
TRANSACTIONS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 265, Number 2, June 1981

UNFLAT CONNECTIONS IN 3-SPHERE BUNDLES OVER S*

BY

ANDRZEJ DERDZIÑSKI1 AND A. RIGAS2

Abstract. The paper concerns connections in 3-sphere bundles over 4-manifolds

having the property of unflatness, which is a necessary condition in order that a

natural construction give a Riemannian metric of positive sectional curvature in

the total space. It is shown that, as conjectured by A. Weinstein, the only 3-sphere

bundle over S4 with an unflat connection is the Hopf bundle.

1. Introduction. Suppose H is a closed subgroup of a compact connected Lie

group G and let w be a connection in a principal G-bundle P -» M. Following A.

Weinstein [13] one can call o¡ H-unflat if, for any p G P, the curvature form Q,p

restricted to the horizontal space at p has the property that its composite with any

nonzero functional on the Lie algebra of G, annihilating the Lie algebra of //, is

nondegenerate (cf. also [2]). (The term "fat" is used instead of "unflat" in [13].)

The motivation for this concept comes from a natural idea of constructing a

metric on the total space E = P XG G/H = P/H of the bundle with fibre G/H,

associated to P, by means of a connection u in P and a Riemannian metric « on

the base manifold M. The construction consists in declaring the fibres orthogonal

to the horizontal spaces, the former being isometric to G/H with a fixed normal

homogeneous metric, while the latter carry the inner products pulled back from «.

The //-unflatness of w is then equivalent to the positivity of the sectional curva-

tures of all planes spanned by one horizontal and one vertical vector in E.

However, the condition of positivity of all sectional curvatures in E is much

stronger. In fact, since the fibres of E are totally geodesic, the normal homoge-

neous space G/H must then have positive sectional curvature (unless dim G/H =

1). The same must hold for (M, h) in view of the O'Neill formulae [10], as E -» M

is a Riemannian submersion. This imposes natural restrictions on the bases and

fibres of bundles for which the construction of unflat connections could be a tool

for finding new compact manifolds with positive curvature.

There are also examples of total spaces of principal G-bundles with G-invariant

positively curved metrics, for which the corresponding connections are not {1 }-un-

flat, in particular, the exceptional positively curved normal homogeneous space

Sp(2)/Sp(l) of Berger [3] fibers principally over S4 with structure group S3 acting
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by isometries. In this case, the fibers are not totally geodesic and the connection

that occurs is not unflat, which follows, e.g., from Corollary 1 below.

The results of this paper show that, in the case of 3-sphere bundles over

four-manifolds, unflat connections appear to be scarce. Our argument is based on

constructing a conformai structure in the base manifold, intrinsically associated to

the given unflat connection. Namely, we prove (Theorem 2) that the characteristic

numbers of a bundle with such a connection satisfy a certain inequality, which

implies (Theorem 3) that the only principal 5G(4)-bundle with an 50(3)-unflat

connection over S4 is the one that has the Hopf fibration S1 —» S4 as the

associated 3-sphere bundle. This proves a conjecture of Weinstein [13], implying at

the same time that the above procedure does not yield positively curved Rieman-

nian metrics on exotic 7-spheres. However, it does, in some cases, yield Rieman-

nian metrics of nonnegative sectional curvature ([11]; see also [4]).

The authors wish to thank Nigel Hitchin for helpful discussions concerning this

paper.

2. Unflat forms. Let T and V be real vector spaces of positive dimensions, ñ a

F-valued exterior 2-form on T. The form Q is called unflat if, for any nonzero

functional / G V*, the composite / ° Œ: TAT—»Ris nondegenerate, that is,

rank(/ ° ti) = dim T. This is clearly equivalent to saying that the map T 3 v h»

S2(m, v) G V is surjective for any nonzero u E T (cf. [13]).

As observed by Weinstein [13], the property of unflatness is very restrictive:

Given an unflat form Í2: TA T —» V, choose an inner product in T and let S be

the unit sphere. Then the maps ß(a, •): TUS —» V, u E S, define a vector bundle

epimorphism of TS onto S X V, i.e., TS contains a trivial subbundle of dimension

dim V. In particular, if dim V > 1, then dim T = 0 (mod 4).

Examples. (1) Unflat forms fi: TA T—» R are just symplectic structures in T.

(2) Let V = Im H, the 3-dimensional space of pure quaternions. For T = H*, the

space of A>tuples of quaternions, an unflat form ñ: TA T-» Kcan be defined by

Q((xx, . . . , xk), (yx, . . . ,yk)) = lm(xxyx + ■ ■ ■ + xjk),

where Im denotes the pure quaternion part.

(3) If Í2: T /\ T —> Vx is unflat and F: Vx -» V2 is an epimorphism, then F ° fl:

T A T -» V2 is unflat.

From an obvious dimension argument, we obtain

Lemma I. For real vector spaces, T, V with dim T= dim V + 1, a form S2:

TA T —> V is unflat if and only if S2(w, v) ¥= 0 for every pair of independent vectors

u,vET.

For the remainder of this section, we assume that T and V are real vector spaces

with dim T = 4, dim V = 3.

The formula

det[a,7] = (a^a-H + al3a42 + a14a23)2, (1)

valid for any skew-symmetric 4 X 4-matrix (cf. [9, p. 309]), together with the

definition of unflatness, yields
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Lemma 2. // Q: T /\ T —» V is unflat, then the assignment

K*3/^[det(/°ñ)]1/2GR (2)

is a positive definite quadratic form in V*, determined by Q, up to a scaling factor

(since det is not well defined).

Thus, (2) defines a conformai structure in V*, and hence also in V. Having in

mind the latter, we shall call a basis of V ^-conformai if it is orthonormal for some

inner product within the conformai structure.

For later convenience, let us introduce some notations. Given a vector space W,

denote by LW the set of all bases of W. For e = (ex, . . . , en) E LW and 0 =£ t E

R, set te = (tet, . . . , te„). Finally, for vector spaces T, V with dim T = 4, dim V =

3, a form S2: T A T—> V and bases e E LT, X E LV, we shall write, by abuse of

notation,

Q(e) = X (3)

instead of

ß(e„ e2) = ß(e3, e4) = Xv

Q(ex, e3) = ü(e4, e2) = X2, (4)

ü(ex, e4) = fl(e2, e3) = X3.

Lemma 3. // £2: T /\T-* V is unflat and X E LV is SI-conformai, then for any

nonzero vector ex E T there exist unique vectors e2, e3, e4E T and a unique real

number X =£ 0 such that e = (ex, e2, e3, e4) E LT and £2(e) = XX. Moreover, the

orientation of V determined by XX depends only on Í2, i.e., ñ distinguishes an

orientation in V.

Proof. By unflatness, there exist u2, u3, u4E T such that ß(e,, ui+x) = X„ i =

l, 2, 3, and they complete ex to a basis of T. Let Í2 = 2, QfX¡. Setting v2 = u2 —

Í22(w2, u3)ex, v3 = «3 + í2,(h2, u3)ex, v4 = u4 + üx(u2, u4)ex, we obtain

0(e„ u, + l) = ^,    i = l, 2, 3,    ß(u2, oj) - 8A-3,

ß(o2, v4) = ßX2 + eX3,    fi(i>3, v4) = crJT, + Yj^2 + £X3 (5)

for some a, ß, y, 8, e, f. On the other hand, since X is S2-conformal, (l) and (5)

yield

fi(x2 +y2 + z2)2 = det(xfl, + yQ2 + zQ3)

= (ax2 - ßy2 + 8z2 + yxy + Çxz - eyzf

for some p > 0 and arbitrary real x, y, z, the determinant being calculated in the

basis ex, v2, v3, v4. Therefore a = -ß = 8 ¥= 0 and y = f = e = 0. Our assertion is

now satisfied by ei+, = a ~ 'u, +,, /' = l, 2, 3, and X = a ~ '. To prove the uniqueness

statement, assume Q(e) = \A\ fi(e') = X'A- and e\ = e?,. Since ß is unflat, the kernel

of T 3 a H-»i2(e,, u) E V is spanned by e„ which implies (cf. (4)) that e'i+x =

X'X"'e,+ | + i,e, for some real r,, /' = l, 2, 3. Evaluating now Í2(e¡, e'f), 2 < i <j <

4, we obtain X' = X and f, = 0, / = l, 2, 3, as desired. Finally, to show that the
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orientation of XX depends only on ß, it is sufficient to observe that the map

(e,, X) h> XX is continuous and sends (ex, -X) to (-X)(-X) = XX. This completes

the proof.

For an unflat form ß: T /\ T—> V, let us denote by CaV the set of all

ß-conformal bases X E LV, compatible with the orientation determined by ß, i.e.,

satisfying (3) for some e E LT, and by CQT the set of all bases e E LT such that

ß(e„ eyj = Q(ek, e,) (6)

for any even permutation (i,j,k,l) of (1,2,3,4), i.e., satisfying (3) for some

X E LV.

Remark 1. The matrix group SO(4) acts on LT from the left in the obvious way,

which gives rise to an action of its universal covering Spin(4) = S3 X S3. The

latter can be described as follows: S3 X S3 X LT 3 (a,, a2, e) h» qxeq2 G LT, the

left (resp. right) action of the unit quaternions on LT being given, for e =

(ex, e2, e3, e4) E LT, by ie = (-e2, ex, -e4, e3), je = (-e3, e4, ex, -e^, ke = (-e4,

-e3, e2, ex) (resp. by ei = (-e2, <?„ e4, -e3), ej = (-e3, -e4, e„ ej, ek = (-e4, e3,

-e2, ex)) and then extended linearly. In terms of the obvious left action of SO(3) on

LV and the covering homomorphism <p: S3 —» SO(3), it is easy to verify that, given

an unflat form ß: T A T -* V, a real number / ¥= 0, q E S3 and e G LT, X G LV

such that ß(e) = X, we have

ß(te) = t2X,       ß(ea) = X,       2(qe) = <p(q)X. (7)

Lemma 4. Te¿ ß: T /\T-*V be unflat. Then, for any fixed X E Ca V, the set of

all e E LT satisfying (3) forms precisely one orbit of the right action of S3 on LT.

Proof. Suppose ß(e) = X. If e' = eq, then ß(e') = X by (7). Conversely, if

ß(e') = X, then we can clearly find a G S3 such that e\ = n(eq)x for some p > 0.

Since, by (7), ß(e') = X and ß( peq) = ¡i2X, the uniqueness statement of Lemma 3

implies p2 = 1 and e' = peq, i.e., e' = eç. This completes the proof.

The group GL( V) of all automorphisms of V acts from the left on the set of all

unflat forms T A T -+ V by (Ati)(u, v) = ^(ß(a, o)), A E GL( K), a, v G T.

Given real vector spaces T, If with dim T = 4, suppose that T is endowed with

an oriented conformai structure, i.e., an orientation together with a homothety class

of inner products. The Hodge star operator acting on /\2T = T /\ T is then

defined by * (ex A e2) = e3 f\ e4, ex, . . . , e4 being an arbitrary oriented conformai

basis of T. A 2-form ß: TA T—> W is called self-dual if ß °  * = ß.

Lemma 5. (i) For any unflat form Ü: T f\T ^> V, the set CaT of all bases e E LT

satisfying (6) is an orbit of the natural action of Conf+(4) = R+ X SO(4) on LT. In

other words, ß defines an oriented conformai structure in T.

(ii) Every unflat form ß: T/\T—> V is self-dual with respect to the oriented

conformai structure which it determines in T.

(iii) The oriented conformai structure in T, determined as above by any unflat form

T A T—» V, is invariant under the natural action of G\J(V) on unflat forms.
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Proof. We use the conventions introduced in Remark 1.

(i) If e E CaT, say 2(e) = X, and e' = tqxeq2, t E R+, qx, q2 E S3, then, by (7),

ß(e') = t\(qx)X, hence e' E CaT. Conversely, if e, e' E CaT, say, ß(e) = X,

ti(e') = X', then X, X' G CaV. Therefore X' = t2y(qx)X for some / > 0 and

a, G S3, which implies Sl(tqxe) = X' = Q(e') in view of (7). Lemma 4 now yields

e' = tqxeq2 for some q2 E S3, as required.

(ii) Our assertion is immediate from the fact that the bases e E LT compatible

with the oriented conformai structure determined by the unflat form ß are

characterized by (6).

(iii) If e E CaT and A E GL(V), say, ß(e) = X, then (Aiï)(e) = AX =

(AX¡, AX2, AX3), so that e E CAaT. This completes the proof.

3. Relative unflatness. Let T and W be real vector spaces of positive dimensions.

Given a subspace V of W and a 2-form ß: TA T —» W, one says that ß is F-unflat

(cf. [13]) if the composite TA T —> W -» W/ V of ß with the natural projection is

unflat in the sense of §2.

Suppose now that dim T = 4, dim V = 3, W = V + V and that an inner prod-

uct has been chosen in V. Let SO(V) be the group of orientation preserving linear

isometries of V. We are interested in TJ-unflat forms T A T —» V + V, where

D = {(X, X): X G V) c V + V is the diagonal. The group SO(V) X SO(V) acts

then on 2-forms ß: T A T-» F + F by ((,4, Ä)fi)(u, u) = (/Iß^H, u), £ß_,(u, u)),

ß] and ß_, being the components of ß in V + V. This action does not, in general,

preserve Z)-unflatness, since D is not invariant under SO( V) X SO( V).

Lemma 6. Let dim T = 4, dim V = 3. Suppose V is endowed with an inner product.

For a 2-form ß = (ß„ ß_,): T A T-* V + V, the following three conditions are

equivalent:

(i) Every 2-form in the SO(V) X SO(V)-orbit oftiis D-unflat, D c V + Vbeing

the diagonal.

(ii) For every pair of independent vectors u, v E T, |ß,(a, t>)| ¥= |ß_,(a, v)\.

(iii) For some e E {1, -1}, ß_e is unflat (as a V-valued form) and we have

(«,(*, ©)|<|Q_,(ii,o)| (8)

whenever u, v G T are independent.

Proof. By Lemma 1, TJ-unflatness of ß = (ß,, ß_,) is equivalent to ß,(«, v) ¥^

ß_i(w, v) for arbitrary independent u, v E T. Thus, the orbit of ß consists of

D-unflat forms if and only if AQ,x(u, v) ¥= Bti_x(u, v) for all A, B E SO(V) and

arbitrary independent u, v E T, which is obviously equivalent to (ii). Assume now

(ii). From a connectivity argument we obtain (8) for some e G {1, -1} and any

independent u, v E T. By Lemma 1, ß_e is unflat, which completes the proof.

4. Unflatness in principal bundles. Let P —> M be a differentiable principal

G-bundle, G being a Lie group with Lie algebra g. By a horizontal tensorial 2-form

on P we shall mean ag-valued 2-form S2 on P such that ß(a, •) = 0 for any vertical

tangent vector u and ß(aa, va) = ad a-1 • S2(k, v) for a G G and u, v G TP, ad

being the adjoint representation. For example, these conditions are satisfied by the
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curvature form of any connection in P. A horizontal tensorial 2-form ß in P is

called unflat if, for any p E P, Sip restricted to a complement of the vertical

subspace atp is unflat.

For a four-manifold M endowed with an oriented conformai structure, the

Hodge star operator is a vector bundle endomorphism * : /\2M -» /\2M with

*2 = 1. Therefore /\2M splits as the direct sum /\ + M + /\_M of the 3-dimen-

sional subbundles of self-dual and anti-self-dual forms, constituted by the ± 1-

eigenspaces of *. Clearly, the bundles /\±M do not essentially depend on the

conformai structure, i.e., they are determined up to equivalence by the oriented

4-manifold M alone. The principal SO(3)-bundle associated to /\±M will be

denoted by P /\±M. More generally, replacing the tangent bundle TM by any

oriented 4-plane bundle £ over any paracompact space N, one can similarly define

the oriented 3-plane bundles /\ ±£ over N by means of an arbitrary fibre metric (or

conformai structure) in |. We have the following formulae for characteristic classes,

the coefficient field being, respectively, R or Z2:

Px(A+è)=Px(£) + 2e(Ç), (9)

w2(A+ï) = w2(|). (10)

In fact, (9) follows immediately from the curvature description of characteristic

classes [9, pp. 308, 311], while (10) can be easily obtained with the aid of a splitting

map for £ [6, p. 235].

Remark 2. Suppose we are given an unflat horizontal tensorial 2-form ß in a

principal G-bundle />-> M, where dim M = 4 and G = SO(3) or G = S3. For any
tl

x E M and any p E m~ (x), the horizontal form ß^ projects onto an ja(3)-valued

unflat form on TXM and, since ß is tensorial, the oriented conformai structure in

TXM defined by ß^ is independent of p G <n~x(x) (cf. Lemma 5). Thus, ß defines

an oriented conformai structure on M. With respect to this structure, Slp is self-dual

when viewed as a form on Tv(pyM, i.e.,/ ° ßp G /\ + M^p) for any/ G so(3)*. In

other words, considering ß as a 2-form on M valued in the adjoint bundle

ad P = P X ad so(3) of Lie algebras, we have ß ° * = ß.

The following theorem can be viewed as a special case of Weinstein's Theorem

7.2 of [13] (cf. Remark 3).

Theorem 1. Let it: P —» M be a principal SO(3)- bundle over a four-manifold M. If

P admits an unflat horizontal tensorial 2-form ß, then M admits an orientation such

that P is isomorphic to P /\ + M.

Proof. Fix a basis Xx, X2, X3 of so(3) and set ß = S/ß^. Viewing the forms ß^,

and ß,(p) as defined in T^p)M, it is clear from Remark 2 that ^(p) =

(ß,(p), ß2(p), ß3(p)) is a basis of /\ + M„(p) for anyp G P, the oriented conformai

structure involved being the one determined by ß. It is now immediate that the

map ♦: P -» B is SO(3)-equivariant, B being the principal GL(3)-bundle of /\ + M.

This completes the proof.

Remark 3. In [13] A. Weinstein proved the following (Theorem 7.2): "Let P be a

principal SO(4)-bundle over a compact orientable 4-manifold M. Denote by £ the
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four-plane bundle associated to P. If P admits an SO(3)-unflat connection, then, for

properly chosen orientations in £ and M, /\+£ is isomorphic to /\ + M". Note that,

for a fixed base manifold, the functors {oriented 4-plane bundles) 3 £h» /\+£ G

{oriented 3-plane bundles} correspond, on the principal bundle level, to {principal

5'0(4)-bundles} 3 Ph^ Pc = P/S3 E {principal SO^-bundles}, e = ±1. Here

S3 denotes the unique connected proper normal subgroups of SO(4), both isomor-

phic to S3. In terms of the covering homomorphism F: Spin(4) = S3 X S3 —>

SO(4), which assigns to (qx, q2) E S3 X S3 the isometry x h» qxxq2 of H = R4, we

have Sx3 = F({\) X S3) and S3_x = F(S3 X {1}). The assertion of Weinstein's

theorem says precisely that, for some e G {1, -1} and a suitable orientation of M,

P /\ + M is isomorphic to Pt.

Remark 4. Let f^Mbe a principal 5t9(3)-bundle over an oriented compact

four-manifold M with a fixed conformai structure. For any connection in P, the

curvature form ß can be viewed as a 2-form on M, valued in the adjoint bundle

ad P = P Xad so(3) of Lie algebras. Using any Riemannian metric on M, compati-

ble with the conformai structure, and the bi-invariant metric on SO(3), we have the

Chern-Weil formula

c4j <ß,ßo *y=Pl(p)[M],

where c4 is a universal constant and px(P) denotes the first Pontryagin class of

ad P. Moreover, the Schwartz inequality yields

¡p,(/>)[A/]|<c4/|ß|2
J M

with equality if and only if ß is self-dual or anti-self-dual, i.e., ß ° * = ±ß (cf. [1]).

For a closed subgroup H of a Lie group G and a connection co in a principal

G-bundle P —> M, Weinstein's definition of unflatness was given in §1. If G =

SO(4) and H = SO(3) is embedded in SO(4) in the obvious way as the set of all

orthogonal 4 X 4-matrices keeping the vector (1, 0, 0, 0) fixed, then co is //-unflat if

and only if, for anyp G P, the curvature form ß^, restricted to the horizontal space

atp, is Z)-unflat, D being the diagonal subspace of so(4) = so(3) + so(3).

In the notations of Remark 3, we have

Theorem 2. Let tr: P -> M be a principal SO(4)-bundle with an SO(3)-unflat

connection co over a compact four-manifold M. Then there exist an orientation in M

and e G {1, -1} such that

(i) P_e is isomorphic to P /\ + M, and

(ii) 0 < \px(Pe)[M]\ < 3t(M) + 2x(M), t(M) being the signature and x(AO the

Euler characteristic of M.

Proof. As in Remark 3, we can form the quotient principal 5,0(3)-bundles Pt,

e = ± 1, with equivariant projections tre: P -^ Pe. Now w projects onto connections

co,, in Pe with curvature forms ße such that w*ße = ße, e = ±1, where ß,, ß_, are

the components of ß in so(3) + so(3) [7, pp. 79-80]. On the other hand, for any

p E P, ß   may be viewed as a form in Tw( ,M and it is easy to see that it satisfies
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the hypotheses of Lemma 6. Therefore, for some eG{l,-l},ß_eis unflat and (8)

holds for any independent vectors u, v tangent to M. Thus, the curvature form ß_c

in P_e is unflat and hence self-dual with respect to the oriented conformai

structure that it induces in M (cf. Remark 2), while P_t is isomorphic to P /\ + M

by Theorem 1. In view of (9), (8), Remark 4 and Hirzebruch's signature theorem [9,

p. 224], we have

0<|p,(/>e)[M]|<c4f |ße|2 <c4f |ß_/
JM JM

= P>(P-t)[M] =Px(A + M)[M] = 3r(M) + 2X(M),

which completes the proof.

Remark 5. By Theorem 2, the condition

3t(M) + 2X(M) > 0 (11)

for an oriented compact 4-manifold M is necessary in order that some principal

56>(4)-bundle over M admit an SO(3)-unñat connection (inducing the given

orientation of M). However, (11) follows merely from the fact that /\ + M carries a

nonflat self-dual connection (which leads to px(/\ + M)[M\ > 0, cf. [1]). For

instance, (11) is satisfied by any oriented, compact, non-Ricci-flat Einstein 4-mani-

fold: for such a manifold, the Riemannian connection of /\+A/ is self-dual and

nonflat (see [1]). Since (11) holds now for both orientations of M, we obtain the

Thorpe-Hitchin inequality \t(M)\ < § x(M) (cf. [5]).

We can now use Theorem 2 to prove a conjecture of Weinstein [13].

Theorem 3. Let P be a principal SO(4)-bundle over S4 with an SO(3)-unflat

connection. Then P is isomorphic to the principal SO(4)-bundle, associated with the

Hopf 3-sphere bundle S1 -+ S4 = HP '.

Proof. By (i) of Theorem 2, one of the quotient 5'0(3)-bundles of P, say, P'_„ is

isomorphic to P /\ + S4- This is nothing but the principal Hopf bundle RP1 -» S4.

In fact, the standard metric of RP7 comes from the construction described in §1, so

that the Hopf bundle carries a {l}-unflat connection and Theorem 1 works. On the

other hand, since principal S'0(3)-bundles over S4 are pull-backs of the Hopf

bundle, we have px(Pe)[S4] = 0 (mod 4) (cf. (9) and [12, p. 256]) and, by (ii) of

Theorem 2, Pt is trivial. Our assertion follows now immediately from the classifica-

tion of principal S,0(4)-bundles over S4.

Remark 6. A principal SO(n)-bundle P —> M admits a spin structure, i.e., a

double equivariant covering by a principal Spin(«)-bundle over M if and only if its

second Stiefel-Whitney class w2 = 0 [8, p. 199]. On the other hand, given a

principal Spin(«)-bundle Q —» M, one can use the normal subgroup Z2 of Spin(«)

to form the quotient principal SO^-bundle P = (2/Z2 —» M with an equivariant

projection Q -^ P.

For « = 3, we can apply Theorem 1 to P = QfL2 and use (10) to obtain
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Corollary 1. Let £> —> M be a principal S3-bundle over a four-manifold M. If Q

admits an unflat horizontal tensorial 2-form, then

(i) M is an orientable spin manifold, i.e., wx(M) = w2(M) = 0, and

(ii) Q is a spin structure over P /\ + A//or a suitable orientation of M.

Similarly, one can prove a statement analogous to Theorem 2 for principal

Spin(4) (= S3 X 53)-bundles with (diagonal S3)-unflat connections over a com-

pact four-manifold M. As in Corollary 1, we have in this case w2(M) = 0.
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