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ABSTRACT. Special Ricci-Hessian equations on Kéhler manifolds (M, g), as
defined by Maschler [Ann. Global Anal. Geom. 34 (2008), 367-380] involve
functions 7 on M and state that, for some function « of the real variable
7, the sum of aVdr and the Ricci tensor equals a functional multiple of the
metric g, while aVdr itself is nonzero almost everywhere. Three well-known
obvious cases are provided by (non-Einstein) gradient Kéahler-Ricci solitons,
conformally-Einstein Kahler metrics, and special Kéhler-Ricci potentials. We
show that, outside of these three cases, such an equation can only occur in
complex dimension two and, at generic points, it must then represent one of
three types, for which, up to normalizations, « = 2cot 7, or @ = 2cothr, or
a = 2tanh7. We also use the Cartan-Kéahler theorem to prove that these
three types are actually realized.

Introduction

Following Maschler [17, p. 367], one says that functions 7, «,c on a Riemann-
ian manifold (M, g) with the Ricci tensor r satisfy a Ricci-Hessian equation if

(0.1) aVdr + r = og for some function o : M — IR,
V being the Levi-Civita connection of g. We call equation (0.1) special when
(0.2) aVdr #0 on a dense set, dimM =n > 2, and « is a C* function of 7.

Conditions (0.1) — (0.2) are satisfied in several situations that have been studied —
see below — raising a natural question: Which functions 7+ « can be realized in
this way? The present paper provides an answer in the Kéhler case, outside of the
classes that are already well understood. See Theorems D and E.

There are three well-known classes of examples leading to (0.1) — (0.2).

(I) Non-Einstein gradient Ricci almost-solitons [20, 1], including (non-Ein-
stein) gradient Ricci solitons [15]. Here « is a nonzero constant.
(II) Conformally-Einstein metrics g, with z > 0 and o = (n — 2)/7, the
Einstein metric being § = g/72. Cf. [11, formula (6.2)].
(IIT) Special Kahler-Ricci potentials 7 on Kéhler manifolds, at points where r
is not a multiple of ¢g [11, Remark 7.4].
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A special Kahler-Ricci potential [11, Sect. 7] on a Kéhler manifold (M, g) with the
complex-structure tensor J is any nonconstant function 7 on M having a real-
holomorphic gradient v = Vz for which, at points where v # 0, all nonzero vectors
orthogonal to v and Juv are eigenvectors of both Vdrz and r. Such triples (M, g, 7)
are completely understood, both locally [11] and in the compact case [12].

The classes (I) — (III) are far from disjoint: for instance [11, Corollary 9.3], in
the Kéahler category, if n > 4, (II) is a special case of (III).

We are interested in M, g, 7, o, 0 satisfying (0.1) — (0.2) along with

(0.3) 2r(v, -) = —dY,
where, throughout the paper, the notational conventions
(0.4) v=Vz, Q=gv,v), Y=Ar, n=dimM

are used whenever 7 : M — IR for a Riemannian manifold (M, g). As we point
out near at the end of Section 1, with J denoting the complex-structure tensor,

for Kéhler metrics g, conditions (0.1) — (0.2) imply (0.3),
(0.5) and the gradient v = V7 is a real-holomorphic vector field
or, equivalently, Jv is a real-holomorphic g-Killing field.

Assuming (0.1) — (0.2), we may treat the derivatives o’ = da/dr and o both as
functions of the real variable 7 and as functions M — IR. In Sections 2 and 3 we
prove the following two results, as well as Theorem D, stated below.

THEOREM A. Under the hypotheses (0.1) — (0.3), at points where o'+ aa’ # 0
and dr # 0, both Q = g(Vz,Vz) and Y = At are, locally, functions of .

THEOREM B. Let functions t,a,0 satisfy a special Ricci-Hessian equation
(0.1), with (0.2), on a Kdhler manifold (M,g) of real dimension n > 4. If ada
and dr are nonzero at all points of an open submanifold U of M, and

(i) n>4, or
(i) n =4 and do Adr =0 identically in U or, finally,

(iii) dQ A dt =0 everywhere in U, where Q = g(Vz,V1),

then ©:U — R is a special Kdhler-Ricci potential on the Kdahler manifold (U, g).

With v,Q,Y asin (0.4), a function = on a Riemannian manifold (M, g) has
dQNdr = 0 if and only if @ is locally, at points where dr # 0, a function of z. This
amounts to requiring the integral curves of v to be reparametrized geodesics (since,
due to formula (1.2) below, the latter condition means that V, v is a functional
multiple of v). Such functions 7, called transnormal, have been studied extensively
[21, 18, 3], and are referred to as isoparametric when, in addition, dY A dz = 0.

Theorem B renders the transnormal case d@Q Adt = 0, as well as real dimensions
n > 4, rather uninteresting in the context of special Ricci-Hessian equations (0.1) —
(0.2) on Kéahler manifolds, since at da-generic points (see the end of Section 1) one
then ends up with examples (I) or (IIT) above, cf. Remark 3.3, of which the former
is the subject of a large existing literature, and the latter, as mentioned earlier, has
been completely described. This is why our next two results focus exclusively on
the real dimension four and functions = with dQ A dr not identically zero.

REMARK C. Equation (0.1), with (0.2), remains satisfied after 7 and the func-
tion 7 — « = «a(r) have been subjected to an affine modification in the sense of
being replaced with % and 7 — &(%) given by 7 =p+7/c and &(%) = ca(ci —cp)
for real constants ¢ # 0 and p.
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THEOREM D. If the special Ricci-Hessian equation (0.1) and (0.2) both hold
for functions T,a,0 on a Kdhler manifold (M,g) of real dimension four, while
dQ Ndt # 0 everywhere in an open connected set U C M, then the function a of
the variable © and its derivative o' = da/dz satisfy, on U, the equation

(0.6) o’ + ad’ = 0, that is, 2a/+ o® = 4e with a constant ¢ € IR.
In addition, for @ and Y as in (0.4), the functions
(0.7) 20 = as+4¢Y and k = 0 + o 'Y — @Q are both constant,

Y being given by 4e) = v — 2/a, if € # 0, or 31 = 2/a3, when € = 0. Further-
more, o in (0.1) and the function F of the variable © characterized by

(0.8)  4eF =0(2 — 10) +4eka for € #0, and F = ka — 20/(3a?) if € =0,
and thus depending on the real constants 0, k, satisfy the conditions
(0.9) a) Y—Qa=F, b) 20=—(Qd'+F'), ¢) Aa=Fda' =-F".

Finally, up to affine modifications — see Remark C — the pair (a(z),e) is one of
the following five: (2,1), (2/7,0), (2tanhz,1), (2cothz,1), (2cotz, —1).

THEOREM E. Each of the five options listed in Theorem D, namely,
(2,1), (2/7,0), (2tanh,1), (2cothz,1), (2cotz,—1),

is realized by a special Ricci-Hessian equation (0.1) —(0.2) on a real-analytic Kdhler
manifold (M,g) of real dimension four such that, with v =Vz and Q = g(v,v),
one has dQ Ndt # 0 somewhere in M and Jv lies in a two-dimensional Abelian
Lie algebra of Killing fields.

For (2,1) and (2/7,0) one can choose (M,g) to be compact and biholomor-
phic to the two-point blow-up of CP2, with g which is the Wang-Zhu toric Kih-
ler-Ricci soliton [22, Theorem 1.1] or, respectively, the Chen-LeBrun-Weber con-
formally-FEinstein Kdhler metric [6, Theorem A].

In contrast with the final clause of Theorem E, we do not know whether the
remaining three options, (2tanhz,1), (2cothz,1) and (2cotz,—1), may be real-
ized on a compact Kéhler surface. An analytic-continuation phenomenon described
below (Section 11) suggests that it might make sense to try obtaining such compact
examples via small deformations of the Wang-Zhu or Chen-LeBrun-Weber metric,
combined with suitable affine modifications.

For the pairs (2,1) and (2/7,0) in Theorem D, the constancy conclusions of
(0.7) are well known [7, p.201], [9, p. 417, Prop. 3(i) and p. 419, formula (40)].

The paper is organized as follows. Section 1 contains the preliminaries. Con-
sequences of special Ricci-Hessian equations, leading to proofs of Theorems A, B
and D, are presented in the next two sections. Sections 4 through 10 are devoted
to proving Theorem E: we rephrase it as solvability of the system (5.1) — (5.2) of
quasi-linear first-order partial differential equations, which allows us to derive our
claim from the Cartan-Kahler theorem for exterior differential systems.

1. Preliminaries

All manifolds and Riemannian metrics are assumed to be of class C'*°. By
definition, a manifold is connected. We use the symbol & for divergence.

On a manifold with a torsion-free connection V, the Ricci tensor r satisfies
the Bochner identity r(-,v) = 6Vv — d[év], where v is any vector field. Its
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coordinate form Rjv* =v" ;, —v¥ - arises via contraction from the Ricci identity

vl ik —v! ki = Bikg vq (We use the sign convention for R such that R, = R; %)

Apphed to the gradlent v of a function 7 on a Riemannian manifold, thls ylelds
(1.1) §[Vdr] = r(v,-) + dY, if v=Vz and Y =Ar

On the other hand, given a function 7 on a Riemannian manifold,

(1.2) 2[Vdz)(v, -) = dQ, where v=Vz and Q = g(v,v),

as one sees noting that, in local coordinates, (’L’k’L" ) =27, 7%, We can rewrite
relations (1.1) — (1.2) using the interior product u,, obtalmng

(1.3) a) d[Vdz] = 1,vr + dY, b) 2¢,[Vdr] = dQ,  with (0.4).
Finally, for the Ricci tensor r and scalar curvature s of any Riemannian metric,
(1.4) 20r = ds,

which is known as the Bianchi identity for the Ricci tensor. Its coordinate form
29" Ry, | = s ; is immediate if one transvects with (“multiplies” by) g* the equality
Ry q =Ry — By j obtained by contracting the second Bianchi identity.

The harmonic-flow condition for a vector field v on a Riemannian manifold
(M, g), meaning that the flow of v consists of (local) harmonic diffeomorphisms, is
known [19] to be equivalent to the equation

(1.5) g(Av, -) = —1(v, -)

the vector field Av having the local components [Av)/ = v/*, . See also [14,
Theorem 3.1]. When v = Vz is the gradient of a function 7: M — IR,

(1.6) the harmonic-flow condition (1.5) amounts to (0.3).

In fact, by (1.1), 2r(v, )+ dY = §[Vdr] +1(v, -) = g(Av, -) +1(v, - ), as [Av]; =
j,kk = T,jkk = T,kjk = ki (5[Vd"7])
On the other hand - see, e.g., [11, Lemma 5.2] — on a Kéhler manifold (M, g),

conditions (0.1)—(0.2) imply real-holomorphicity of the
(1.7) gradient v = V7, while Jv is then a holomorphic Killing
field, due to the resulting Hermitian symmetry of Vdz.

Since holomorphic mappings between Kéahler manifolds are harmonic, every holo-
morphic vector field on a Kahler manifold satisfies (1.5), cf. [14, Remark 3.2]. Now
(0.5) follows from (1.6). Note that, as also also observed by Calabi [5], on K&hler
manifolds one has

(1.8)  equation (0.3), with (0.4), for all real-holomorphic gradients v = Vz.

Given a tensor field @ on a manifold M, we say that a point x € M is @-generic
if = has a neighborhood on which either © = 0 identically, or © # 0 everywhere.
Such points clearly form a dense open subset of M.
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2. Ricci-Hessian equations
As a consequence of (0.1), for the scalar curvature s, with (0.4),
(2.1) no = Ya + s, where n =dim M.
Applying 21, or 2§ to (0.1), we obtain, from (1.3) — (1.4) and (0.4),
(2.2) 1) ad@ + 2r(v, -) = 20dr,
i) 2[Vdr](Va, ) + 2afr(v, -) + dY] + ds = 2do.
In the case where (0.1) — (0.2) hold along with (0.3), one may rewrite (2.2) as

i) ad@ — dY = 2o0dr,

(2:3) ii) 2[Vdr)(Ve, -) + adY + ds = 2do,

which, in view of (1.2) and (2.1), amounts to nothing else than

i) dQa —Y) = (Qd + 20)dr,
(2:4) i) d[Qd’ + (n—2)o] = (Qa” + Yo!')dr,

as the assumption, in (0.2), that « is a C°° function of = allows us to write
(2.5) da = d'dr, Va = a'v, 2[Vdr](Va, ) =d'dQ, where o = da/dr,

since (1.2) gives 2[Vdz](Va, -) = 2a/[Vdr](v, -) = &/dQ. Due to (2.4), conditions
(0.1) — (0.3) imply that, locally, at points at which dz # 0,

Qa — Y and Qo' + (n—2)o are functions of 7, with
(2.6) the respective z-derivatives Qa’ + 20 and Qo’ + Yo/
which, consequently, must themselves be functions of 7.

PROOF OF THEOREM A. At the points in question, using (2.6) to equate both
Qa—Y and Qa’ + Yo' to some specific functions of 7, we obtain a system of two
linear equations with the nonzero determinant o’ + ac’, imposed on the unknowns
Q,Y, and our assertion follows since o + aa/ is also a function of . O

Assuming only (0.1), for n = dim M, with the aid of (2.1) we rewrite (2.2) as

nlad@ + 2r(v, -)] — 2(Ya + s)dr = 0,
n{[Vdr)(Va, - ) +ar(v, - )} +2[(n — D)adY —Yda]+ (n — 2)ds = 0,

If (0.3) holds as well, replacing 2r(v, -) here with —dY we obtain n(ad@Q—dY)—
2(Ya+s)dr = 0 and 2n[Vdz](Va, - )+ (n —2)(adY +ds) —2Yda = 0. Thus, when
(0.1) - (0.3) are all satisfied, (2.5) gives

97 a) n(ad@ — dY) — 2(Yo + s)dz = 0,
(2.7) b) na/dQ + (n—2)(adY + ds) — 2Ye/dr = 0.

3. Ricci-Hessian equations on Kihler manifolds

The goal of this section is proving Theorems B and D.

In any complex manifold, dw = 0 and w(J -, -) is symmetric if w = i9dr, that
is, if 2w = —d[J*dz] for a real-valued function z, with the 1-form J*dz = (dr)J,
which sends any tangent vector field v to dj,7. Our exterior-derivative and exte-
rior-product conventions, for 1-forms &,&’ and vector fields u,v, are

(3.1) [d€](u,v) = d,[§(v)] = d,[&(w)] = &([u,v]),
' [EAE(u,v) = E(u)e (v) = &(v)€(u).
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For a torsionfree connection V, (3.1) gives [d¢](u,v) = [V, &](v) — [V,&](u), so that,
if in addition VJ = 0, on a complex manifold,

(3.2) 2i00T = [Vdr](J-, ) — [Vdz](-,J ).
In the case of a Kahler metric g on a complex manifold M, (0.1) implies that
(3.3) iad0T + p = ow,

w, p being the Kahler and Ricci forms, with both terms on the right-hand side of
(3.2) equal, as Hermitian symmetry of Vdz follows from those of p and w.

REMARK 3.1. As an obvious consequence of the last line in (1.7), if g is a
Kéhler metric, conditions (0.1) — (0.2) are equivalent to (3.3) along with (0.2) and
real-holomorphicity of the gradient v = Vz.

REMARK 3.2. For the Kéhler form w of a K&hler manifold (M,g) of real
dimension n > 4, the operator ( — ( A w acting on differential g-forms is injective
if ¢g=2 and n >4, or ¢ = 1. Namely, the contraction of ( A w against w yields a
nonzero constant times (n—4)¢+ 2{w, ()w (if ¢ = 2), or times (n—2)¢ (if ¢ =1).
In the former case, ¢ with ( A w =0 is thus a multiple of w, and hence 0.

REMARK 3.3. Whenever (3.3) with a constant « holds on a Kéhler manifold
of real dimension n > 4, constancy of o follows (from Remark 3.2, as do A w = 0).

We have the following result, due to Maschler [17, Proposition 3.3].

LEMMA 3.4. Condition (0.1) on a Kdhler manifold (M,g) of real dimension
n > 4 implies that do A da = 0. Equivalently, wherever da is monzero, o must,
locally, be a function of «.

PROOF. By (3.3), 0 =dp = do A w—da Ai0d7, so that da Ado A w =0, and
our assertion is immediate from Remark 3.2. O

PROOF OF THEOREM B. In all three cases (i) — (iii), do Adz = 0. For (i), this
follows from Lemma 3.4 while, when dQ A dr = 0 on U, we see that, in view of
the equality o/d@Q + adY = d(20 —s) arising from (2.3.ii) and (2.5), Y and 20 —s
are, locally, functions of 7, and hence so is o, as a consequence of (2.1) with n > 4.
Now [11, Corollary 9.2] yields our claim. ]

PRrROOF OF THEOREM D. As dQ A dr # 0 everywhere in U, Theorem A im-
plies (0.6) and, consequently, also the final clause about the five possible pairs.
Next, in (0.6), 4d0 = 2d[as + (2¢/ + a?)Y] = 2[ads + sda + (2¢/ + a?)dY]
which, as n = 4, equals, in view of (2.5),
a[nad@ + (n — 2)(adY + ds) — 2Yd/dr] — o'[n(ad@ — dY') — 2(Ya + s)d7],

and hence vanishes due to (2.7). On the other hand, the function 1 of 7 defined
in the theorem is an antiderivative of 1/a?, meaning that

(3.4) Y = 1/a’
Namely, by (0.6). 4ey)’ = 1+ 2a'/a® = (2a' + a?)/a® = 4e/a? if € # 0, and
3P’ = —6a’/at = 3/a? when e =0, as 2a' = —a’.

Furthermore, d(0¢+a'Y — Q) = 0. In fact, da = o/dr in (2.5), and similarly
for 1, so that, from (3.4), d(0) = 0dy = 0y'dr = Oa2dr, and ad(@Y) =
dY — a7 'Ya/dr. Also, 2(0 — Yo!) = (Ya + s)a from (0.6) — (0.7). These relations



SPECIAL RICCI-HESSIAN EQUATIONS 7

yield —~4ad (0 +a'Y — Q) = 4[(adQ — dY) — (6 — Yo/ )atdr] = n(adQ — dY) —
2(Yo + s)drz, with n = 4, which equals 0 by (2.7.a).

Finally, (0.8) and the second relation in (0.7) easily give (0.9-a). Thus, by (0.4)
and (2.5), (Qd'+F")Q = (Qa'+F')d,r = Qd,a+d,F which, due to (0.9-a), equals
d,Y—ad,Q. At the same time, —i, applied to (2.3.i) yields d,Y —ad,Q = —2Qo.
We thus get (0.9-b). To obtain (0.9-c), note that, from (0.4), Aa = Qa” + Yo/
which, by (0.6) and (0.9-a), equals (Y—Qa«)a’ = Fo' = —F", where the last equality
trivially follows from (0.8) O

Theorem D has a partial converse: if a nonconstant function z with real-hol-
omorphic gradient v = Vz on a Kéhler surface (M,g) and a function « of the
real variable 7 satisfy (0.6) and (0.7), then they must also satisfy the Ricci-Hessian
equation (0.1) with o given by (2.1) for n = 4.

In fact, b(v,-) = 0, where b denotes the traceless Hermitian symmetric 2-
tensor field aVdr + r — og. Namely, (0.3) — (0.5) and (1.3-b) yield 4b(v, -) =
200dQ —2dY —4odr which, due to (2.1) and (2.5), equals 2adQ —2dY — (Ya+s)dr,
and so —4ab(v, -) = 2a%d(0¢Y+aY— Q)+ (as+4eY—20)dr. (Note that, by (0.6)
and (3.4), 4e = 2a’+ a? and 2a%d(0v) = 20dr.) Thus, b = 0, since b corresponds,
via g, to a complez-linear bundle morphism TM — TM.

4. The local Kéahler potentials

This and the following six sections are devoted to proving Theorem E.

In an open set M C IR* with the Cartesian coordinates x, ', u,u’ arranged into
the complex coordinates (x4 iz’,u+ iu’) for the complex plane C? = R? carrying
the standard complex structure .J, one has J*dxr = —dz’ and J*du = —du/, so that,
ifa C>function f on M only depends on x and wu, the relation 2i90f = —d[J*df]
yields, with subscripts denoting partial differentiations, 2i00f = f,, dx A dz’' +
fou(dx ANdu' + duNdz'") + f,,, duAdu, since df = f,dz+ f,du. Furthermore, we set

(4.1) v=0, and w=20

. ., (the real coordinate vector fields).

For the Kihler metric ¢ on M having the Kihler form w = 2i90¢, where the
function ¢ : M — IR is assumed to depend on z and u only, 2¢ is a Kéhler
potential [2, p.85] of g, and the above formula for 2i90f becomes

(4.2) w = ¢ppdr ANdz' + ¢, (do A du' + du A dz") + ¢y, du A du'.

Generally, for a skew-Hermitian 2-form ¢ = Qdx A dz’ + S(dz A du’ + du A dx') +
Bdu A du' and the Hermitian symmetric 2-tensor field a with ¢ = a(J-, -) one
has a = Q(dz @ dz + d2’ @ d2’) + S(dx ® du + du @ dx + d2’ @ du’ + du’ @ dz’) +
B(du ® du + du' @ du’), due to (3.1), and so the components of a relative to the
coordinates (z,z’,u,u’) form the matrix

Q 0 S 0

0 @@ 0 S . . 22
(4.3) s 0 B ol with the determinant (QB — S%)=.

0 S 0 B

When a=4yg, (42) gives (Q,S,B) = ((ba:a:? d)z'(u ¢uu) ThllS7
(4.4) G > 0 and v > 0, for v = ¢, O — ?m,
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which amounts to Sylvester’s criterion for positive definiteness of g, namely, posi-
tivity of the upper left subdeterminants of (4.3). From now on we set

(4 5) (T7 A7 Q’ S’ B) = (¢.’I7 ¢u7 ¢.’EI’ ¢:Eu7 ¢uu)7 SO that
’ Q >0 and v = QB — 5% > 0 due to (4.4).

With div, A denoting the g-divergence and g-Laplacian, for 7, A, Q in (4.5),

(a) the functions 7, A have the holomorphic g-gradients v = 9, and w = 9,,,

(b) the other coordinate fields Jv and Jw are holomorphic ¢-Killing fields,

(¢) @ = g(v,v) and Az = divev = (log?),, while AN = divw = (log~),.
Namely, (4.1) and (4.3) yield (a). Also, (b) follows since ¢ only depends on z and
u. Finally, (4.3) has the determinant 72, and so v dx A dx’ A du A du’ is the volume
form of g, on which £, and £, act via partial differentiations 0,, 9, of the ~
factor. Thus, dive = (log7), and divw = (log?),,, cf. [16, p.281]. On the other
hand, by (a), (4.1) and (4.5), g(v,v) =d,7 = 0,7 = 0,¢, = ¢, = Q.

For our (z,) = (¢,,¢,), the mapping (z,u) — (z, ) is locally diffeomorphic
due to (4.4), which makes (@, S, B) = (¢p0s Prus Puw), locally, a triple of real-val-
ued functions of the new variables 7, A\. With subscripts still denoting partial
differentiations, the integrability conditions @, — S, = S, — B, =0 and (4.5) give

(4.6) SQ, + BQ, = QS, + SS,, SS,+BS,=QB,+SB,, Q>0, QB> S

Conversely, if functions @Q, S, B of the variables 7, A satisfy (4.6), then, locally,

(d) (Q,S,B) = (pys Gys D) for a function ¢, with (4.4), of the variables
z,u related to 7, A via (z,\) = (¢,,¢,), and @, S, B determine each of
¢, x,u uniquely up to additive constants.

In fact, the equalities in (4.6) state precisely that the vector fields QJ, + S0, and
S8, + BO, commute or, equivalently, the 1-forms (QB — S?)7(Bdr — Sd)\) and
(QB — S*)7H(Qd)\ — Sdr), dual to them, are closed, and we may declare these
vector fields (or, 1-forms) to be 9,, d,, or, respectively, dz, du. Now that, locally,
x,u are defined, up to additive constants, we obtain ¢ by solving the system
(¢ps Py) = (7,A), where 7,\ are treated as functions of z,u via the resulting
locally diffeomorphic coordinate change (7,\) — (z,u). Closedness of zdx + \du
and the equality (@, S, B) = (s Ppu» Pun) are obvious: our choice of dr and du
trivially gives (dz,d)\) = (Qdx + Sdu, S dx + Bdu) and dz A dx+ dX\ A du = 0.
The g-Laplacians of 7 and A can also be expressed as
(e) At = Q, + S, and AN =5, + B,.

To see this, first note that, from the chain and Leibniz rules, one gets (QB —S?), =
Q(QB — 52)7: + S(QB — SQ))\ = Q(QB, + SBy — 58,) = S(QS,; + S5y — BQ)\) -
S2S, + QBQ,. Using (4.6) to replace the two three-term sums in parentheses by
BS, and SQ,, we thus obtain (QB — S?), = (Q, + S,)(QB — S?). Similarly,
(QB—5?%), = S(QB — S?), + B(QB — 5?), is rewritten as S(QB, — BS, —SS,) —
S2S, + B(BQ, +5Q, —SS,) + @BB,, and analogous three-term replacements give
(QB — S5?), = (S, + B,)(QB — 5?). Now (e) follows from (c) and (4.5).

THEOREM 4.1. In C©? with the complex coordinates (x + ix',u+iu'), given an
open subset M and a function ¢ : M — IR of the real variables x,u, having the
property (4.4), let g be the Kdhler metric on M with the Kdhler potential 2¢.
The following two conditions are equivalent.
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(i) The special Ricci-Hessian equation (0.1) — (0.2), holds on M for © = ¢,,
and dQ Ndr # 0 everywhere in M, with Q = g(Vz,Vt). Thus, by
Theorem D, one has (0.6) and (0.9-a), where Y = Az and F is the
function of T characterized by (0.8), for the constants 6,k in (0.7).

(ii) The triple (Q,S,B) = (Ppn» Pou> Pun) ©f functions of the new variables
(7,A) = (¢, 0,) satisfies (4.6) with Q, # 0 everywhere, as well as the
equations S, + B, = Sa — G, Q,+ S5, = Qa+F, G, = 5d, G, =
—(Qda' + F') for some function G and () =d/dz.

PRrROOF. By (0.9-b), equation (0.1) is, in case (i), equivalent to
(4.7) 2aVdr + 2r = —(Qd’ + F')g,

where all the terms are Hermitian symmetric 2-tensor fields, and hence correspond,
via g, to complez-linear bundle morphisms T'M — TM. Thus, (4.7) amounts to

(f) equalities of the images of both sides in (4.7) under 2z, and 1,,.

The equality of the ,-images is, by (1.3-b) and (0.3), the result of applying d, via
(2.5), to the relation (0.9-a) in (i): ¥ — Qa = F. This last relation and (e), with
Y = Az due to (0.4), show that (i) implies the equality @, + S, = Qo+ F' in (ii).
Defining G to be Sao— S, — B, we get S, + B, = Sa — G. On the other hand, the
equality of the 1,,-images in (4.7) reads

(4.8) adS — dAX = —(Qd/ + F') dA.

In fact, the first term equals adS since, for two commuting gradients v = Vz
and w = VA, one has 2V, dr = d[g(v,w)] or, in local coordinates, 2w"v j;, =
whv i+ vFw i = (vFwy) 5, and S = ¢, = g(v,w) by (4.3). The second term is
—dAMX due to (a) and (1.8). By (¢), G = Sa — S, — B, = Sa — A\, and so (4.8)

becomes adS + d(G — Sa) = —(Qa’+ F’) d), that is, according to (2.5),
dG = Sda — (Qd' + F')d\ = Saldt — (Qa/ + F')d\

or, in other words, G, = Sa/ and G, = —(Qa’+ F’). Consequently, (i) implies (ii),
since (4.6) arises as the integrability conditions @, — S, = S, — B, = 0 combined
with (4.4), and the equality dQ = Q,dr + Q,dX yields dQ Adr = —Q, dz A d.
Conversely, assuming (ii), we get (i) from (f). Namely, as we saw above, the
equality of the 2,-images in (4.7) arises by applying d to Y — Qo = F, that is —
cf. (e) —to Q,+ S, = Qa+ F. Also, (4.8) follows from (ii) and (e): adS —dAX =
adS—d(S,+ B,) = adS —d(Sa—G) =dG — Sda = dG — So/dr = dG — G, dr =
G\d\ = —(Qa' + F')d\. O

5. Reduction of order

We now proceed to discuss the first-order system equivalent, as we saw in the
last section, to the Kéahler-potential problem, the solution of which amounts to
proving Theorem E. The main result established here, Theorem 5.3, will lead —
in Section 7 — to a unique-extension property of integral lines, which results in
applicability of the Cartan-Kéhler theorem to our situation.

Theorem 4.1 reduces constructing local examples of special Ricci-Hessian equa-
tions (0.1) — (0.2) with d@Q A dr # 0, on Kéhler surfaces, which is a fourth-order
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problem in the Kahler potential 2¢, to the following system of quasi-linear first-or-
der partial differential equations:

QS, + SS, = SQ, + BQ,,  SS,+ BS, = QB, + SB,,

Gl g B ZSa—G, Q,+8 =Qa+F G =5, G ——(Qa'+F),

imposed on real-valued functions @, .S, B, G of the real variables 7, A, with
(5.2) QB > 52, Q >0, @, # 0 everywhere.

Subscripts denote here partial differentiations, « is a function of the variable ©
such that 2o/ + a? = 4e for a constant ¢ € IR, where ( )/ = d/dr, and F is the
function of 7, characterized by (0.8):

4eF = 0(2 — ta) + deka if € £0, or F = ka —260/(3a%) when € =0,
which depends on two further real constants # and k. Consequently,
(5.3) o’ + ad’ =0, F'" = —Fd'.
We obviously also assume that
(5.4) T ranges over the intersection of the domains of « and F.

THEOREM 5.1. Real-analytic solutions Z = (Q,S,B,G) to (5.1) with (5.2) -
(5.3), ezist, locally, on a neighborhood of any (r,)\) € R? as in (5.4).

More precisely, one obtains a locally-unique such solution Z by prescribing Z
and the partial derivatives Z_,Z, real-analytically along an arbitrary real-analytic
embedding t — (7,\) € R? of an interval, so as to satisfy (5.1), (5.2), (5.4), and
the condition Z = tZ, + \Z,, where () = d/dt.

We prove Theorem 5.1 at the end of Section 8. Note that it establishes the
existence of a solution defined on a neighborhood of the embedded interval, with the
image of t — (7,\,Z,Z,,Z,) € N serving as initial data in a Cauchy initial-value
problem, to which the Cauchy-Kovalevskaya theorem is applied [4, p. 83].

Later we will also think of @, 5, B,G,Q,, S, B,,G,,Q,, S, B, G, as new vari-
ables, rather than functions and their partial derivatives. Treating K = @), and
L = @, as parameters, we may solve (5.1) for the eight “subscripted” symbols:

Q, =K, Q,=L, S,=Qa+F-K,
QS, = (2K — Qo — F)S + BL,
Q*B, = [2(SK + BL) + (G — Sa)Q]S
+ (Qa+ F— K)(QB — 25?),
QB, = (2Qa + F - 2K)S — BL — QG,
G, = Sd/, Gy = —(Qd + F').

(5.5)

The next lemma, although completely trivial, is phrased in a rather convoluted way.
For reasons that will become clear in the next section, it is absolutely crucial not
to assume that the “subscripted” letters Z,, Z, stand for the partial derivatives of
Z = Q,85,B,G. At the same time, we use the symbol =, as if to pretend that,
nevertheless, dZ = Z_dt + Z, dA.
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LEMMA 5.2. Let functions Q,S,B,G,Q,,S,,B,,G,,Q,,S\,B\,G\,K,L of
the real variables T, A, and o, F depending only on t, satisfy (5.5). Then

dQ, A dr =dK Adr, dQ, Ad\=dL Ad),
S, NdX = [(aQ, + Qo' + F')dr — dK] A dA,
QdS, A dr = [2SdK + BdL— (S, + Sa)Qyd)] A dr,
+ [LB, + (2K — Qa — F)S, ] dA A dr,
Q%dB, A dr = [(45% — QB) dK + 2SBdL] A dr + QSGydA A dr
(5.6) + [2BL +4(2K — Qa — F)S + (G — 250)Q]S, dA A dr
+ [(2Qa + F — K)B + (G — 350)S — 2QB,|Q, dA A dr
+ [2SL + (Qa + F — K)Q|B,d\ A dr,
QdB, AdX = [(2Qa + F —2K)S, + (250 — G — B,)Q,] dr A dA
+[(2Qa’ + F')S — QG, — LB,] dr A dA
— (2SdK + BdL) A d),

where () =d/dr and = means that all occurrences of dZ, for Z =Q,S,B,G,
arising when d is applied to the right-hand sides in (5.5) — often via differentiation
by parts — have been replaced by Z_ dt + Z,d\.

THEOREM 5.3. If one replaces all occurrences of (), and Q) on the right-hand
sides in (5.6) by K and L, the combination of those six right-hand sides with the
respective coefficients QB, @B, —2Q5,—25,1,Q equals 0.

PROOF. In our combination, the occurrences of dK and dL undergo a total
cancellation, and the sum of the remaining terms equals dz A d\ times

BKL + [(Sa — G)S — (2Qa + F)B|L — (SF' + GK)Q
+ [(2Qa + F— 2K)Q — 25L]8S,
+ [2(2Qa + F — 2K)S — QG — 2BLJS,

+ [LBr - (QO{ + F)B)\ - QG‘L’ - SG)\]Q

Multiplying (5.7) by @ and replacing QS,,Q*B,,G,,S,,@B,,G, with the right-
hand sides in (5.5), we get 0 via a tedious but straightforward calculation.

Unless one uses a symbolic computation software, such a calculation, done by
hand, can be considerably simplified if one proceeds by the following six steps. In
each step the terms containing a specific factor should be marked and then crossed

out (after one sees that they add up to zero). The six factors are, in this order, o/,
F', SL, BL, Q°G and, finally, (2K — 2Qa — F)QS. |

(5.7)

6. The relevant exterior differential systems

As a next step, we now present a first-prolongation version of the exterior
differential system associated with equations (5.1).

Let the open subset ) of IRS, with the coordinates 7, A, Q, S, B, G, consist of
all y = (7,\,Q, S, B,G) € RS such that @ and QB — S? are both positive, while
7 lies in the domains of o and F. The set A of all 14-tuples

(6.1) (7,\,Q,8,B,G,Q,,S,,B,,G,,Q\,S,,By,Gy) € Y xR CR"

satisfying (5.1) is an eight-dimensional submanifold of ) x IRS, diffeomorphic to
Y x IR? via the diffeomorphic embedding Y x IR? -+ N C Y x IR® that sends
(1, A\, Q,S,B,G,K,L) to (6.1) with the last eight components given by (5.5); the
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inverse diffeomorphism is the restriction to A of the projection assigning to the
14-tuple (6.1) the octuple (z,X,Q, S, B,G,Q,,Q,). Thus,

(6.2) (r,\,Q,S,B,G, K, L) is a global coordinate system for N.

By an exterior differential system on a manifold M one means an ideal Z in the
graded algebra (2*M, closed under exterior differentiation; its integral manifolds
(or, integral elements) are those submanifolds of M (or, subspaces of its tangent
spaces) on which every form in Z vanishes [4, pp. 16, 65]. When such objects have
dimension 1 or 2, we call them integral curves/surfaces or lines/planes.

If ECTM isa p-dimensional integral element of Z, one sets [4, pp. 67-68]:

H(E) = {ve .M :({(v,e,,...,e,) = 0 forall (€ZnQrHM},

(6.3) using a basis e;,...,e, of TM, and r(E) =dim H(E) — (p + 1),
so that H(E) is a vector subspace of T,M, not depending on ey, ..., e, since
(6.4) H(E) = {v €T, M:span(v, E) is an integral element of Z}.

Letting the variable Z assume as “values” the symbols @, S, B, G, we introduce

the exterior differential system on ) x IR® generated by the
(6.5) four 1-forms Z_dz + Z,d\ — dZ and their exterior deriva-
tives dZ, A dt + dZ, NAdX, where Z ranges over @, S,B,G.

Restricting (6.5) to N, we obtain an exterior differential system Z on N. (For
some context, see Remark 6.1.) As we show below, Z is generated by

the restrictions to A of the four 1-forms in (6.5),
dQ, A dr + dQy A dX, and dS, A dr + dS A d.

In other words, dG, A dt+dG, A dX\ and dB, A dt+ dB, ANd\ are redundant for
defining Z, that is, they lie in the ideal Z' C 2*N generated by the four 1-forms
Z.dt + Z,d\ — dZ, where Z = @, S, B,G, along with dQ, A dz + dQ, A d\ and
dS, A dr+dS, NdX (all of them restricted to N).

To verify redundancy of dG,Adt+dG, Ad), it suffices to note that it coincides,
on N, with the 2-form o'[(Q,dr + Q,d\ — dQ) A d\ — (S, dz + S, d\ — dS) A dz],
since the equalities G, = S/ and G, = —(Qa’+ F’) in (5.1) make the former, on
N, equal to the latter minus [Qa”’ + F" + (Q, + Sy )a/] dz A dX, while by (5.3), the
last expression in square brackets is nothing else than [Q, + 5, — (Qa+ F')]¢/, and
so it vanishes on N due to (5.1).

For dB, A dt+dB, AdA the redundancy claim follows since, by Theorem 5.3,

Q(dB, A dr + dBy A d)\) = 2QS(dS, A dr + dSy AdN)
— QB(dQ, A dr +dQ, Ad)),

on N, with = now denoting congruence modulo Z’. (Note that @ > 0 in (5.2),
while = in Theorem 5.3 implies = as defined here.)

(6.6)

(6.7)

REMARK 6.1. The following comment will not be used in our argument, and
may be ignored by the reader not interested in a broader context of the preceding
discussion. (We provide it just to point out where our approach fits within the
standard theory.) The exterior differential system naturally associated with (5.1) is
the one on our open set Y C IR®, generated by the 1-form dG—So/dr+(Qa/+F") d,
the 2-form dS A dA+ dv A dB+ (G — Sa) dr A d, their exterior derivatives, and
the exterior derivatives of (QB —S?)7}(Bdr—Sd\) and (QB—S?)7H(Qd\— Sdr).
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Our exterior differential system Z, on N, defined in the lines following (6.5), is
its first prolongation [4, p.147], using the independence condition [4, p.103] for
which our dz A d\ serves as the form denoted by 2 in [4]. We refer to this
independence condition as horizontality (see (7.1) below). The need for the first
prolongation arises since the original system fails to satisfy the assumptions of the
Cartan-Kéhler theorem. In agreement with [4, p.147], our A" may be identified
with an open subset of the Grassmann manifold Gr,) of two-planes tangent to
Y. The identification in question associates with a horizontal plane at a point
(7,2, Q, S, B,G) of Y the 14-tuple (6.1) such that the vectors (1,0,Q,,S;, B;,G;)
and (0,1,Q,,S,,By,G,) form a basis of the plane.

7. The unique-extension theorem

In this section we prove the result announced at the beginning of Section 5.
With the assumptions and notation of Section 6, for a subspace E C Y x IR®,

(7.1) we call E horizontal when (dr,d\):E — IR? is injective.

Due to (6.2), the four 1-forms in (6.5), restricted to N, remain linearly independent
at every point. Their simultaneous kernel in N thus constitutes a four-dimensional
distribution D on N.

It is convenient to rewrite (6.1) as (7, A, Z, Z,, Z,) with Z,Z,,Z, € R*. Now,
obviously, a vector (#,\,Z,Z,,Z,) tangent to Y x R® at (r,\,Z,Z,,Z,) lies in
the simultaneous kernel of the four 1-forms in (6.5) if and only if

(7.2) Z =iZ, + \Z,.
Our diffeomorphic embedding Y x IR? — A C Y x IR® now becomes
(7'3) (T7 A7 Z? K7 L) ’_> (T7 A7 Z7 Z‘E7ZA> = (T’ A7 Z7 W(T7 Z? K7 L)>7

with the R®-valued function W representing the right-hand sides of (5.5), so that
W does not depend on A, and its only dependence on 7 is through « and F.

LEMMA 7.1. The linear operator sending (t,/'\,f(,l'/) to the vector
(74) (Tv ).‘7 th + /‘\Z)\’ dvv(‘z:,Z,K,L)(fa TZ‘E + j\Z)\a Ka L))

is an isomorphism of R* onto the fibre D¢ of D at the image C of (v, \,Z,K,L)
under the diffeomorphic embedding (7.3). FEvery horizontal plane at C, contained
in De, has a unique basis having, for some (K, L, Ky, Ly) € R?, the form

(7'5) (lv 07 Z7:7 dvv(r,Z,K,L)(lv Z‘z:? Klv Ll))v (Oa la Z/\v dVV(-E,Z,K,L) (Ov Z)\v KQ? LQ))
The span of (7.5) is an integral plane of T if and only if

K,= L, and QK, + 25K, + BL, = C for the expression C' given by
C=(Q,a+ Qd+F)NQ + (S, + 5a)Q, + (Qa + F—2K)S, — LB,,

where the letter symbols come from (v,\,Z,Z_,Z,) in (7.3) rewritten via (6.1).

(7.6)

PROOF. The claims preceding and including (7.5) are immediate consequences
of (7.1) — (7.3). Next, as the vectors (7.5) have the 7 and A components 1,0 or,
respectively, 0, 1, evaluating dZ, Adr+dZ, AdX on them, for Z = @, S, B, G, yields,
by (3.1), the difference between the Z, component of dW, , . ; (1, Z,, K,,L,) and
the Z_ component of dWT,Z,K,L)(O’Z)\’KQ’LQ)' When Z =@ or Z =S, these
differences are L, — K, and Q" times C —(QK, +2SK,+BL,), with C' as in (7.6).
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(By (5.2), @ > 0.) To see this, we apply () formally to the first four equalities
in (5.5), using differentiation by parts (for @S, only) along with the Leibniz rule.
We then replace a, F' and each Z, where Z = Q, S, B,G, by o, F’, 7 for the first
vector of (7.5), and by 0,0, Z, for the second one, cf. (7.2). Combined with (6.6),
this completes the proof. (I

As a consequence of the first claim in Lemma 7.1, at any (z,Z, K, L),
(7.7 the operator IR? 3 (K, L) — AW, z.k,1)(0, 0, K, L) € R® is injective,

REMARK 7.2. If an integral line E of Z lies within in a unique horizontal
integral plane E’, then E’ is the only integral plane containing E. Namely, another
such plane E”| being nonhorizontal, would intersect the kernel of (dz,d)) along a
line. As D C H(E) for the vector subspace H(E) in (6.3) — (6.4) and the three-
dimensional span D of E’ and E”, all planes in D containing the line E, other
than E”, would be horizontal integral planes, contrary to the uniqueness of E'.

THEOREM 7.3. FEwvery horizontal integral line of I is contained in a unique
integral plane, and this unique plane is also horizontal.

PrOOF. Due to Remark 7.2, it suffices to show that, at each (z, ), Z, K, L),
with the corresponding (7,\,Z,Z_,Z,) in (7.3), a vector (7.4) having (7,A) #
(0,0) lies in in a unique horizontal integral plane or, in other words, (7.4) is a
linear combination of a unique pair (7.5) satisfying (7.6). Looking at the first two
components we see that the coefficients of the combination must be 7 and A. By
(7.2), this reduces our problem to the existence and uniqueness of (K, Ly, Ky, L)
in. B4 with C'l“](@z,K,L.)(OjOv.K —tK; — AK,, L — %L, — ALz? =0, ths'xt is, cf. (7.7),
(K,L) = ©(K;,L;) + MK,, Ly). Using (7.6) to eliminate K; and K,, we rewrite
the last condition, with the first component multiplied by @, as

Q\—2St —Bi| [L,]  [QK —C7
t ANk, L]
which has a unique solution (Ll, LQ), the determinant B#? — 257\ + Q).\2 being,
by (5.2), a positive-definite quadratic form in (7, A). O

8. Existence of integral surfaces

The next fact — used below to derive our Theorem 5.1 — is a special case of the
celebrated Cartan-Kéhler theorem [4, pp.81-82]. Since our phrasing differs from
that of [4], we devote the next section to clarifying how our version amounts to
adapting the one in [4] to our particular case.

The symbols N, D and I stand here for more general objects that those in
Section 6. The definition (7.1) of horizontality, for integral elements, is used more
generally, as well as extended, in an obvious fashion, to integral manifolds.

THEOREM 8.1. Let real-analytic functions t,\ and 1-forms &;,...,§, on a
manifold N, where 0 < q < dim N, have the property that dr,d\, &,,... ;&g are
linearly independent at every point. Denoting by D and I the distribution on
N arising as the simultaneous kernel of the 1-forms &,,... , &, and, respectively,
the exterior differential system on N generated by &, ... , &, and, possibly, some
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higher-degree forms, along with their exterior derivatives, let us suppose that

every horizontal integral line of Z, at any point

(8.1) of N, is contained in a unique integral plane of Z.

Then every horizontal real-analytic integral curve of T is contained, locally, in
a locally-unique horizontal real-analytic integral surface. Examples of such curves
are provided by unparametrized integral curves of any horizontal real-analytic local
section, without zeros, of the vector bundle D over N. Furthermore,

(8.2) integral lines of 7 are the same as lines tangent to D.

PROOF OF THEOREM 5.1. Due to (6.6), (6.2) and Theorem 7.3, our N, D and
Z, introduced in Section 6, satisfy the hypotheses of Theorem 8.1, with ¢ = 4, the
coordinate functions 7, A in (6.2), and the four 1-forms Z_dr + Z,d\ — dZ, where
Z ranges over Z = @, S, B,G. As an obvious consequence, one has (8.2).

The image of the embedding ¢ — (7,\,Z,Z,,Z,) € N arising under the hy-
potheses of Theorem 5.1 is a horizontal real-analytic integral curve of Z. In fact,
horizontality follows since ¢ — (7, A) is an embedding, while the resulting tangent
directions are integral lines in view of (8.2), the definition of our D, and the relation
Z = +Z, + \Z, assumed in Theorem 5.1.

The integral surface arising in Theorem 8.1, being horizontal (Theorem 7.3),
forms, locally, the graph of a function (7, ) — (Z,Z,,Z,) € R'2 Its Z component
(r,\) = Z=(Q,S,B,G) is asolution to (5.1): t+— (7,\, Z,Z_, Z,) takes values in
the manifold A defined by (5.1) while, as the graph is tangent to the simultaneous
kernel of the four 1-forms Z, dz+Z,d\—dZ in (6.5), each of these Z_, Z, coincides
with the respective partial derivative of Z. (Il

Under the assumptions of Theorem 8.1, let & = dimN. For all p-dimen-
sional horizontal integral elements E = E, of Z, with p € {0,1}, the integer
r(F)=dim H(E) — (p+ 1) in (6.3) has a fixed nonnegative value, namely,

dimH(E;)=k—q and r(E)) = k—q—11if p=0,

(8.3) dim H(E;) =2 and r(E;) =0 in the case where p = 1.

This is obvious from (8.2) or, respectively, (8.1).

9. Where Theorem 8.1 comes from

Here is the Cartan-Kéhler theorem, cited verbatim from [4, pp. 81-82]:

Let T C 2%(M) be a real analytic differential ideal. Let P C M be a connected,
p-dimensional, real analytic, Kdahler-regular integral manifold of T.

Suppose that r = r(P) is a non-negative integer. Let R C M be a real ana-
lytic submanifold of M which is of codimension T, which contains P, and which
satisfies the condition that T.R and H(T,R) are transverse in T,M or all x € P.

Then there exists a real analytic integral manifold of Z, X, which is connected
and (p+ 1)-dimensional and which satisfies P C X C R. This manifold is unique
in the sense that any other real analytic integral manifold of T with these properties
agrees with X on an open neighborhood of P.

As we verify in the following paragraphs, the hypotheses of our Theorem 8.1
imply those listed above, for (p,r) = (1,0), the manifolds M, R above which are
both replaced by our N, and the same ideal Z as ours. By our N and Z we mean
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the “general” ones (see the three lines preceding Theorem 8.1), rather than the very
special choices of N and Z made in Section 6.

Furthermore, P mentioned above is our (arbitrary) horizontal real-analytic
integral curve of Z. The resulting manifold X corresponds to the horizontal real-
analytic integral surface of Z claimed to exist in Theorem 8.1.

We now proceed to explain why our horizontal integral curve must automat-
ically be Kéhler-regular [4, p.81], meaning that its tangent lines are all Kéahler-
regular in the sense of [4, p.68,Definition 1.7]. To verify this last claim, we
first apply Cartan’s test [4, p.74, Theorem 1.11]. Namely, in the notation of [4,
p. 74, Theorem 1.11], n = 1 (as we are dealing with tangent lines). Due to the
relation dim H(E,) = k — ¢ in (8.3), and (8.2), H(E,) is of codimension ¢ in the
tangent space of A containing it, the same as the codimension, in the Grassmann
manifold Gr; N of lines tangent to N, of the submanifold V{(Z) formed by all
integral lines of Z. Cartan’s test thus shows that every line F,; tangent to our hor-
izontal integral curve is ordinary [4, p. 73, Definition 1.9]. The Kéhler-regularity of
E, now trivially follows, r in [4, pp.67-68] having the constant value 0 according
to (8.3). This is also the value r = r(P) in the italicized statement cited above
from [4]. Cf. [4, pp.81-82, the lines preceding Theorem 2.2].

10. Proof of Theorem E

Let V (or, g) be a connection (or, a pseudo-Riemannian metric) on a C'*
manifold M. We call V or ¢ real-analytic if, in a suitable coordinate system
around every point of M, its components I;,i (or, 9; ) are real-analytic functions
of the coordinates. The C°° structure of M then contains a unique real-analytic
structure (maximal atlas) making V or, g real-analytic. (The atlas consists of all
coordinate systems just mentioned; their mutual transition mappings are real-an-
alytic due to real-analyticity of affine mappings, or isometries, between manifolds
with real-analytic connections/metrics, which follows since such mappings appear
linear in geodesic coordinates.) Real-analyticity of a metric g obviously implies
that of its Levi-Civita connection V (and vice versa, since Vg = 0).

For a real-analytic (Riemannian) Kéhler metric g on a complex manifold M,
the unique real-analytic structure described above coincides with the one induced by
the complex structure of M. In fact, local holomorphic coordinate functions, being
g-harmonic, must be real-analytic relative to the former structure, as a consequence
of the standard regularity theory of elliptic partial differential equations applied to
the g-Laplacian A.

PrOOF OF THEOREM E. Combining Theorems 5.1 and 4.1, we obtain the first
assertion of Theorem E.

For the second one we invoke the existence results of [22] and [6]. In both cases,
dQ N dt # 0 somewhere, and the metric is real-analytic. The former claim follows,
for instance, since a compact Kéhler surface with a nontrivial holomorphic gradient
Vz having dQ Adz = 0 identically for @ = g(Vz,Vz) must necessarily [10, Sect. 1]
be biholomorphic to €CP? or a CP! bundle over CP! (rather than the two-point
blow-up of €P?). The latter, in the case of [22], is due to a general reason: all Ricci
solitons are real-analytic [8, Lemma3.2]. So are, however, all Riemannian Einstein
metrics [13, Theorem 5.2], and the Chen-LeBrun-Weber metric of [6] is conformal
to an Einstein metric §, while again, for a general reason [9, p.417, Prop. 3(ii)],
the conformal change leading from § to g has a canonical form (up to a constant



SPECIAL RICCI-HESSIAN EQUATIONS 17

factor, it is the multiplication by the cubic root of the norm-squared of the self-dual
Weyl tensor). This causes g to be real-analytic as well. ([

11. The analytic-continuation phenomenon

We elaborate here on the plausibility of small deformations mentioned in the
lines following Theorem E, beginning with the coth-cot analytic continuation. The
real-analytic function IR 3 y — y*tanhy, with the value 1 at y = 0, being even,
has the form X(y?) for some real-analytic function ¥. Now (g,7) — B.(r) =
7X(e7?) is a real-analytic function on an open subset of IR?> and B.(7) equals
e /2 tanh(c'/?1), or 7, or |e|7V/?tan(|e|'/?7), depending on whether ¢ > 0, or
e=0,or € <0. For a.(7) =2/8.(7) the analogous expressions are

2eY2 coth(e'/?7) (if e >0), 2/t (if e=0), 2[e|"?cot(|e|'/?7) (if £ <0).

All o, with € > 0, as well as those with ¢ < 0, are thus affine (in fact, linear)
modifications — see Remark C — of a4 or, respectively, a_;, and «y(7) = 2/7.

For a tanh-coth analytic-continuation argument we define (t,7) — «,(z) by
oy (z) = 2(e” —te™™)/(e” + te~ ). Thus, with ¢ such that 2¢ = log|t], if ¢t > 0 (or,
t <0), a,(7) = 2tanh(z — q) or, respectively, «,(7) = 2coth(z — ¢). Again, all o
for ¢ > 0, or those with t < 0, are affine (this time, translational) modifications of
aq, or of a_y, while ay(z) = 2.
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