unique up to the action of the identity component
of its complex automorphism group, and rescalings.

The above statement summarizes a series of results, both classical
and more recent. Here belong the theorems establishing:
(a) uniqueness of Kähler-Einstein metrics (1957: Eugenio Calabi [7], for

c1 < 0, 1987: Shigetoshi Bando, Toshiki Mabuchi [2], for c1 > 0),
(b) truth of Calabi’s conjecture about the existence of a Kähler-Einstein

metric when c1 < 0 (1978: Thierry Aubin [1], Shing-Tung Yau [37]),
(c) existence Kähler-Ricci solitons on compact toric complex manifolds

with c1 > 0 (2004: Xu-Jia Wang, Xiaohua Zhu [36]),
(d) uniqueness of a Kähler-Ricci soliton when c1 > 0, modulo automor-

phisms from the identity component (2002: Tian and Zhu [35]).

17. Ricci-Hesian equations
From now on all functions are – by definition – smooth.
Using Maschler’s terminology [27], we say that a function τ on a

Riemannian manifold (M, g) satisfies a Ricci-Hessian equation if, for
some function α on M, nonzero at all points of a dense subset, one has,
with the notation introduced in (5),

{α∇dτ + Ric}0 = 0 (19)

or, equivalently: α∇dτ + Ric = ηg for some function η.
Solutions of equations of type (19) exist, for instance, on certain

Kähler manifolds, forming the family of special Kähler-Ricci potentials,
which is completely classified, both locally [12, §18] and in the compact
case [13, §16]. Their definition and a discussion of how they are related
to condition (19) can be found in [12, §7] and [27].

Another special case of a Ricci-Hessian equation (19) is the grad-
ient-soliton equation (11), in which τ = f and α = 1. A further
connection between equations (19) and (11) is due to the fact that many
solutions of Ricci-Hessian equations (19), which themselves do not satisfy
(11), may be used to construct solutions of (11) by suitably modifying
the metric g and the functions appearing in (19). The modifications of
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metrics consist here in their conformal changes, a detailed discussion of
which will be given later (§19).

The approach just described was developed by Maschler in [27]. His
initial solutions τ of equations of type (19) belonged to the class –
mentioned earlier in this section – of special Kähler-Ricci potentials.

The following lemma, using the convention borrowed from the end
of §1, is a slight variation on Maschler’s argument [27, Remark 4.2]. The
solution τ of a Ricci-Hessian equation (19), arising here, is a special
Kähler-Ricci potential on the compact Kähler manifold (Mm

k , g), that
is, belongs to a family of examples constructed in [13, §5].

Lemma 17.1. Let m, k ∈ ZZ and smooth functions x, φ : [0, T ]→ IR of
the variable t, with T ∈ (0,∞), satisfy the conditions m> k > 0 and
(a) φ̈ = (m− 1)ẋφ̇+mφ−m,
(b) φ(0) = φ(T ) = 0, while φ > 0 on the interval (0, T ),
(c) φ̇(0) = k and φ̇(T ) = −k,
where ( )˙ = d/dt. Then the complex manifold M = Mm

k described
by (∗) in §8 admits a Kähler metric g with scalar curvature s and a
smooth surjective function t : M → [0, T ] with the following properties:
(i) the function τ = et is a solution of the Ricci-Hessian equation (19),

that is, {α∇dτ + Ric}0 = 0, where α = (m− 1)(ẋ+ 1)e−t,
(ii) ∆τ = 2(φ̇+mφ) and g(∇τ,∇τ) = 2etφ, for the function τ = et,

(iii) ets/2 = m(m− 1) − m(m− 1)φ − (2m− 1)φ̇ − φ̈.

Outline of proof. The metric g and function t will be shown to exist via
an explicit construction, carried out in a slightly larger class of complex
manifolds than just the family Mm

k (see also the comment at the end of
§8). To be specific, suppose that N is a compact complex manifold of
dimension m− 1 and its canonical bundle (the top exterior power of
cotangent bundle) can be raised to the fractional tensor power with the
exponent k/m. When m and k are relatively prime, this amounts to
realizability of the canonical bundle as the mth tensor power of some
line bundle; it is known [23] that N must then be biholomorphic to the
projective space CPm−1, for which the tautological bundle is an mth
tensor root of the canonical bundle. If, however, the fraction k/m can
be simplified, there are more such examples, as illustrated by the case
of odd Cartesian powers of CP1.

Let us also assume that N carries a Kähler-Einstein metric h with
the Ricci tensor 2mh. In other words, the Einstein constant is required
to be positive, and its value becomes 2m after h is suitably rescaled.
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We denote by M the projective compactification of the line bundle
E over N arising as the (k/m)th tensor power of the canonical bundle.
Our assumptions guarantee the existence in E of a Hermitian Chern
connection with the curvature form equal to the Ricci form of h (see §16)
multiplied by −k/m. The tangent bundle of the total space E is thus
decomposed into the direct sum of the vertical subbundle V, tangent to
the fibres, and the horizontal distribution H of the connection.

The fibre norm in E is a nonnegative function r on the total space E,
which we simultaneously treat as an independent variable. Our variable
t, restricted to the interval (0, T ), may now be turned into a function of
the variable r, characterized by a choice of one of the diffeomorphisms
r 7→ t(r) between the intervals (0,∞) and (0, T ) satisfying the equation

d

dr
t(r) =

2φ(t(r))
kr

. (20)

This allows us to identify t and φ with functions ErN → IR, depending
only on the fibre norm r, and defined on the complement of the zero
section N ⊂ E. Our metric g on E r N is now defined by requiring
that V be g-orthogonal to H, that g restricted to each fibre of E be
the Euclidean metric multiplied by the function 2(kr)−2etφ, and that g
restricted to H be the product of the function 2et and the pullback of
the base metric h under the bundle projection E → N.

A solution t(r) of (20) is obviously nonunique; other solutions arise
from it by rescaling the independent variable r. Any resulting new
metric, is, however, isometric to g, an isometry being provided by a
suitable rescaling in every fibre of the bundle E .

The rest of the proof – verifying that g and t have smooth extensions
to M and satisfy the required conditions – is trivial (though tedious).

18. Another description of gradient Ricci solitons

Let us restrict our consideration to gradient Ricci solitons with
positive soliton constants λ. A soliton function f satisfying (11) can
thus be normalized by adding a suitable constant so as to make the
function ∆f − g(∇f,∇f) + 2λf (constant in view of Lemma 11.1) equal
to zero. We also normalize the metric g, replacing it with λg (and in
effect assuming that λ = 1), which leaves the Ricci tensor Ric and the
Hessian ∇df unchanged. These normalizations result in the equalities

i) ∇df + Ric = g, ii) ∆f − g(∇f,∇f) + 2f = 0. (21)
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For a function f on a Riemannian manifold (M, g) of dimension n ­ 3,
the normalized version (21) of the gradient-soliton equation (11) is
equivalent to the following three-equation system:

(a) {∇df + Ric}0 = 0,
(b) ∆f − g(∇f,∇f) + 2f = 0,
(c) (n− 2)(∆f + s − n) + n[∆f − g(∇f,∇f) + 2f ] = 0.

The symbol { }0 denotes here the g-traceless part, given by (5), while
s = trgRic is the scalar curvature of g.

The equivalence between (21) and the system (a) – (c) is obvious from
the fact that equality of the two sides in (21.i) amounts to simultaneous
equalities of their g-traceless parts, and their g-traces.

19. Conformal changes of Riemannian metrics

By a conformal change of a Riemannian metric g on a manifold M

one means its replacement by the product µg, where µ : M → (0,∞).
For a fixed n-dimensional Riemannian manifold (M, g), let Ric and

s denote the Ricci tensor and scalar curvature of g. Their counterparts
Ric, s for the conformally related metric g = g/σ2, with any function
σ : M → (0,∞), are easily verified to be given by

Ric = Ric + (n− 2)σ−1∇dσ +
[
σ−1∆σ − (n− 1)σ−2g(∇σ,∇σ)

]
g,

s = σ2s + 2(n− 1)σ∆σ − n(n− 1)g(∇σ,∇σ).

See, for instance, [14, pp. 528–529].
Suppose now that both σ and f are smooth functions of a given

nonconstant function t : M → IR (cf. §1), and consider the functions
x, y of the variable t defined by x = 2 log σ − t + (m − 1)−1f and
y = (m − 1)−1f, where m = n/2 (and n need not be even). Let us
further assume that g(∇t,∇t) is a smooth function of the function t,
and set φ = etg(∇t,∇t)/2. Thus,

i) σ = e(x−y+t)/2, ii) f = (m− 1)y, iii) g(∇t,∇t) = 2e−tφ. (22)

Our goal is to find sufficient conditions for a conformal change of a
metric g (which – so far – is completely arbitrary) to yield a gradient
Ricci soliton g with a soliton constant λ > 0 (that is, λ = 1, after
the normalization described in §18). These conditions will be imposed
on the unknown functions x, y of the variable t, corresponding – via
(22) – to the unknown functions σ and f , which in turn will constitute
the functional factor in the conformal change g = g/σ2, and the soliton
function for g.
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We first evaluate the ingredients of (a) – (c) in §18 for f and the
metric g (instead of g), expressing them in terms of: the functions x, y, φ
(and their derivatives with respect to t, with the notation ( )˙ = d/dt);
the g-Hessian ∇dτ of the function τ = et; its g-Laplacian ∆τ ; the
Ricci tensor Ric of g; and its scalar curvature s, so that

{∇df + Ric}0 = {α∇dτ + Ric + β dt⊗ dt}0 (23)

where α = (m− 1)(ẋ+ 1)e−t and β = (m− 1)(2ẍ− ẏ2+ ẋ2− 1)/2,
(m− 1)−1ey−x[∆f − g(∇f,∇f) + 2f ]

= ẏ[∆τ − 2(φ̇+mφ)] + 2[φÿ− (m− 1)φẋẏ+ φ̇ẏ+ yey−x],
(24)

and, still with n = 2m,
ey−x[(∆f + s − 2m) + m(m− 1)−1{∆f − g(∇f,∇f) + 2f}]

= m[2ẋφ̇ − (2m− 1)φẋ2 + φẏ2 + 2(y − 1)ey−x − φ + 2m]
− 2[m(m− 1) − m(m− 1)φ − (2m− 1)φ̇ − φ̈ − ets/2]
+ (2m− 1)(ẋ+ 1)[∆τ − 2(φ̇+mφ)]
− 2[φ̈ − (m− 1)ẋφ̇ − mφ + m]
+ (2m− 1)[2ẍ − ẏ2 + ẋ2 − 1]φ.

(25)

Verifying (23) – (25) is, as before, easy, though tedious, and may be
simplified by using the following intermediate steps. First, due to (22.i),

a) 2σ̇σ−1= ẋ− ẏ+ 1, b) 2(σ̈ − σ̇)σ−1= ẍ− ÿ+ [(ẋ− ẏ)2−1]/2. (26)

From the above expression for Ric and ∇df , (9.ii) – (10) with χ = σ

or χ = f , (22.ii), and (26) with m = n/2 and τ = et, we obtain1

(m− 1)−1{Ric− Ric}0
= {(ẋ− ẏ + 1)e−t∇dτ + 2(σ̈ − σ̇)σ−1dt⊗ dt}0 ,

(m− 1)−1∇df = ẏe−t∇dτ
+ (ÿ + ẋẏ − ẏ2) dt⊗ dt− (ẋ− ẏ + 1)ẏe−tφg.

(27)

Now (26) and (27) trivially imply (23). Applying to the second equality
in (27) the operator trg = σ2trg and, separately, setting χ = f in (9.i),
then using the fact that trg(dt⊗ dt) = g(∇t,∇t), and finally expressing
σ and g(∇t,∇t) through (22), we get

(m− 1)−1ey−x∆f = ẏ∆τ + 2[ÿ −mẏ + (m− 1)(ẏ − ẋ)ẏ]φ,
(m− 1)−2ey−xg(∇f,∇f) = 2ẏ2φ,

(28)

which gives (24). From the formula for s, (9) – (10) with χ = σ, and
(26), we have

(2m− 1)−1ey−xs = (2m− 1)−1ets + (ẋ− ẏ + 1)∆τ
+ [2ẍ− 2ÿ − (m− 1)(ẋ− ẏ)2− 2m(ẋ− ẏ)−m− 1]φ.

(29)

The last equality, (28) and (24) easily yield (25).
1 noting that ∇df = ∇df − σ−1[dσ ⊗ df + df ⊗ dσ − g(∇σ,∇f)g]
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20. Ricci solitons conformal to Kähler metrics

Having fixed T ∈ (0,∞) and integers m, k such that m > k > 0, let
us consider the following system of second-order differential equations:

i) 2ẍ = ẏ2 − ẋ2 + 1,
ii) φÿ = (m− 1)φẋẏ − φ̇ẏ − yey−x,

iii) φ̈ = (m− 1)ẋφ̇ + mφ − m,

(30)

imposed on unknown C∞ functions x, y, φ : [0, T ]→ IR of the variable
t ∈ [0, T ], where ( )˙ = d/dt, and the additional first-order equation

2ẋφ̇ − (2m− 1)φẋ2 + φẏ2 + 2(y − 1)ey−x − φ + 2m = 0 (31)

along with the boundary conditions

φ(0) = φ(T ) = 0, φ > 0 on (0, T ), φ̇(0) = k = −φ̇(T ). (32)

Equation (31) does not reduce too drastically the solution set of (30),
since the left-hand side of (31) multiplied by ex is an integral of (30).

Theorem 20.1. With any solution (x, y, φ) : [0, T ]→ IR3 of the system
(30) – (32), for T,m, k fixed as above, one can associate a Ricci soli-
ton g conformal to a Kähler metric on the compact complex manifold
M = Mm

k defined by (∗) in §8. To obtain g, we use the Kähler metric
g on M and the function t : M → IR, arising from our x, φ, T,m, k

via Lemma 17.1. We then set g = g/σ2 for the function σ in (22.i).
The resulting metric g and the function f defined by (22.ii) satisfy

conditions (a) – (c) of §18, equivalent to the gradient-soliton equation
(11) for λ = 1 and for g instead of g.

Proof. The right-hand sides in equations (23) – (25) are all equal to zero
– in (23) we have {α∇dτ + Ric}0 = 0 and β = 0, by Lemma 17.1(i) and
(30.i); in (24), both terms on the right-hand side vanish as a consequence
of Lemma 17.1(ii) and (30.ii); while in (25) each of the final five lines is
zero due to (31), Lemma 17.1(iii), Lemma 17.1(ii), (30.iii) and (30.i).

For all known examples of even-dimensional compact Ricci solitons
(listed in Question 9.1), the multiplicities of eigenvalues of the Ricci
tensor are even at every point. This follows from (8) and the fact that
the Ricci tensor of a Riemannian product is, in a natural sense, the
direct sum of the Ricci tensors of the factor manifolds.

Suppose that, for some solution (x, y, φ) : [0, T ]→ IR3 of the system
(30) – (32), and the function σ defined by (22.i), one has σ̈ 6= σ̇

somewhere in the interval [0, T ] (whether such solutions exists, is not
known; the issue is further complicated by the singularities of equation
(30.ii) at t = 0 and t = T , due to (32)). For reasons named below, the
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compact Ricci soliton (M, g) arising then from Theorem 20.1 would be
non-Einstein, non-Kähler (even locally), and not locally isometric to a
Riemannian product with Einstein or locally-Kähler factor manifolds.
The result would be an affirmative answer to Question 9.1.

The reasons just mentioned are as follows. Since the real dimension
of M is even, at every point satisfying the condition (σ̈ − σ̇) dt 6= 0
the Ricci tensor Ric has an eigenvalue of odd multiplicity, for which
the gradient ∇τ is an eigenvector. This is immediate from (27) since,
in view of Lemma 17.1(i) and (8), ∇dτ and Ric are Hermitian and
simultaneously diagonalizable at each point, with even-dimensional
eigenspaces, while from (6.c) and the second equality in Lemma 17.1(ii)
it follows that ∇τ is a common eigenvector of both ∇dτ and Ric.

Solutions of the system (30) – (31) for which σ̈ = σ̇ are in turn
completely understood. We will describe them in §§21–25.

Theorem 20.1 also has a local version, in which instead of the bound-
ary conditions (32) one only assumes positivity of φ on the open interval
forming the domain of the solution (x, y, φ) to (30) – (31) with m ­ 2.
The construction of Lemma 17.1 then gives a metric g and function t

which, although defined just on some noncompact manifold, still satisfy
the conclusions (i) – (iii) in Lemma 17.1.

Yet another generalization of Theorem 20.1 arises when one removes
equation (30.ii) from the system (30) – (32), keeping all the remaining
requirements. The right-hand side of (23) will then still be equal to
zero. This leads to a weaker version of the gradient-soliton equation
(11): ∇df + Ric = λg for some function λ that need not be constant.
Metrics g for which such functions f and λ exist were studied by
several authors [27, p. 369], [3], [32]; they are sometimes called (gradient)
Ricci almost-solitons.

21. Symmetries of (30) – (31) and the condition σ̈ = σ̇

In the equations forming the system (30) – (31), no term depends
explicitly on the variable t, while the terms containing the first derivati-
ves ẋ, ẏ, φ̇ are homogeneous quadratic in them. The system will thus
remain satisfied if in a solution, defined on any interval, one replaces the
variable t by c± t, with a constant c.

The set of solutions defined on the interval [0, T ] and satisfying the
boundary conditions (32) is therefore invariant under the substitution
of T − t for the variable t.

We now discuss the solutions of (30) – (31) such that σ̈ = σ̇.
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Lemma 21.1. Let a solution (x, y, φ) of (30) – (31), with m ­ 2,
defined on an open interval of the variable t, satisfy in addition the
condition σ̈ = σ̇, where the function σ is given by (22.i). Then σ =
q0 + q1e

t for some constants q0, q1, at least one of which is positive.
Furthermore,

i) ẏ φ̇ = (mẋ− ẏ)ẏφ − yey−x , ii) ÿ = (ẏ − ẋ)ẏ , (33)

and one of the following three cases must occur :
(i) y = 0 on the entire interval of the variable t,
(ii) q1 = 0, so that σ = q0 is a positive constant,

(iii) q0 = 0 < q1 and σ = q1e
t.

In the solution set of the full system (30) – (32), with T,m, k fixed as
before, the variable substitution of T − t for t preserves the condition
σ̈ = σ̇, leaves case (i) unchanged, and switches case (ii) with (iii).

Proof. Let us fix a solution (x, y, φ) of (30). For the function η defined
to be the difference between the left-hand and right-hand sides of (33.i),
subtracting (30.i) multiplied by φ/2 from (30.ii) we see, using (26.b)
and (30), that η = 2(σ̈ − σ̇)φσ−1. Also, by (30), the expression

2(φη)˙− 2(m− 1)φηẋ+ 4(m− 1)(σ̇ − σ)φ2σ−2ẏσ̇

is the product of −φẏ and the left-hand side of (31), as (26.a) gives
4(σ̇ − σ)σ−2σ̇ = (2σ̇σ−1)2− 2(2σ̇σ−1) = (ẋ − ẏ + 1)(ẋ − ẏ − 1). From
(30) – (31) with σ̈ = σ̇ we thus get (33.i) (that is, vanishing of η) and

(σ̇ − σ)φẏσ̇ = 0. (34)

By (33.i) and (30.ii), (mẋẏ − ẏ2)φ = φ̇ẏ + yey−x = [(m − 1)ẋẏ − ÿ]φ
while, from (30.iii), φ 6= 0 on some dense subset of the domain interval.
This proves (33.ii).

On the other hand, if σ̈ = σ̇, then σ̇ = q1e
t and σ = q0 + q1e

t with
constants q0, q1, which cannot be both nonpositive, since σ > 0 due to
(22.i). Under the hypotheses of the lemma, equation (34) gives rise (in
view of analyticity of the solution (x, y, φ) of (30) on every connected
component of the dense set on which φ 6= 0) to four possible cases:
φ = 0, ẏ = 0, σ̇ = 0 and σ̇ = σ. The first one is excluded by (30.iii);
the second, as a consequence of (30.ii), amounts to requiring that y = 0;
the third case gives (ii); the fourth – (iii).

If (30) – (32) are assumed, the substitution of T − t for t obviously
preserves condition (i) while, by (22.i), it causes σ to be replaced with
the function t 7→ et−T/2σ(T − t), which completes the proof.
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22. Case (i) in Lemma 21.1

Let us consider the case y = 0 in Lemma 21.1. In view of (22.ii),
this is nothing else than vanishing of the normalized soliton function f

in Theorem 20.1 (or – more precisely – in its local version; see §20). Our
construction thus leads now to Einstein metrics g, cf. §7.

We describe below the solutions (x, y, φ) of the system formed by
(30) – (31) and equation y = 0 on any open interval; translating the
variable t (as in §21), we may assume that the interval contains 0.

Theorem 22.1. For all solutions (x, y, φ) of (30) – (31) such that
y = 0, on an open interval containing 0, the initial data

(x0, y0, φ0, ẋ0, ẏ0, φ̇0) = (x(0), y(0), φ(0), ẋ(0), ẏ(0), φ̇(0)) (35)

satisfy the conditions

y0 = ẏ0 = 0, 2ẋ0φ̇0 = [(2m− 1)ẋ20+ 1]φ0+ 2e−x0 − 2m. (36)

Conversely, every choice of the data (35) satisfying (36) is realized by
a unique solution (x, y, φ) of (30) – (31) with y = 0, defined on a
maximal interval containing 0. One then has

x = x0+ 2 log |Θ|, where Θ = cosh (t/2) + ẋ0 sinh (t/2), (37)

y = 0, and φ is the unique solution of the first-order linear equation

2ẋφ̇ = [(2m− 1)ẋ2+ 1]φ+ 2e−x− 2m (38)

with the initial conditions φ(0) = φ0, φ̇(0) = φ̇0.
The linear equation (38) has an obvious integrating factor, which

allows us to rewrite it, for t with Θ(t)Θ̇(t) 6= 0, as (Gφ)˙ = F, where

G = 2(Θ2m−1Θ̇)−1, F = (ΘmΘ̇)−2(e−x0 −mΘ2). (39)

Proof. Our system consists of (30), (31) and the condition y = 0 (which,
due to (30.i) and (26.b), imply the equality σ̈ = σ̇). In other words, we
have two unknown functions, x and φ, subject to just two equations:
2ẍ = 1− ẋ2 and (38); note that (30.iii) follows from them. Furthermore,
the existence and uniqueness of a solution φ to (38) with the stated
initial conditions are obvious; this is so even in the singular case, that
is, when ẋ0 = 0, as one easily verifies using the integrating factor
[cosh(t/2)]−2m coth(t/2).
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23. Page’s and Bérard Bergery’s examples

Having fixed m, k ∈ ZZ such that m > k > 0 and a ∈ (−1, 0), we
define the data (35) with (36), functions Θ, G, F , and a constant T > 0,
by x0 = − log(ka+m), y0 = φ0 = ẏ0 = 0, ẋ0 = a, φ̇0 = k, formulae
(37) and (39), and T = 2 log[(1− a)/(1 + a)]. Thus

i) 2Θ(t) = (1 + a)et/2 + (1− a)e−t/2 > 0,
ii) 4Θ̇(t) = (1 + a)et/2 − (1− a)e−t/2 ,

iii) Θ2− 4Θ̇2 = 1 − a2 > 0, 4Θ̈ = Θ > 0,
iv) F = [ka+m−mΘ2](ΘmΘ̇)−2.

(40)

For the polynomial S in the variables a, ξ given by

S(a, ξ) =
m∑
j=0

(−1)jξ2j

2j − 1
[
(m−1

j

)
(ma+ k)a+

(m−1
j−1

)
(ka+m)],

where
(m−1

j

)
= 0 if j < 0 or j ­ m, the expression P (a) = a−1S(a, a)

is a polynomial in the variable a, for which

P (0) = −k < 0,

P (−k/m) = (1− k/m)(1 +m/k)

k/m∫
0

(1− a2)m−1 da > 0.
(41)

The first equality in (41) is obvious due to the definition of P , while the
second one is easily obtained from our formula for S(a, ξ) by using a
binomial expansion of the integrand and the fact that the factor ma+ k

in S(a, ξ) vanishes when a = −k/m.
As a consequence of (41), we may now fix a ∈ (−k/m, 0) such that

P (a) = 0, that is, S(a, a) = 0. Since S(a, ξ) is an even function of ξ,
we also get S(a,−a) = 0.

Replace t ∈ [0,∞) by the new variable ξ = 2Θ̇(t)/Θ(t) ∈ [a, 1).
From (40.i), (40.iii) and (40.i-ii) it follows, respectively, that this makes
sense, and that |ξ| < 1 and 2ξ̇ = 1− ξ2 > 0, while ξ → 1 as t → ∞.
Thus, t 7→ ξ is a diffeomorphism of the interval [0,∞) onto [a, 1),
easily verified – if one uses (40.i-ii) again – to send t = 0 and t = T ,
for our positive constant T = 2 log[(1 − a)/(1 + a)], to ξ = a and,
respectively, ξ = −a. The first part of (40.iii) gives ξ2 = 1 + (a2−1)Θ−2,
that is, Θ2 = (1− a2)/(1− ξ2), and 4Θ̇2 = (1− a2)ξ2/(1− ξ2) (since
4Θ̇2/Θ2 = ξ2). Expressing G and F through ξ, we obtain, from (39),

G =
4(1− ξ2)m

(1− a2)mξ
, (42)
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as Θ2m−1Θ̇ = Θ2mΘ̇/Θ = (Θ2)mξ/2, and, in view of (40.iv),

F = 4(1− a2)−m−1[(ma+ k)aξ−2− (ka+m)](1− ξ2)m. (43)

The above formula for S(a, ξ) and (43) easily show that

4(1− ξ2) d[S(a, ξ)/ξ]/dξ = (1− a2)m+1F , (44)

The relation F = (Gφ)˙ in Theorem 22.1 amounts to the equality
2F = (1− ξ2)d(Gφ)/dξ. It is therefore satisfied by φ such that

(1− a2)(1− ξ2)φ = 2S(a, ξ). (45)

Consequently, our choice of a causes this function φ of the variable ξ

to vanish for ξ = ±a. In other words, treating φ as a function of t, we
have φ(0) = φ(T ) = 0, where T = 2 log[(1− a)/(1 + a)].

Next, φ given by (45) also satisfies the remaining boundary condi-
tions (32). Namely, the definition of S(a, ξ) and (42) – (43) yield

(1− a2)m+1(1− ξ2)−mξ2(F ± kG) = −4(ξ ± a)[(ka+m)ξ ∓ (ma+ k)],

and so F/G = ±k for ξ = ±a. Switching to the variable t, we obtain
F (0)/G(0) = k and F (T )/G(T ) = −k. The equalities φ(0) = φ(T ) = 0
and F = (Gφ)˙ now show that φ̇(0) = k and φ̇(T ) = −k.

Positivity of φ on (0, T ) is thus reduced to nonvanishing of φ when
ξ ∈ (a,−a). If, however, φ vanished for some ξ ∈ (a,−a), (45) would
– first – yield ξ 6= 0 (as the definition of S(a, ξ) and the inequalities
−k/m < a < 0 give S(a, 0) = −(ma+ k)a > 0) and – secondly – allow
us to assume that ξ ∈ (a, 0) (since S(a, ξ) is an even function of ξ).
Vanishing of φ, and consequently of S(a, ξ)/ξ, for both this value of ξ
and for ξ = a, would imply vanishing of the derivative d[S(a, ξ)/ξ]/dξ
somewhere in [a, 0) which, combined with (44), leads to a contradiction:
by (43), F < 0 when a ∈ (−k/m, 0) and 0 < |ξ| < 1.

Theorem 20.1 now implies that the solution (x, y, φ) of (30) – (31),
corresponding to the above data (35), with our a ∈ (−k/m, 0), allows
us to construct a Kähler-Ricci soliton on each of the compact complex
manifolds Mm

k . We thus obtain the examples found by Page (for m = 2)
and by Bérard Bergery (if m > 2).

The above constructions can also be found in Besse’s book [5, pp.
273–275] and, obviously, the original papers [4, 28].

24. Case (ii) in Lemma 21.1

Constancy of σ in Lemma 21.1 implies that g = g/σ2 is a Kähler
metric, since – in the local version of Theorem 20.1 – it arises from a
trivial conformal change of the Kähler metric g.
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In the following description of solutions (x, y, φ) to (30) – (31) with
a constant function σ we are assuming, without loss of generality (cf.
§25) that the domain interval contains 0.

Theorem 24.1. If a solution (x, y, φ) of (30) – (31) defined on an
open interval containing 0 has the property that the function σ is
constant, then the initial data (35) must satisfy the conditions

ẏ0− ẋ0 = 1, (1−mex0−y0)ẏ0 = y0 ,

φ̇0 = [(m− 1)ẏ0 −m]φ0 +m− ey0−x0 .
(46)

Conversely, any data (35) with (46) are realized by a unique solution
(x, y, φ) of (30) – (31) with a constant function σ, defined on the whole
real line. Explicitly,

x = x0− t+ ẏ0(e
t− 1), y = y0+ ẏ0(e

t− 1), (47)

and φ is the unique solution of the first-order linear equation

φ̇ = [(m− 1)ẏ0e
t−m]φ +m− ey0−x0+t (48)

with the initial conditions φ(0) = φ0, φ̇(0) = φ̇0.
Equation (48) may also be expressed as (Gφ)˙ = F, where

G(t) = exp [mt − (m− 1)ẏ0e
t], F (t) = (m− ey0−x0+t)G(t). (49)

Proof. Constancy of σ and (26.a) give ẏ − ẋ = 1, so that, by (33.ii),
ÿ = ẏ, which yields (47) and the first equality in (46).

To prove (48), consider two possible cases. In the first one, ẏ0 = 0.
From (47) we thus obtain constancy of y and the equality x = x0− t.
Using (30.ii) we see that y = 0. Conclusion (38) in Theorem 22.1 for
x = x0− t now implies (48) for y0 = ẏ0 = 0.

In the remaining case, ẏ0 6= 0. Dividing (30.ii) by ẏ = ÿ = ẏ0e
t 6=

0, and then replacing ẋ (or, yey−x) with ẏ0e
t − 1 (or, respectively,

[y0+ ẏ0(e
t− 1)]ey0−x0+t), we obtain

φ̇ = [(m− 1)ẏ0e
t−m]φ − ey0−x0(et− 1 + y0/ẏ0). (50)

Let us use (50) and the equation obtained by differentiating (50) to
express φ̇ and φ̈ in terms of x0, y0, ẏ0 and φ. The resulting expressions
and the equality x = ẏ0e

t− 1 allow us to rewrite the difference between
the two sides of (30.iii), so as to obtain both the second equality of (46),
and (48). We also see that the second equality in (46), combined with
(48), implies (50), and hence (30.iii). The third equality of (46) is in turn
obvious from (48) for t = 0.

We have thus proved (46) and (48), as well as the fact that they
imply (30.iii). They similarly yield the remaining equations in (30) – (31).
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More precisely, (30.ii) is nothing else than (50) (that is, (48)) multiplied
by ẏ = ÿ = ẏ0e

t 6= 0, (30.i) is an obvious consequence of (47) – (48),
while (31) can easily be verified directly.

25. The Koiso-Cao examples

We fix m, k ∈ ZZ with m > k > 0 and define S : (0,∞)→ IR by

S(a) =

Q∫
0

[τm−1 + (k −m)τm]e−aτ dτ , where Q =
m+ k

m− k
. (51)

One then has – as shown below – the inequalities

S(0) < 0 < S(a) whenever a ­ m(m− k). (52)

We may thus choose a ∈ (0,m(m− k)) such that S(a) = 0. Next, we
introduce data (35) satisfying (46) by setting y0 = (1−m/k)a/(m− 1),
x0 = y0 − log(m − k), φ0 = 0, ẏ0 = a/(m − 1), ẋ0 = ẏ0 − 1, and
φ̇0 = k. The solution (x, y, φ) : IR→ IR3 of (30) – (31) with a constant
function σ, corresponding to these data as in Theorem 24.1, then also
satisfies the boundary conditions (32) with T = log[(m+ k)/(m− k)].
In fact – first, our choice of φ0 and φ̇0 gives φ(0) = 0 and φ̇(0) = k.
Second, φ(T ) = 0 since, due to Theorem 24.1, G(T )φ(T ) =

∫ T
0 F (t) dt

while, evaluating the last integral in terms of the new variable τ = et

and using the equality ẏ0 = a/(m − 1) along with (51) and (49), as
well as our choice of a, we obtain

∫ T
0 F (t) dt = S(a) = 0. Third, the

equalities (Gφ)˙ = F (in Theorem 24.1), φ(T ) = 0 and (49) imply
that φ̇(T ) = F (T )/G(T ) = m − ey0−x0+T, and so φ̇(T ) = −k, since
ey0−x0 = m − k and eT = (m + k)/(m − k). Fourth, the derivative
of Gφ, that is, the function F given by (49), has only one zero in
IR and, consequently, φ may have at most two zeros; the relations
φ(0) = φ(T ) = 0 < φ̇(0) thus imply the inequality φ > 0 on (0, T ).

Theorem 20.1 states in turn that the above solution (x, y, φ) leads to
a construction of a Kähler-Ricci soliton on each of the compact complex
manifolds Mm

k . These are the Koiso-Cao examples.

Proof of the inequality (52). For m, k, a,Q ∈ IR such that m ­ 1
and Q ∈ (0,∞), defining S(a) by (51) (even without assuming that
Q = (m + k)/(m − k)), we have S(a) = Hm−1 + (k −m)Hm, where
Hm =

∫Q
0 τ

me−aτ dτ for m ­ 0. If m ­ 1, integration by parts yields
mHm−1 = aHm+Qme−aQ, and so mS(a) = [a−m(m−k)]Hm+Qme−aQ.
Positivity of Hm thus gives S(a) > 0 for a ­ m(m − k). However,
Hm = Qm+1/(m + 1) if a = 0 and m ­ 1. Our formula for mS(a)
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now states that m(m + 1)Q−mS(0) = −m(m − k)Q + m + 1. With
Q = (m+ k)/(m− k) and m > k ­ 1, it follows that S(0) < 0.

26. Case (iii) in Lemma 21.1

The assumptions of Lemma 17.1 will still hold if the quintuple
m, k, T, x, φ is replaced by m, k, T, x̂, φ̂, where x̂(t) = x(T − t) and
φ̂(t) = φ(T − t). Performing the construction described in the proof of
Lemma 17.1 for m, k, T, x̂, φ̂, with the same objects N,h, E,M, the same
fibre norm, and the same Hermitian connection in E as before, we obtain
a new metric ĝ and function t̂ : M → IR, for which we must use a symbol
other than t, since it differs in general from the function t : M → IR
associated with the original data m, k, T, x, φ. To describe how the pair
(g, t) is related to (ĝ , t̂), we use the diffeomorphism Z : M →M which,
restricted to E rN, acts in every fibre as the standard inversion, that
is, the division of any nonzero vector by the square of its norm. Letting
Z∗ĝ and Z∗χ denote the pullback of the metric ĝ under Z and the
composition χ ◦ Z, for any function χ on E rN, we then have

a) Z∗r = 1/r, b) Z∗t̂ = T − t, c) Z∗ĝ = eT−2tg, (53)

where, as before, r : E rN → IR is the fibre norm.

In fact, (53.a) is a trivial consequence of the definition of Z. To
justify (53.b) – (53.c), note that (20) remains valid after one has replaced
φ(t) by φ̂(t) = φ(T− t) and t(r) by t̂(r) = T− t(1/r). This last choice
of t̂ : M → IR easily yields (53.b). The metric ĝ arises, in turn, from a
modified version of the formulae for g in the proof of Lemma 17.1; the
modification amounts to using et̂(r) and φ̂(t̂(r)) = φ(t(1/r)) instead of
et and φ (that is, instead of et(r) and φ(t(r))), which gives (53.c).

Relation (53.c) states that Z is an isometry between the Riemannian
manifolds (M, eT−2tg) and (M, ĝ). Thus, ĝ is isometric to a metric
resulting from a specific conformal change of g.

If, in addition, the original data m, k, T, x, φ arise from a solution
(x, y, φ) of (30) – (32), the function σ : M → IR is defined by (22.i),
and σ̂ denotes its analog for the new solution (x̂, ŷ, φ̂) obtained by
substitutingT − t for the variable t, then

i) Z∗σ̂ = e−t+T/2σ, ii) Z∗(ĝ/σ̂2) = g/σ2. (54)

The first equality is obvious here due to (22.i) and (53.b), the second –
in view of the first one combined with (53.c) and multiplicativity of the
operation Z∗ with respect to products of functions and tensor fields.
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By (54.ii), applying Theorem 20.1 to these solutions (x, y, φ) and
(x̂, ŷ, φ̂) results in compact Ricci solitons (M, g/σ2) and (M, ĝ/σ̂2),
which are isometric to each other.

If, furthermore, (x, y, φ) represents case (iii) in Lemma 21.1 then,
according to the final clause of Lemma 21.1, the solution (x̂, ŷ, φ̂) is an
example of case (ii), and so the manifold (M, ĝ/σ̂2) must be isometric to
one of the Koiso-Cao examples. The same therefore holds for (M, g/σ2).
We have in this way obtained a proof of Maschler’s result [27].

Since the standard inversion of the plane is not holomorphic (while
being antiholomorphic), Z transforms the original complex structure
onto a different one, biholomorphic to it.
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[17] M. Fernández-López, E. Garćıa-Ŕıo, A remark on compact Ricci solitons,
Math. Ann. 340 (2008), no. 4, 893–896, DOI 10.1007/s00208-007-0173-4.

[18] D. H. Friedan, Nonlinear models in 2 + ε dimensions, Ann. Physics 163
(1985), no. 2, 318–419.

[19] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4,
1061–1083.

[20] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differen-
tial Geom. 17 (1982), no. 2, 255–306.

[21] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general
relativity (Santa Cruz, CA, 1986), Contemp. Math., vol. 71, Amer. Math.
Soc., Providence, RI, 1988, 237–262.

[22] T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom.
Appl. 3 (1993), no. 4, 301–307, DOI 10.1016/0926-2245(93)90008-O.

[23] S. Kobayashi, S. Ochiai, Characterizations of complex projective spaces
and hyperquadrics, J. Math. Kyoto Univ. 13 (1973), 31–47.

[24] N. Koiso, On rotationally symmetric Hamilton’s equation for Kähler-Ein-
stein metrics, Recent topics in differential and analytic geometry, Adv.
Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, 327–337.

[25] C. Li, On rotationally symmetric Kähler-Ricci solitons, preprint
arXiv:1004.4049 (2010).

[26] X.-M. Li, On extensions of Myers’ theorem, Bull. London Math. Soc. 27
(1995), 392–396.

[27] G. Maschler, Special Kähler-Ricci potentials and Ricci solitons, Ann. Glo-
bal Anal. Geom. 34 (2008), no. 4, 367–380, DOI 10.1007/s10455-008-9114-z.

[28] D. N. Page, A compact rotating gravitational instanton, Phys. Lett. B 79
(1978), no. 3, 235–238, DOI 10.1016/0370-2693(78)90231-9.

[29] G. Perelman, The entropy formula for the Ricci flow and its geometric
applications, preprint, arXiv:math.DG/0211159.

[30] G. Perelman, Ricci flow with surgery on three-manifolds, preprint,
arXiv:math.DG/0303109.

[31] G. Perelman, Finite extinction time for the solutions to the Ricci flow on
certain three-manifolds, preprint, arXiv:math.DG/0307245.



32 A. Derdzinski

[32] S. Pigola, M. Rigoli, M. Rimoldi, A. G. Setti, Ricci almost solitons, Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (2011), no. 4, 757–799, DOI
10.2422/2036-2145.2011.4.01.

[33] O. S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of
Schrödinger operators, J. Funct. Anal. 42 (1981), no. 1, 110–120, DOI
10.1016/0022-1236(81)90050-1.

[34] G. Tian, private communication (2005).
[35] G. Tian, X. Zhu, A new holomorphic invariant and uniqueness of Käh-

ler-Ricci solitons, Comment. Math. Helv. 77 (2002), no. 2, 297–325, DOI
10.1007/s00014-002-8341-3.

[36] X.-J. Wang, X. Zhu, Kähler-Ricci solitons on toric manifolds with po-
sitive first Chern class, Adv. Math. 188 (2004), no. 1, 87–103, DOI
10.1016/j.aim.2003.09.009.

[37] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the
complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978),
no. 3, 339–411, DOI 10.1002/cpa.3160310304.

[38] Z. Zhang, On the finiteness of the fundamental group of a compact
shrinking Ricci soliton, Colloq. Math. 107 (2007), no. 2, 297–299, DOI
10.4064/cm107-2-9.

Andrzej Derdzinski
The Ohio State University
andrzej@math.ohio-state.edu


