
Tohoku Math. J.
59 (2007), 565–602

PROJECTIVELY FLAT SURFACES, NULL PARALLEL DISTRIBUTIONS,
AND CONFORMALLY SYMMETRIC MANIFOLDS

ANDRZEJ DERDZINSKI AND WITOLD ROTER

(Received May 2, 2006, revised September 25, 2006)

Abstract. We determine the local structure of all pseudo-Riemannian manifolds of di-
mensions greater than 3 whose Weyl conformal tensor is parallel and has rank 1 when treated
as an operator acting on exterior 2-forms at each point. If one fixes three discrete parame-
ters: the dimension, the metric signature (with at least two minuses and at least two pluses),
and a sign factor accounting for semidefiniteness of the Weyl tensor, then the local-isometry
types of our metrics correspond bijectively to equivalence classes of surfaces with equiaffine
projectively flat torsionfree connections; the latter equivalence relation is provided by unimod-
ular affine local diffeomorphisms. The surface just mentioned arises, locally, as the leaf space
of a codimension-two parallel distribution on the pseudo-Riemannian manifold in question,
naturally associated with its metric. We construct examples showing that the leaves of this
distribution may form a fibration with the base which is a closed surface of any prescribed
diffeomorphic type.

Our result also completes a local classification of pseudo-Riemannian metrics with par-
allel Weyl tensor that are neither conformally flat nor locally symmetric: for those among such
metrics which are not Ricci-recurrent, the Weyl tensor has rank 1, and so they belong to the
class discussed in the previous paragraph; on the other hand, the Ricci-recurrent ones have
already been classified by the second author.

Introduction. The main result of the present paper, Theorem 21.1, describes the local
structure of pseudo-Riemannian metrics whose Weyl conformal tensorW is parallel and, as an
operator acting on exterior 2-forms, has rank 1 at each point. Combined with a theorem of the
second author [22], our description leads to a local classification of all essentially conformally
symmetric pseudo-Riemannian manifolds. Here are some details.

A pseudo-Riemannian manifold (M, g) with dimM ≥ 4 is said to be conformally sym-
metric [2] if its Weyl tensorW is parallel. Obvious examples arise when (M, g) is conformally
flat or locally symmetric; conformally symmetric manifolds which are neither have usually
been referred to as essentially conformally symmetric. For a sample of recent results on con-
formally symmetric manifolds, see [24, 21, 8, 9, 13].

An essentially conformally symmetric pseudo-Riemannian metric is always indefinite
[4, Theorem 2]; if it is Lorentzian, it must also be Ricci-recurrent [5, Corollary 1 on p. 21].
Known examples of essentially conformally symmetric indefinite metrics include both Ricci-
recurrent [22] and non-Ricci-recurrent ones [3], in every dimension n ≥ 4.
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Here we call a pseudo-Riemannian manifold Ricci-recurrent if, for every tangent vector
field v, the Ricci tensor ρ and the covariant derivative ∇vρ are linearly dependent at each
point, or, equivalently, ∇ρ = ξ ⊗ ρ on the open set where ρ �= 0, for some 1-form ξ .

In [22] the second author completely determined the local structure of Ricci-recurrent
essentially conformally symmetric metrics at points where ρ and ∇ρ are nonzero: in suitable
coordinates, such metrics have the canonical form of [22, formula (34)].

Our Theorem 21.1, mentioned above, leads to a classification of the remaining essentially
conformally symmetric pseudo-Riemannian metrics. The reason is that the Weyl tensor has
rank 1 for every such metric which is not Ricci-recurrent [6, Theorem 4 on p. 17]. Unlike the
result of [22], Theorem 21.1 requires no general-position hypothesis.

The text consists of three parts, each devoted to one of the three topics named in the title.
Part I presents some known classification theorems about projectively flat connections on
surfaces, followed by results on solvability of a specific partial differential equation (Sections
10–12), both of which are needed as a reference for Part III.

Part II deals with null parallel distributions P on pseudo-Riemannian manifolds such
that the Levi-Civita connection ∇ is, in a natural sense, P⊥-projectable onto a torsionfree
connection D on the (local) leaf space Σ of P⊥, with P⊥ always denoting the g-orthogo-
nal complement of P . We observe that P⊥-projectability of ∇ is characterized by a simple
curvature condition and, therefore, it holds for the two-dimensional null parallel distribution
P present on every conformally symmetric manifold with rank W = 1. This is one of the
steps needed for the argument in Part III.

In Part III we establish our main result (Theorem 21.1), first showing that, locally, in
dimensions n ≥ 4, a conformally symmetric metric g with rank W = 1 is a warped prod-
uct in which the totally geodesic factor is four-dimensional, conformally symmetric and has
rank W= 1, while the umbilical factor is flat. The problem is thus reduced to the case n = 4.
When n = 4, we prove that g is conformal to a metric of a kind first classified by Ruse [23];
therefore, g itself is one of Patterson and Walker’s Riemann extension metrics [19]. We also
establish, for every n ≥ 4, projective flatness of the connection D arising, as in the last para-
graph, on the surface Σ which is, locally, the leaf space of P⊥. The local-isometry type of
g then turns out to be parametrized by the dimension n, the metric signature −−· · · ++, a
factor ε = ±1 describing semidefiniteness of W, and the (local) equiaffine equivalence class
of D. See Section 24.

Finally, in Section 23, we describe examples showing that any prescribed closed surface
Σ can be realized as the global leaf space of P⊥ for some non-Ricci-recurrent essentially
conformally symmetric manifold (M, g) of any given dimension n ≥ 4. More precisely, the
leaves of P⊥ then are the fibres of a bundle with the total space M and base Σ .

The authors wish to thank Thomas Binder, Ryszard Deszcz, Zbigniew Olszak, Barbara
Opozda and Udo Simon for valuable comments.

1. Preliminaries. Throughout this paper, all manifolds, bundles, their sections and
subbundles, as well as connections and mappings, including bundle morphisms, are assumed
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to be of class C∞. A manifold is by definition connected; a bundle morphism may operate
only between two bundles with the same base manifold, and acts by identity on the base.

‘A bundle’ always means ‘a C∞ locally trivial bundle’ and the same symbol is used both
for a given bundle and for its total space. The bundle projection onto the base manifold is
denoted by π , and Ker dπ stands for the vertical distribution.

By a differential k-form valued in a vector bundle X over a manifoldΣ we mean, as usual
[1, p. 24], any vector-bundle morphism (TΣ)∧k → X . This includes the case of ordinary
(real-valued) forms, where X is the product bundleΣ×R, the sections of which are functions
Σ → R.

The symbols ∇ and D will be used for various connections in vector bundles. Our sign
convention about the curvature tensor R = R∇ of a connection ∇ in a vector bundle X over a
manifold Σ is

R(u, v)ψ = ∇v∇uψ − ∇u∇vψ + ∇[u,v]ψ ,(1)

for sections ψ of X and vector fields u, v tangent to Σ . Thus,

R is a 2 form on Σ valued in Hom(X ,X ) .(2)

Here Hom(X ,Y), for real vector bundles X ,Y over a manifold Σ , is the vector bundle
over Σ , the sections of which are vector-bundle morphisms X → Y . For instance, X ∗ =
Hom(X ,Σ × R) is the dual of X . By (1), for connections in the tangent bundle,

Rjkl
m = ∂kΓ

m
jl − ∂jΓ

m
kl + Γ mks Γ

s
jl − Γ mjs Γ

s
kl ,(3)

∂j and Γ ljk being the partial derivatives and the connection components.

The Ricci tensor ρ = ρD of a connection D on a manifold Σ (that is, in the tangent
bundle TΣ) is given by ρ(u,w) = Trace[v 
→ R(u, v)w], where R = RD and u, v,w are
vectors tangent to Σ at any point. It is well-known that, if D is torsionfree and dimΣ = r ,
the following four conditions are equivalent:

(a) the connection induced by D in the line bundle (TΣ)∧r is flat,
(b) a nonzero D-parallel differential r-form exists on every simply connected open sub-

set of Σ ,
(c) the operator RD(u, v) : TyΣ → TyΣ given by w 
→ RD(u, v)w is traceless for

every y ∈ Σ and all u, v ∈ TyΣ ,
(d) ρD is symmetric.
Indeed, the curvature tensor of the connection that D induces in (TΣ)∧r , viewed as

a real-valued 2-form (by (2) with the identification Hom((TΣ)∧r, (TΣ)∧r ) = Σ × R),
sends u, v in TyΣ to Trace[RD(u, v)], while, by the first Bianchi identity, Trace[RD(u, v)] =
ρD(u, v) − ρD(v, u). Thus, (a) is equivalent both to (c) and to (d). Finally, the connections
that D induces in (TΣ)∧r and (T ∗Σ)∧r = [(TΣ)∧r ]∗ are each other’s duals, so that (a) holds
if and only if (b) does.

A fixed connection ∇ in a vector bundle X over a manifoldΣ gives rise to the operator of
exterior derivative d∇ acting on X -valued differential forms onΣ which, for the standard flat
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connection in the product bundleΣ × R, is the ordinary exterior derivative d for real-valued
forms [1, p. 24]. Explicitly, for an X -valued 1-form Ψ ,

(d∇Ψ )(u, v) = ∇u[Ψ(v)] − ∇v[Ψ(u)] − Ψ ([u, v]) .(4)

We will establish the local solvability of various systems of linear partial differential equations
(homogeneous or not) on a simply connected manifold Σ by introducing a flat connection ∇
in a suitable vector bundle X overΣ and showing that

(i) our (homogeneous) system amounts to requiring an unknown section of X to be
∇-parallel, or,

(ii) the (nonhomogeneous) system can be rewritten so as to be imposed on X -valued
differential forms, and then its solvability is equivalent to d∇-exactness of the right-hand side
(which, locally, is the same as its easily-verified d∇-closedness).

Note that the Poincaré lemma can be applied, in (ii), since flatness of ∇ and simple
connectivity of Σ allow us to treat X -valued differential forms as forms taking values in a
fixed finite-dimensional vector space, in such a way that d∇ becomes the ordinary d .

REMARK 1.1. Twice-covariant tensor fields τ on a manifold Σ will also be treated
as T ∗Σ-valued 1-forms. Namely, we choose τ (w, ·) to be the section of T ∗Σ to which the
1-form τ sends a vector field w on Σ . Here τ is not assumed symmetric; the use of τ (·, w)
instead of τ (w, ·) would amount to replacing τ by its transpose τ ∗, which is the twice-co-
variant tensor field assigning τ (w′, w) to vector fields w,w′. For instance, if τ = Dξ for a
connection D and a 1-form ξ on Σ , we have τ (w, ·) = Dwξ , and, in local coordinates, the
components of τ = Dξ and λ = (Dξ)∗ are τjk = ξk,j and λjk = ξj,k .

REMARK 1.2. Let D be a torsionfree connection on a manifold Σ . A twice-covari-
ant symmetric tensor field τ on Σ is said to satisfy the Codazzi equation if dDτ = 0 for τ
treated as a T ∗Σ-valued 1-form (Remark 1.1), which in coordinates reads τjl,k = τkl,j , cf.
(4). Suppose now that, in addition, the Ricci tensor ρD is symmetric. In view of the second
Bianchi identity, the curvature tensor RD has zero divergence (divDRD = 0) if and only if
the Codazzi equation dDρD = 0 holds for ρD. (In coordinates, this means that the condition
Rjkl

s
,s = 0 is equivalent to Rjl,k= Rkl,j .) Riemannian manifolds with div∇R∇ = 0 for the

Levi-Civita connection ∇ are said to have harmonic curvature [1].

REMARK 1.3. We always treat 2-forms on a manifold Σ valued in ordinary 1-forms
(that is, T ∗Σ-valued) as 1-forms on Σ valued in ordinary 2-forms (that is, (T ∗Σ)∧2-valued),
via the obvious identification.

REMARK 1.4. Aside from differentials of functions, we will apply the exterior deriv-
ative operators d , dD and d∇ only to 1-forms valued in various vector bundles. For instance,
given a twice-covariant tensor field τ and a torsionfree connection D on a manifold Σ , the
exterior derivative dDτ (of τ viewed as a T ∗Σ-valued 1-form, cf. Remark 1.1), is itself treated,
according to Remark 1.3, as a 1-form valued in 2-forms. If, in addition, dimΣ = 2 and ρD

is symmetric, we use this last interpretation to define the exterior derivative ddDτ , writing d
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instead of dD to reflect the fact that the existence, locally in Σ , of a D-parallel area form (see
(a)–(d) above), allows us to regard (T ∗Σ)∧2-valued forms, locally, as real-valued.

The (T ∗Σ)∧2-valued 2-form A = ddDτ assigns to vector fields u, v the real-valued 2-
form A(u, v) with the local-coordinate expression [A(u, v)]lm = ujvkAjklm, where Ajklm =
τmk,lj − τlk,mj − τmj,lk + τlj,mk.

2. Exterior products. If D is a torsionfree connection on a surface and the Ricci
tensor ρD is symmetric, the curvature tensor RD is given by

RD = ρD ∧ Id , that is, in coordinates, Rjklm = Rjlδ
m
k − Rklδ

m
j .(5)

Indeed, for R = RD and ρ = ρD treated as algebraic objects, at any fixed point, ρ is the Ricci
contraction of R = ρ ∧ Id, and so the operator ρ 
→ R = ρ ∧ Id, being injective, is also
surjective. (Both R, ρ range over 3-dimensional spaces, cf. (c) in Section 1.)

Aside from formula (5), we will use the symbol ∧ only in two situations, which involve a
real-valued 1-form ξ and twice-covariant tensor fields τ, λ on any given manifoldΣ . Namely,
ξ ∧ λ stands for the 1-form valued in 2-forms, sending a vector field w to the 2-form that
assigns to vector fields u, v the function ξ(u)λ(v,w) − ξ(v)λ(u,w), while τ ∧ λ is a 2-form
valued in 2-forms: it sends vector fields w,w′ to τ (w, ·)∧λ(w′, ·)− τ (w′, ·)∧λ(w, ·) (which
in turn is the 2-form associating with u, v the function τ (w, u)λ(w′, v) − τ (w, v)λ(w′, u) −
τ (w′, u)λ(w, v)+ τ (w′, v)λ(w, u)). Note that ξ, τ and λ may be viewed as differential forms
onΣ valued in differential forms (Remark 1.1), and then ∧ becomes the usual exterior product
(with the identification described in Remark 1.3). For twice-covariant tensor fields τ, λ on a
surface Σ ,

λ ∧ τ = ddDλ = 0 if τ is symmetric and λ is skew symmetric .(6)

Indeed, in local coordinatesA = τ ∧λ is given byAjklm = τjlλkm−τjmλkl−τklλjm+τkmλjl ,
with the only essential componentA1212 = 0. On the other hand, locally, λ = f α, where α is
a fixed D-parallel area form, and so dDλ = df ∧ α = − df ⊗ α (equality of 1-forms valued
in 2-forms; the sum df ⊗ α + df ∧ α must vanish, as it is a real-valued differential 3-form,
while dimΣ = 2). Thus, ddDλ = − ddf ⊗ α = 0.

For a torsionfree connection D and a 1-form ξ on a manifold Σ ,

(i) dDDξ = ξRD , (ii) dD(Dξ)∗ = Ddξ + ξRD .(7)

Here (i) is the Ricci identity (in coordinates, ξj,kl − ξj,lk = Rlkj
sξs ), RD denotes, as usual,

the curvature tensor of D, and ξRD is the 2-form valued in 1-forms that assigns to vector
fields w,w′ on Σ the composite vector-bundle morphism TΣ → TΣ → Σ × R in which
RD(w,w′) is followed by ξ (cf. (2)). To establish (ii), note that the coordinate version of (i)
gives ξk,lj − ξj,lk = (ξk,j − ξj,k),l + Rjlk

sξs − Rklj
sξs , the last two terms of which may be

replaced by Rjklsξs in view of the first Bianchi identity.
If, in addition, dimΣ = 2 and the Ricci tensor ρD is symmetric,

(i) ξRD = − ξ ∧ ρD , (ii) dDDξ = − ξ ∧ ρD ,(8)
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by (5) and (7-i). The coordinate form of (8-ii) is ξj,kl − ξj,lk = ξkRlj − ξlRkj .
The Ricci identity for twice-covariant tensor fields λ (sections of (T ∗M)⊗2) reads

d∇∇λ = λ · R , that is , λlm,kj − λlm,jk = Rjkl
sλsm + Rjkm

sλls .(9)

Here M is any manifold with a fixed torsionfree connection (this time denoted by ∇) and
R = R∇, while the covariant derivative ∇λ, treated as a (T ∗M)⊗2-valued 1-form on M ,
associates with a vector field w the section ∇wλ of (T ∗M)⊗2. Finally, λ · R denotes the
(T ∗M)⊗2-valued 2-form, sending vector fields w,w′ to the section of (T ∗M)⊗2 which assigns
to vector fields u, v the function λ(R(w,w′ )u, v)+ λ(u,R(w,w′ )v).

Given a twice-covariant tensor field τ and a vector field u on a pseudo-Riemannian
manifold (M, g), we define τu to be the vector field on M which is the image of u under the
vector-bundle morphism TM → TM obtained from τ by index raising; thus,

g(τu, v) = τ (u, v) for all vector fields u and v .(10)

In a pseudo-Riemannian manifold (M, g) of any dimension n, we denote by ∇ its Levi-Ci-
vita connection, and by R, ρ (rather than R∇, ρ∇ ) its curvature and Ricci tensors. The same
symbol R is used for the four-times covariant curvature tensor (a 2-form valued in 2-forms),
with R(u, v,w,w′) = g(R(u, v)w,w′). If n ≥ 4, the Weyl conformal tensor of (M, g) is
defined by W = R − (n − 2)−1g ∧ σ , where σ = ρ − (2n− 2)−1sg is the Schouten tensor,
with s = Tracegρ standing for the scalar curvature, and ∧ as above.

For vector fields u, v, a differential 2-form ω, the Levi-Civita connections ∇, ∇̃ and
Ricci tensors ρ, ρ̃ of conformally related metrics g and g̃ = f −2g = e2φg on a manifold
M , with functions f > 0 and φ = − log f , their g-gradients ∇φ,∇f , and the g-Laplacian
�f = gjkf,jk of f , we have (cf. [10, formulae (16.8), (16.9), (16.13) on pp. 528–529])

(a) ∇̃uv = ∇uv + g(u,∇φ)v + g(v,∇φ)u − g(u, v)∇φ,
(b) ∇̃uω = ∇uω − 2(duφ)ω + ω(u, ·) ∧ dφ + g(u, ·) ∧ ω(∇φ, ·),
(c) ρ̃ = ρ+(n−2)f−1∇df +[f−1�f −(n−1)f−2g(∇f,∇f )]g , where n = dimM ,

du in (b) being the directional derivative, so that duφ = g(u,∇φ).

PART I. PROJECTIVELY FLAT SURFACES

Except for Sections 10 through 12, the material in Part I is known, and consists of classi-
fication results about projectively flat equiaffine torsionfree connections on surfaces. A self-
contained presentation of those results is provided here for the reader’s convenience: such
a connection serves as the single non-discrete parameter in our classification of conformally
symmetric manifolds with rank W = 1 (see Section 21). For more on projectively flat sur-
faces, see [20] and Simon’s article on affine differential geometry [10, pp. 905–961].

3. Projective flatness in dimension 2. A connection D on a manifold Σ is called
projectively flat if Σ is covered by coordinate systems in which the geodesics of D appear as
(re-parametrized) straight-line segments.

We begin with a well-known lemma, going back to Weyl [29, p. 100]:
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LEMMA 3.1. Two torsionfree connections D and D̃ on a manifold Σ have the same
re-parametrized geodesics if and only if B = 2ξ 
 Id for the tensor field B = D̃ − D and a
real-valued 1-form ξ on Σ , or, in coordinates, Bljk = ξj δ

l
k + ξkδ

l
j . Then also

(i) the Ricci tensors ρD of D and ρ̃ of D̃ are related by ρ̃ = ρD + (r − 1)ξ ⊗ ξ −
rDξ + (Dξ)∗ for r = dimΣ , with (Dξ)∗ as in Remark 1.1,

(ii) dξ = 0 if both D and D̃ have symmetric Ricci tensors.

PROOF. In view of the local-coordinate form of the geodesic equation, the two con-
nections have the same geodesics if and only if Bvv = cv for every y ∈ Σ and v ∈ TyΣ ,
with some c ∈ R depending on v. The latter condition gives B = 2ξ 
 Id (by polarization
in a fixed basis of TyΣ , for any y ∈ Σ). Next, if D̃ − D = 2ξ 
 Id, the curvature tensors
RD of D and R̃ of D̃ are related by R̃ = RD − dξ ⊗ Id − Dξ ∧ Id + ξ ⊗ (ξ ∧ Id) (that is,
R̃jkl

m = Rjkl
m+ (ξj,k − ξk,j )δml + ξl,kδmj − ξl,j δmk + ξl(ξj δmk − ξkδmj )), as one easily verifies

using (3) in coordinates in which the components of D at the given point vanish. This implies
(i). Now (ii) follows: if ρD and ρ̃ are symmetric, so must be Dξ . �

REMARK 3.2. For a torsionfree connection D on a surfaceΣ such that the Ricci tensor
ρD is symmetric, a function f : Σ → (0,∞), and the 1-form ξ = − d log f , the condition
Ddf = − fρD is equivalent to flatness of the connection D̃ = D + 2ξ 
 Id. In fact, by
Lemma 3.1, ρ̃ = 0 if and only if Ddf = − fρD, while ρ̃ determines R̃, as in (5).

The next result is the 2-dimensional case of a theorem of Weyl [29, p. 105]:

THEOREM 3.3. A torsionfree connection D on a surface Σ with a symmetric Ricci
tensor ρD is projectively flat if and only if ρD satisfies the Codazzi equation dDρD= 0.

PROOF. In the vector bundle T ∗Σ⊕ (Σ×R), whose sections (ξ, f ) consist of a 1-form
ξ and a function f onΣ , we define a connection ∇ by ∇(ξ, f ) = (Dξ+fρD, df −ξ), that is,
∇u(ξ, f ) = (Duξ + fρD(u, ·), duf − ξ(u)) for any vector field u. From (1) with ψ = (ξ, f )

we get R∇(u, v)ψ = (ξ ′(u, v), 0), where ξ ′ = − dDDξ − ξ ∧ ρD − f dDρD, with dDDξ as in
(7-i). Thus, by (8-ii), dDρD= 0 if and only if ∇ is flat.

If ∇ is flat, we may choose, locally, a ∇-parallel section (ξ, f ) of T ∗Σ ⊕ (Σ × R) with
f > 0. Now D is projectively flat by Remark 3.2 and Lemma 3.1, as Ddf = − fρD.

Conversely, let D be projectively flat. By Lemma 3.1, we can find, locally, a positive
function f such that the torsionfree connection D̃ = D + 2ξ 
 Id, with ξ = − d log f , is flat.
Remark 3.2 then gives Ddf = − fρD and, applying dD to both sides (treated as T ∗Σ-valued
1-forms) we get dDDdf = − df ∧ ρD − f dDρD, while dDDdf = − df ∧ ρD in view of
(8-ii) with ξ replaced by df . Thus, dDρD= 0. �

Suppose that Σ is an r -dimensional manifold, V is a real vector space of dimension
r + 1, and Φ : Σ → V is an immersion transverse to all lines in V passing through 0. By the
centroaffine connection corresponding toΦ we mean the connection D onΣ obtained by first
pulling back the standard flat connection of V to the pullback bundle Φ∗T V = Σ × V, and
then projecting it onto the summand TΣ in Φ∗TV = TΣ ⊕N. Here N is the normal bundle
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over Σ whose fibre Ny , for any y ∈ Σ , is the line in V = TΦ(y)V spanned by Φ(y). See [10,
pp. 927, 934].

REMARK 3.4. Let D be the centroaffine connection onΣ , forΣ,V, r andΦ as above.
(a) We may assume, locally, that Σ is a submanifold of V and Φ is the inclusion

mapping. The geodesics of D then have the formΣ∩Π for planesΠ through 0 in V , since for
any parametrization of such a curveΣ ∩ Π , the acceleration lies in Π , and so its component
tangent to Σ is tangent to Σ ∩Π . Cf. [10, p. 927].

(b) The connection D is torsionfree and projectively flat.
(c) The Ricci tensor ρD is symmetric and ρD = (1 − r)b, where b is the second

fundamental form of the immersionΦ, obtained in the usual fashion from the trivialization of
the normal bundle provided by the radial (identity) vector field.

Indeed, projective flatness of D is immediate from (a): central projections of Σ into
hyperplanes not containing 0 send geodesics of D into lines. To verify the other claims in (b)
and (c) we may use the traditional notation in which the inclusion mapping Σ → V , here
serving also as a trivializing section of the normal bundle, is represented by the symbol r and
treated as a V-valued function on Σ , while its partial differentiations of all orders, relative
to fixed coordinates in Σ , are represented by successive subscripts; for instance, rj are the
coordinate vector fields. In the expansion

rjk = Γ sjkrs + bjkr(11)

the coefficients Γ sjk and bjk are the component functions of D and, respectively, of the second
fundamental form b mentioned in (c). Thus, D is torsionfree and b is symmetric, since rjk =
rkj . Also, differentiating (11), we now get, from (3), Rjklm = bklδ

m
j − bjlδ

m
k (and bkl,j =

bjl,k), as rj lk = rklj . Hence ρD = (1 − r)b, as required.

4. Flatness of an associated connection. For a fixed torsionfree connection D on a
manifold Σ and a 1-form ξ on Σ , let

Bξ = Dξ + (Dξ)∗ or, in coordinates, (Bξ)jk = ξk,j + ξj,k .(12)

This defines a first-order linear differential operator B sending 1-forms onΣ to twice-covari-
ant symmetric tensor fields. We use the symbol KerB for its kernel:

KerB = {ξ; ξ is a 1-form onΣ and Bξ = 0} .(13)

The second covariant derivative DDξ of a 1-form ξ onΣ can be expressed in terms of the ten-
sor τ = Bξ , via the identity (DwDξ )(u, v) = ξRD(v, u)w+(∂τ )(v, u,w), valid for all vector
fields u, v,w onΣ , where 2(∂τ )(v, u,w) = (Duτ )(v,w)+ (Dwτ)(v, u)− (Dvτ )(u,w). (In
coordinates, this reads ξj,kl = Rjkl

sξs + (τjl,k + τjk,l − τkl,j )/2, with τjk = ξk,j + ξj,k , and
easily follows, since the Ricci identity (7-i), in its coordinate form ξj,kl − ξj,lk = Rlkj

sξs ,
gives τjl,k + τjk,l − τkl,j = 2ξj,kl + Rkjl

sξs + Rklj
sξs + Rljk

sξs , while Rklj sξs + Rljk
sξs =

Rkjl
sξs by the first Bianchi identity.) In particular,

DDξ = − ξRD whenever Bξ = 0 .(14)
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The equality DDξ = − ξRD means that (DwDξ )(u, v) = ξRD(v, u)w for all vector fields
u, v,w on Σ . The 2-form Dξ is viewed here as a 0-form valued in 2-forms, which makes
DDξ a 1-form valued in 2-forms, while ξRD, defined in the lines following (7), is now treated
as a 1-form valued in 2-forms, in agreement with Remark 1.3.

In the following lemma we solve the equation Bξ = 0, under additional assumptions on
Σ and D, using the approach of (i) in Section 1.

LEMMA 4.1. Given a projectively flat torsionfree connection D on a surface Σ such
that the Ricci tensor ρD is symmetric, let us define a connection ∇ in the vector bundle X =
(T ∗Σ)∧2 ⊕ T ∗Σ by ∇(Θ, ξ) = (DΘ − ξ ∧ ρD,Dξ −Θ). Then ∇ is flat, and the assignment
ξ 
→ (Θ, ξ) given by Θ = Dξ is a linear isomorphism of the space KerB in (13) onto the
space of all ∇-parallel sections (Θ, ξ) of X .

The pair (Θ, ξ) in Lemma 4.1 is a section of X , with the components that are a real-
valued 2-form Θ and a real-valued 1-form ξ on Σ . The meaning of the equality ∇(Θ, ξ) =
(DΘ −ξ ∧ρD,Dξ−Θ) is ∇u(Θ, ξ) = (DuΘ −ξ ∧ρD(u, ·),Duξ−Θ(u, ·)) for every vector
field u tangent to Σ . We precede the proof of Lemma 4.1 with a remark.

REMARK 4.2. On a manifold Σ with a fixed torsionfree connection D, a 1-form ξ

such that Bξ = 0 is uniquely determined by its value ξy and covariant derivative (Dξ )y at
any given point y ∈ Σ . Indeed, by (14), the pair (Θ, ξ), with Θ = Dξ , then is a ∇-paral-
lel section of the vector bundle X = (T ∗Σ)∧2 ⊕ T ∗Σ , for the connection ∇ in X given by
∇(Θ, ξ) = (DΘ + ξRD,Dξ −Θ). (Notation as above; ξRD, appearing in (7), is treated here
as a 1-form valued in 2-forms, cf. Remark 1.3.)

PROOF OF LEMMA 4.1. From (1) with ψ = (Θ, ξ) and (4), R∇(u, v)ψ = (Θ ′, ξ ′),
where Θ ′ = R̂(u, v)Θ + ξ ∧ [(dDρD)(u, v)] + (Θ ∧ ρD)(u, v) and ξ ′ is defined by ξ ′ =
− (dDDξ + ξ ∧ ρD)(u, v), with dDDξ as in (7) and R̂ denoting the curvature tensor of the
connection that D induces in (T ∗Σ)∧2. Flatness of ∇ now follows, since R̂ = 0 (see (a)–(d)
in Section 1), dDρD= 0 by Theorem 3.3,Θ ∧ ρD = 0 due to (6), and ξ ′ = 0 in view of (8-ii).

The assignment ξ 
→ (Θ, ξ) is obviously injective. That it maps some subspace of KerB
onto the space of ∇-parallel sections of X is also clear: if ∇(Θ, ξ) = 0, then Dξ = Θ , and
so Bξ = Θ + Θ∗ = 0. Finally, ∇(Dξ, ξ) = 0 whenever Bξ = 0, as a consequence of
Remark 4.2 and (8-i). �

LEMMA 4.3. Suppose that D is a projectively flat torsionfree connection on a simply
connected surface Σ , the Ricci tensor ρD is symmetric, and α is a fixed D-parallel area form
on Σ , cf. (b) in Section 1. Let KerB be the space given by (13). Then

(i) dim KerB = 3,
(ii) a mapping F : Σ → KerB can be defined by letting F(y), for y ∈ Σ , be the

unique ξ ∈ KerB with ξy = 0 and (Dξ )y = αy ,
(iii) the mapping F : Σ → KerB defined in (ii) is an immersion, and
(iv) its differential dFy : TyΣ → KerB at any y ∈ Σ sends v ∈ TyΣ to the element

η = dFyv of KerB characterized by ηy = − αy(v, ·) and (Dη)y = 0.
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PROOF. Assertions (i) and (ii) are immediate from Lemma 4.1. Now let t 
→ y = y(t)

be a curve in Σ , and let ξ = ξ(t) ∈ KerB equal F(y(t)). With v = v(t) and η = η(t)

standing for ẏ and dξ/dt , we thus have η = dFyv for each t . Differentiating the equalities
ξy = 0 and (Dξ )y = αy covariantly along the curve, and noting that Dα = 0, we get
0 = ηy + Dv ξ = ηy + αy(v, ·) and (Dη)y + (DvDξ )y = 0. However, (DvDξ )y = 0 by
(14), since ξy = 0. This proves (iv). Consequently, (iii) follows, as ηy �= 0, by (iv), whenever
y ∈ Σ and η = dFyv ∈ KerB for v ∈ TyΣ � {0}. �

REMARK 4.4. For Σ,D, α and B as in Lemma 4.3 and another such quadruple
Σ ′,D′, α′,B′, let H : Σ → Σ ′ be an affine diffeomorphism (a diffeomorphism sending
D onto D′). Under the push-forward linear isomorphism KerB → KerB′, induced by H ,
the immersion F of Lemma 4.3 obviously corresponds to the composite in which the anal-
ogous immersion F ′ : Σ ′ → KerB′ is followed by the isomorphism KerB′ → KerB′ of
multiplication by the constant c such that H ∗α′ = c−1α.

The following lemma will be needed in Section 6.

LEMMA 4.5. Given a projectively flat torsionfree connection D on a simply connected
surface Σ such that the Ricci tensor ρD is symmetric, let F : Σ → KerB be as in Lemma
4.3. For any vector field v on Σ , the following two conditions are equivalent:

(a) v is D-parallel;
(b) the function y 
→ dFyvy , valued in KerB, is constant on Σ .

PROOF. If v is D-parallel, so is the 1-form η = − α(v, ·), where α is a fixed D-parallel
area form on Σ . The same η thus satisfies the conditions listed in Lemma 4.3(iv) at all points
y ∈ Σ simultaneously, so that dFyvy = η for all y ∈ Σ , and (b) follows. Conversely, if
the function y 
→ dFyvy is constant, and equal to η ∈ KerB, then, by Lemma 4.3(iv), η is
D-parallel and η = − α(v, ·). Hence v is D-parallel as well. �

For a centroaffine connection D on a surface Σ , defined as in Section 3 for some V and
Φ with r = 2, we have an explicit description of the space KerB given by (13). Namely,
any fixed volume form Ω ∈ (V∗)∧3

� {0} gives rise to an isomorphism V → KerB sending
w ∈ V to the 1-form ξ on Σ with ξy(v) = Ω(w,Φ(y), dΦyv) for y ∈ Σ and v ∈ TyΣ .
That ξ ∈ KerB is easily seen in the notation of (11). Specifically, ξ has the components
ξj = ξ(rj ) = Ω(w, r, rj ), and so, by (11), ξj,k = ∂kξj − Γ skj ξs = Ω(w, rk, rj ), which
is skew-symmetric in j, k. The assignment w 
→ ξ is injective: if w ∈ V is nonzero, the
transversality assumption aboutΦ guarantees that w,Φ(y) and dΦyv are linearly independent
for some y ∈ Σ and v ∈ TyΣ . Since dim KerB ≤ 3 by Lemma 4.3, it follows that w 
→ ξ is
an isomorphism.

Furthermore, the immersion Φ : Σ → V is equiaffine relative to D, in the sense that,
for some (or any) fixed Ω ∈ (V∗)∧3

� {0}, the formula αy(u, v) = Ω(Φ(y), dΦyu, dΦy v),
for y ∈ Σ and v ∈ TyΣ , defines a D-parallel area form α on Σ . This is clear, since αjk =
Ω(r, rj , rk), and so (11) gives αjk,l = ∂lαjk−Γ slj αsk−Γ slkαjs = 0. (Note thatΩ is constant,
and Ω(rl, rj , rk) = 0 as rl , rj , rk are tangent to Σ .)
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REMARK 4.6. Let us fix Ω , define α, and identify V with KerB as above. Then F =
Φ, for the immersion F of Lemma 4.3. This is clear from the relations αjk = Ω(r, rj , rk) =
ξk,j , cf. Remark 1.1.

REMARK 4.7. If an immersion F of a closed surface Σ in a real 3-space V is trans-
verse to all lines through 0, thenΣ is diffeomorphic to S2 and F is an embedding. Indeed, let
S = {η ∈ V; |η| = 1} for a fixed Euclidean norm | | in V . The locally diffeomorphic mapping
Σ � y 
→ F(y)/|F(y)| ∈ S must be a covering, and hence a diffeomorphism.

5. Local classification. Since every immersion is, locally, an embedding, the follow-
ing theorem provides a complete local classification of projectively flat torsionfree connec-
tions on surfaces with symmetric Ricci tensors, which is the 2-dimensional case of a more
general result of Kurita [14].

THEOREM 5.1. There exists a natural bijective correspondence between the equiva-
lence classes of

(a) pairs (Σ,D) formed by a simply connected surface Σ and a projectively flat tor-
sionfree connection D on Σ such that the Ricci tensor of D is symmetric and the
immersion F : Σ → KerB defined in Lemma 4.3 is an embedding,

and the equivalence classes of
(b) simply connected surfaces S embedded in a fixed 3-dimensional real vector space

V and transverse to all lines in V containing 0.
The equivalence relation in question consists in being congruent under a specific class of
transformations: affine diffeomorphisms of surfaces with connections for (a), linear isomor-
phisms V → V for (b).

Explicitly, the bijective correspodence assigns to the equivalence class of a pair (Σ,D)
the equivalence class of the surface S = H(F(Σ)) ⊂ V , where H is any linear isomorphism
KerB → V . The inverse assignment sends a surface S ⊂ V to (Σ,D), where Σ = S and D
is the centroaffine connection of S, described in Section 3.

PROOF. That, for a pair (Σ,D) as in (a), S = H(F(Σ)) has the properties named in
(b), is obvious from Lemma 4.3. Conversely, for S and V as in (b), the conditions listed
in (a) are satisfied by the centroaffine connection D on Σ = S. (See Remarks 3.4 and 4.6,
for the inclusion mapping Φ : Σ → V .) Both assignments are well defined on equivalence
classes (cf. Remark 4.4). It now remains to be shown that the two mappings between sets of
equivalence classes are each other’s inverses.

First, if S,V are as in (b), then S coincides, by Remark 4.6, with the image F(Σ) of the
immersion F in Lemma 4.3 for the centroaffine connection D onΣ = S.

Conversely, for (Σ,D) as in (a), the diffeomorphism F : Σ → F(Σ) sends D onto
the centroaffine connection on the surface F(Σ). Indeed, let us suppose that a vector field
t 
→ w = w(t) ∈ Ty(t)Σ is tangent to Σ along a curve t 
→ y = y(t) in Σ , while the
symbols ẏ = ẏ(t) and η = η(t) denote dy/dt and dFy ẏ = ξ̇ (i.e., dξ/dt), and ζ = ζ(t)

stands for dFyw. Differentiating the equality ζy = − αy(w, ·) covariantly along the curve,
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and noting that (Dζ )y = 0 (see Lemma 4.3(iv)), we obtain ζ̇y = − αy(Dẏw, ·). Thus, again
by Lemma 4.3(iv), ζ̇ = dζ/dt differs from the dFy -image of Dẏw, at y = y(t), by an
element of KerB which is a 1-form vanishing at y, and hence is equal to a scalar times the
normal vector F(y(t)). Thus, dFy sends Dẏw to the tangent component of ζ̇y . �

6. Special classes of connections. In this section we use Theorem 5.1 to classify
projectively flat torsionfree connections D on surfaces Σ , with symmetric Ricci tensors ρD,
which satisfy further restrictive conditions. The conditions in question are local symmetry
(DRD = 0, which is equivalent, by (5), to DρD = 0) and (Ricci-)recurrence. Both results are
well-known, cf. [17, 15].

THEOREM 6.1. Let D be a projectively flat torsionfree connection on a simply con-
nected surface Σ , for which the Ricci tensor ρD is symmetric and the immersion F defined in
Lemma 4.3 is an embedding of Σ in the 3-dimensional vector space KerB.

(i) Suppose, in addition, that ρD is D-parallel. Then there exists a symmetric bilinear
form 〈 , 〉 in KerB such that 〈F(y), F (y)〉 = 1 for every y ∈ Σ and 〈 , 〉 has the algebraic
type of the direct sum of a positive-definite form in dimension 1 and ρD, at any point of Σ .
Thus, the image F(Σ) is a relatively open subset of an algebraic surface S in KerB, and S
itself may be described as follows.

(a) If ρD = 0, i.e., D is flat, S is a plane not containing 0.
(b) If ρD is D-parallel, of rank 1, and positive semidefinite, S is an elliptic cylinder

and its center axis contains 0.
(c) If ρD is D-parallel, of rank 1, and negative semidefinite, S is a hyperbolic cylinder

whose center axis contains 0.
(d) If ρD is D-parallel, nondegenerate, and positive definite or negative definite or,

respectively, indefinite, S is an ellipsoid or a two-sheeted hyperboloid or, respec-
tively, a one-sheeted hyperboloid, centered at 0.

(ii) Conversely, if F(Σ) is contained in an algebraic surface S in KerB with the prop-
erties listed in (a), (b), (c) or (d), then ρD is D-parallel and has the algebraic type named in
(a) through (d).

PROOF. Using a D-parallel area form α on Σ (cf. (a)–(d) in Section 1), we define 〈 , 〉
to be the symmetric bilinear mapping assigning to ξ, η ∈ KerB the function 〈ξ, η〉 on Σ
given by 〈ξ, η〉 = φψ + ρD(v,w), with the functions φ,ψ and vector fields v,w such that
Dξ = φα, Dη = ψα, ξ = α(v, ·) and η = α(w, ·).

If DρD = 0, then, for any pair ξ, η ∈ KerB, the function 〈ξ, η〉 is constant. To see this, let
us fix an arbitrary vector field u onΣ , and assume that neither ξ nor η is identically zero. For
v,w, φ,ψ determined by ξ and η as above, α(Duv, ·) = Duξ = φα(u, ·), so that Duv = φu,
and, similarly, Duw = ψu. Also, by (14) and (8-i), (duφ)α = DuDξ = ξ ∧ ρD(u, ·),
where du is the directional derivative. Hence (duφ)ξ = (duφ)α(v, ·) = − ρD(u, v)ξ , as
ξ(v) = α(v, v) = 0. Noting that, by Remark 4.2, ξ �= 0 on a dense open subset of Σ , we
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now obtain duφ = − ρD(u, v), and, similarly, duψ = − ρD(u,w). Combining our formulae
for Duv, Duw, duφ and duψ , we see that du〈ξ, η〉 = 0, as required.

Assertions (i) and (a)–(d) are now immediate. Conversely, under the assumption of (ii),
let 〈 , 〉 be a symmetric bilinear form on KerB such that 〈ξ, ξ〉 = 1 for every ξ ∈ F(Σ). In
the notation of (11) we thus have 〈r, r〉 = 1, and partial differentiation gives 〈r, rj 〉 = 0.
Applying 〈r, ·〉 to (11), we now get bjk = 〈r, rjk〉, that is, bjk = − 〈rj , rk〉. Hence, again by
(11), bjk,l = ∂l bjk−Γ slj bsk−Γ slkbjs vanishes identically. As b = − ρD (see Remark 3.4(c)),
this completes the proof. �

A tensor field B on a manifold endowed with a fixed connection D is called recurrent
if, for every tangent vector field v, the tensors B and DvB are linearly dependent at every
point. Equivalently, in the open set U on which B �= 0, one has DB = ζ ⊗ B for some
1-form ζ . The connection D itself is said to be recurrent, or Ricci-recurrent, if its curvature
tensor (or, respectively, Ricci tensor) is recurrent. When this is the case for the Levi-Civita
connection of a pseudo-Riemannian manifold (M, g), one refers to (M, g) as a recurrent or,
respectively, Ricci-recurrent manifold. Finally, (M, g) is called conformally recurrent if its
Weyl conformal curvature tensor is recurrent.

For a torsionfree connection with a symmetric Ricci tensor on a surface, being recurrent
means, by (5), the same as being Ricci-recurrent. Such connections are called here ‘Ricci-re-
current’ rather than ‘recurrent’ (which will be convenient later, in Part III).

THEOREM 6.2. Suppose that D is a projectively flat torsionfree connection on a simply
connected surface Σ and the Ricci tensor ρD is symmetric, while ρD �= 0 and DρD �= 0
everywhere in Σ . In addition, let the immersion F : Σ → KerB defined in Lemma 4.3 be an
embedding. Then the following four conditions are equivalent:

(a) D is Ricci-recurrent,
(b) there exists a nonzero D-parallel vector field on Σ ,
(c) Σ admits a nonzero D-parallel 1-form,
(d) the image surface S = F(Σ) is a cylinder, that is, a union of mutually parallel

line segments in KerB.

PROOF. If D is Ricci-recurrent, and so DρD = ζ ⊗ ρD for some nowhere-vanishing
1-form ζ , the Codazzi equation dDρD = 0 gives ζ ∧ ρD = 0. Thus, ζ spans the image I of
the vector-bundle morphism TΣ → T ∗Σ sending each vector field u to ρD(u, ·). (In fact,
ζ ∧ ρD(u, ·) = 0, and so ρD(u, ·) equals a function times ζ .) Hence I is a line subbundle
of T ∗Σ and, as ρD is recurrent, I must be D-parallel (invariant under D-parallel transports),
which in turn implies that the 1-form ζ spanning I is recurrent, i.e., Dζ = η⊗ ζ for some 1-
form η. The Ricci identity (8-ii) gives dDDζ = 0, so that 0 = dDDζ = dD(η⊗ζ ) = (dη)⊗ζ .
Consequently, dη = 0 and, asΣ is simply connected, η = df for some function f : Σ → R.
Since Dζ = df ⊗ ζ , the 1-form ξ = e−f ζ is D-parallel. Therefore, (a) implies (c).

Equivalence of (b) and (c) is clear, since a fixed D-parallel area form α on Σ leads to a
correspondence v 
→ ξ = α(v, ·) between vector fields v and 1-forms ξ . On the other hand,
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(b) and (d) are equivalent as a consequence of Lemma 4.5. (Note that, if F(Σ) is a cylinder,
some nonzero vector in KerB is tangent to F(Σ) at every point.)

Finally, (c) implies (a). Indeed, if Dξ = 0 for a 1-form ξ �= 0, the Ricci identity (8-ii)
yields ξ ∧ρD = 0, and so the line subbundle I of T ∗Σ spanned by ξ contains the image of the
vector-bundle morphism u 
→ ρD(u, ·). (See the beginning of this proof.) As I is D-parallel,
ρD must be recurrent. �

REMARK 6.3. If a projectively flat torsionfree connection D on a simply connected
surfaceΣ is Ricci-recurrent, ρD is symmetric, and F(Σ) contains no nontrivial line segment,
then either ρD or −ρD is a positive-definite metric on Σ with nonzero constant Gaussian
curvature. In fact, ρD must be parallel and definite, for if it were parallel but not definite, or
non-parallel, F(U) would be a union of line segments, for some nonempty open set U ⊂ Σ .
(See Theorem 6.1(i) and (d) in Theorem 6.2.) Thus, ±ρD is a Riemannian metric with the
Levi-Civita connection D, and DρD = 0.

7. Equiaffine connections. Let D be a torsionfree connection on a surface Σ . By a
D-parallel area element we mean any nonzero D-parallel differential 2-form ±α onΣ defined,
at each point, only up to a sign. (The sign ± indicates its double-valuedness.) We will call D
an equiaffine connection if a D-parallel area element exists on Σ .

By (a) through (d) in Section 1, D is locally equiaffine if and only if its Ricci tensor ρD

is symmetric. In the case where Σ is simply connected, symmetry of ρD implies (global)
equiaffinity of D on Σ , and a single-valued D-parallel area form on Σ exists as well.

REMARK 7.1. For an equiaffine torsionfree connection D on a closed surface Σ , ev-
ery diffeomorphism Σ → Σ which is affine (that is, sends D onto itself) is also unimodular
in the sense of preserving some (or any) D-parallel area element ±α on Σ . In fact, an affine
diffeomorphism obviously sends ±α onto a constant multiple ±cα. However, since ±α con-
stitutes a smooth positive measure density, invariance of the area

∫
Σ α under diffeomorphisms

implies that c = ±1.

Given a surface Σ with a projectively flat torsionfree connection D such that ρD is sym-
metric, let D̂ be the pullback of D to the universal covering surface Σ̂ of Σ . While D̂ is
always equiaffine, it is clear that D is equiaffine on Σ if and only if the affine diffeomor-
phisms Σ̂ → Σ̂ forming the deck transformation group π1Σ are all unimodular. On the other
hand, every deck transformation in π1Σ gives rise to the corresponding push-forward linear
isomorphism Ker B̂ → Ker B̂ of the 3-dimensional space Ker B̂ defined as in (13) for D̂ and
Σ̂ rather than D and Σ . (Cf. Lemma 4.3(i).) In other words, π1Σ has a natural linear rep-
resentation in Ker B̂, and the immersion F̂ : Σ̂ → B̂ defined as in Lemma 4.3 is obviously
equivariant relative to it.

REMARK 7.2. For Σ,D, Σ̂ and D̂ as in the last paragraph, D is equiaffine on Σ if
and only if the representation of π1Σ in Ker B̂ just described consists of operators with de-
terminant ±1. (In fact, according to Remark 4.6 and the paragraph preceding it, choosing a
D̂-parallel area form in Σ̂ amounts to fixing a volume form in Ker B̂.)



PROJECTIVELY FLAT SURFACES 579

Let Σ be a fixed closed surface. Any projectively flat torsionfree connection D on Σ
such that ρD is symmetric can be constructed as follows, in terms of the universal covering
surface Σ̂ of Σ and the action on Σ̂ of the deck transformation group π1Σ . We begin by
choosing a linear representation of π1Σ in a real 3-space V . In view of Theorem 5.1, we now
only need to prescribe an equivariant immersion Φ̂ : Σ̂ → V , transverse to all lines through
0. To this end, we choose a fundamental domain for the action of π1Σ on Σ̂ , in the form of
a curvilinear polygon Q ⊂ Σ̂ on which the action of π1Σ realizes standard identifications
between some pairs of edges. (See [25, pp. 148–149].) Our Φ̂, chosen arbitrarily on a small
neighborhood of one vertex ofQ, is then propagated to neighborhoods of other vertices, with
the aid of linear transformations assigned to standard generators of π1Σ . Next, Φ̂ is extended
from (smaller) neighborhoods of the vertices to narrow tubular neighborhoods of a half of the
total number of edges, chosen so as to be either pairwise disjoint (Σ nonorientable), or so
that each selected edge shares a vertex with exactly one other selected edge (Σ orientable).
Generators of π1Σ are used, again, to propagate the immersion Φ̂ to neighborhoods of the
remaining edges. Finally, we extend Φ̂ to the interior of Q, leaving it unchanged near the
boundary, and from there to all of Σ̂ , in a manner uniquely determined by the requirement of
equivariance.

Not all steps of this process are always possible, as the transversality requirement may
preclude extensibility of the immersion. For instance, if Σ is a closed surface and we try
to immerse in V not just Σ̂ , but also Σ itself (which amounts to choosing the trivial repre-
sentation), the immersion Φ̂ will not exist except when Σ is diffeomorphic to the 2-sphere
(Remark 4.7).

REMARK 7.3. The divergence formula
∫
Σ(divDw)α = 0 for compactly supported C1

vector fields w on a manifoldΣ remains valid also when D is just a torsionfree connection on
Σ with a D-parallel volume element ±α (defined analogously as an area element in the case
of surfaces).

In fact, using a finite partition of unity, we may reduce the question to the case where the
compact support of w is contained in the domain of a coordinate system yj . Since Dα = 0,
we have Γ kjk = ∂j log |α1···r |, where r = dimΣ , and so

∫
Σ(divDw)α equals the Lebesgue

integral of the Euclidean divergence ∂j (wj |α1···r |), which vanishes, since so do the integrals
of the individual terms, for each fixed j .

8. The 2-sphere and projective plane. For the 2-sphere S2 we have the following
classification result, cf. [20, p. 91].

COROLLARY 8.1. The assignment described at the end of Theorem 5.1 establishes a
bijective correspondence between the equivalence classes of

(i) projectively flat torsionfree connections D with symmetric Ricci tensors on the 2-
dimensional sphere Σ ,

and those of
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(ii) 2-spheres S embedded in a fixed 3-dimensional real vector space V and transverse
to all lines in V passing through 0.

The equivalence relations are provided by: affine diffeomorphisms between connections onΣ
in (i), linear isomorphisms V → V in (ii).

PROOF. This is immediate from Theorem 5.1 and Remark 4.7. �

Connections D, D̃ on manifolds Σ, Σ̃ are called projectively equivalent if some diffeo-
morphism Σ → Σ̃ sends the geodesics of D onto (re-parametrized) geodesics of D̃.

On the 2-sphere Σ there exists just one projective equivalence class of projectively flat
torsionfree connections D with symmetric Ricci tensors (cf. [20, Sect. 1.7]). Indeed, the
diffeomorphismΣ → S described in Remark 4.7 for F = Φ and V = KerB (see Lemma 4.3)
sends the geodesics of D (cf. Remark 3.4(a)) onto the great circles in S.

REMARK 8.2. The assertion of Corollary 8.1 remains true also when one replaces the
phrase 2-sphere in (i) with real projective plane, and adds to the end of (ii) the clause as well
as invariant under multiplication by −1.

Indeed, let Ψ : S2 → S2 be the fixed-point free involution corresponding to the two-fold
covering S2 → RP2, and let D be the pullback to S2 of a given projectively flat torsionfree
connection with a symmetric Ricci tensor on RP2. Thus, Ψ ∗α = − α for any fixed D-parallel
area form α on S2, since Ψ is an orientation-reversing affine diffeomorphism (Remark 7.1).
From Remark 4.4 we now get F(Ψ (y)) = −F(y) for every y ∈ S2 and the immersion F of
Lemma 4.3, while, by Remark 4.7, F is an embedding.

9. Projectively flat 2-tori and Klein bottles. For any fixed real number a �= 1, the
set S = {(z, |z|a); z ∈ C � {0}} is a surface in the real vector space V = C × R, transverse
to all lines containing 0. Let D denote the centroaffine connection on S (see Section 3). The
assignment (z, |z|a) 
→ z is a diffeomorphism between S and the multiplicative group C�{0},
which turns S into an Abelian Lie group. The group translations are affine diffeomorphisms
S → S, and, for a = − 2 only, they are all unimodular (Section 7): under our identification
C � {0} ≈ S, the translation by q ∈ C � {0} corresponds to the restriction to S of the
linear automorphism (z, t) 
→ (qz, |q|at) of V = C × R, which has the determinant |q|a+2

(cf. Remarks 4.4 and 4.6; note that automorphisms leaving S invariant give rise to affine
diffeomorphisms S → S). Similarly, for any q ∈ (0,∞), the restriction to S of the linear
transformation (z, t) 
→ (q1/2z, qa/2t) is an affine diffeomorphism, unimodular if a = − 2.

REMARK 9.1. Unless a = 0, the above surface S contains no nontrivial line segment.
Indeed, for a segment in C � {0} parametrized by t 
→ z = ct + b, where b, c are nonzero
complex numbers, |z|a cannot be a linear function of the parameter t , since by raising |z|a to
the power 2/a one obtains the polynomial |z|2 = |ct + b|2 of degree 2 in t .

The connections on the 2-torus, discussed below, are among those described by Opozda
[18, Example 2.10]. Our description is different, for reasons dictated by our applications.
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EXAMPLE 9.2. Any q ∈ C such that 0 �= |q| �= 1 obviously generates a multiplicative
subgroup G of C � {0}, isomorphic to Z, for which the quotient Lie group (C � {0})/G is
a torus. For a �= 1 and S as above, this fact, combined with the isomorphic identification
C � {0} ≈ S, gives rise to a torus group Σ = S/Z, where the action of Z on S corresponds
to G acting on C � {0}. The centroaffine connection D on S, being translation-invariant,
descends to a translation-invariant projectively flat torsionfree connection onΣ , also denoted
by D. Again, D is equiaffine on the torusΣ if a = − 2. If, in addition, q ∈ (1,∞), the affine
diffeomorphism (z, t) 
→ (q1/2z, qa/2t) mentioned above, whose square is the generator of
the Z action, commutes with the Z action on S, and so it descends to a fixed-point-free affine
involution Ψ : Σ → Σ , while D then gives rise to a projectively flat torsionfree connection,
again denoted by D, on the Klein bottle Σ/Z2, with the action of Z2 on Σ generated by
Ψ . Finally, D is not Ricci-recurrent unless a = 0. Otherwise, Remarks 9.1 and 6.3 would
contradict the Gauss-Bonnet theorem.

10. A differential equation. Let D be a projectively flat torsionfree connection on
a surface Σ such that the Ricci tensor ρD is symmetric. We denote by L the second-order
partial differential operator sending each twice-covariant symmetric tensor field τ on Σ to a
differential 2-form Lτ on Σ valued in 2-forms, defined, in the notation of Remark 1.4 and
Section 2, by

Lτ = ddDτ + τ ∧ ρD .(15)

The main result of this section, Theorem 10.2(i), provides a simple topological condition
sufficient for solvability of the linear equation Lτ = A, where the unknown τ is a twice-co-
variant symmetric tensor on a surfaceΣ with a connection D satisfying specific assumptions.
Theorem 10.2(ii) establishes the extent to which a solution τ is nonunique, by describing the
solutions of the associated linear homogeneous equation. In local coordinates, the condition
Lτ = A means that Ajklm is equal to

τmk,lj − τlk,mj − τmj,lk + τlj,mk + τmkRlj − τlkRmj − τmjRlk + τljRmk .(16)

Here A is a given four-times covariant tensor with Akjlm = −Ajklm = Ajkml . According to
Theorem 10.2(ii), when Σ is simply connected, (16) vanishes if and only if τjk = ξk,j + ξj,k

for some 1-form ξ on Σ .
We begin with a lemma.

LEMMA 10.1. Suppose that D is a projectively flat torsionfree connection on a surface
Σ , the Ricci tensor ρD of D is symmetric, B and L are the operators given by (12) and (15),
while ∇ denotes the flat connection in X = (T ∗Σ)∧2 ⊕ T ∗Σ , defined in Lemma 4.1.

(a) For a fixed differential 2-form A on Σ valued in 2-forms, the existence of a twice-
covariant symmetric tensor field τ onΣ with Lτ = A is equivalent to the d∇-exactness of the
X -valued 2-form (A, 0) on Σ .

(b) Any twice-covariant symmetric tensor field τ on Σ gives rise to the X -valued 1-
form (dDτ, τ ), and then
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i) Lτ = 0 if and only if (dDτ, τ ) is d∇-closed,
ii) (dDτ, τ ) is d∇-exact if and only if τ = Bξ for some real-valued 1-form ξ .

PROOF. By (4), d∇(ζ, λ) = (dζ + λ ∧ ρD, dDλ − ζ ) whenever ζ is a 1-form on Σ
valued in 2-forms and λ is a twice-covariant tensor on Σ viewed as a T ∗Σ-valued 1-form, cf.
Remark 1.1, so that the pair (ζ, λ) is an X -valued 1-form. (The term −ζ in dDλ − ζ , treated
here, in accordance with Remark 1.3, as a 2-form valued in 1-forms, arises, since, by summing
ζ cyclically over its arguments, we get a real-valued differential 3-form on the surfaceΣ , that
is, 0.) Therefore, d∇-exactness of (A, 0) in (a) means that A = Lλ for some twice-covari-
ant tensor λ, while, by (6), Lλ remains unchanged when λ is replaced by its symmetric part,
which proves (a). Next, for τ as in (b), the above formula for d∇(ζ, λ), applied to ζ = dDτ

and λ = τ , yields (i).
On the other hand, d∇-exactness of (dDτ, τ ) means that (dDτ, τ ) = ∇(Θ, 2ξ) or, equiv-

alently, dDτ = DΘ − 2ξ ∧ ρD and τ = 2Dξ − Θ , for some (real-valued) 2-form Θ and
1-form ξ . Taking the transpose of the last equality (Remark 1.1) we get τ ∗ = 2(Dξ)∗ + Θ ,
and so τ = (τ + τ ∗)/2 = Dξ + (Dξ)∗ = Bξ .

Conversely, if τ = Dξ + (Dξ)∗ for a 1-form ξ , we get the d∇-exactness relations dDτ =
DΘ − 2ξ ∧ ρD and τ = 2Dξ −Θ with the 2-form Θ = Dξ − (Dξ)∗ (that is, Θ = dξ ). In
fact, the second relation is obvious, and the first follows from (7) and (8). �

THEOREM 10.2. Given a projectively flat torsionfree connection D with a symmetric
Ricci tensor on a simply connected surface Σ , let B,L be as in (12) and (15).

(i) If Σ is noncompact and A is any differential 2-form on Σ valued in 2-forms, then
Lτ = A for some twice-covariant symmetric tensor τ on Σ .

(ii) The twice-covariant symmetric tensors τ with Lτ = 0 are precisely the tensors Bξ
for all real-valued 1-forms ξ on Σ .

(iii) A 1-form ξ on Σ is determined by the tensor Bξ uniquely up to adding an element
of the 3-dimensional vector space KerB.

PROOF. Assertion (i) is immediate from Lemma 10.1(a): dimΣ = 2, so that the
(T ∗Σ)∧2-valued 2-form (A, 0) is d∇-closed, and hence d∇-exact, as H 2(Σ,R) = {0} due
to noncompactness of Σ . (Cf. the lines preceding Remark 1.1.) Similarly, (ii) follows from
Lemma 10.1(b), since Σ is simply connected, and so d∇-closedness of (dDτ, τ ) is equivalent
to its d∇-exactness, while Lemma 4.3(i) gives (iii). �

REMARK 10.3. The differential operator L given by (15) (and (16)), sending twice-
covariant symmetric tensor fields to differential 2-forms valued in 2-forms, is well-defined
on manifolds Σ of any dimension r ≥ 2, even though our rationale for writing d instead of
dD applies only when r = 2. The principal symbol of −L/2 equals that of the quasi-linear
operator sending a metric to its four-times covariant curvature tensor (cf. (3)). In some cases,
the equality extends beyond the principal symbols; see (c) in Section 16.
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11. The case of closed surfaces. The construction in Section 21 requires solvability
of the equation

Lτ = εα ⊗ α with ε ∈ {1,−1} ,(17)

where the unknown is a twice-covariant symmetric tensor field τ on a surface Σ carrying an
equiaffine projectively flat torsionfree connection D, while ±α is a D-parallel area element
(Section 7), and L is given by (15). The value of ε is of no consequence for solvability of
(17), since L is linear; in other words, solving (17) means, up to a factor, finding τ such that
Lτ is parallel and nonzero. We have the following result.

THEOREM 11.1. On every closed surfaceΣ , (17) holds for some non-Ricci-recurrent,
equiaffine, projectively flat torsionfree connection D, some twice-covariant symmetric tensor
field τ , and a D-parallel area element ±α.

We precede the proof of Theorem 11.1, given in Section 12, with three lemmas.
A fixed D-parallel area element ±α on a surface Σ with an equiaffine torsionfree con-

nection D, cf. Section 7, can be used to identify twice-covariant symmetric tensors τ on Σ
(or, 2-forms A on Σ valued in 2-forms) with twice-contravariant symmetric tensors T on Σ
(or, respectively, functions ψ : Σ → R). Specifically, such τ and T are sections of the vector
bundles [T ∗Σ]
2 and [TΣ]
2, while ±α gives rise to an isomorphism TΣ → T ∗Σ acting on
vector fields v by v 
→ α(v, ·), and hence defined at each point only up to a sign; however,
the isomorphism [TΣ]
2 → [T ∗Σ]
2 induced by it, and sending T to τ , is single-valued.
In coordinates, τjk = αjl αkmT

lm. Similarly, our A are sections of a line bundle in which
α⊗α is a global single-valued trivializing section, and so we can identify A with ψ such that
A = ψα ⊗ α.

LEMMA 11.2. Let ±α be a D-parallel area element on a surface Σ with an equiaf-
fine projectively flat torsionfree connection D having the Ricci tensor ρD. Under the above
identifications, the operator L in (15) corresponds to an operator F sending twice-contra-
variant symmetric tensor fields T to functions Σ → R. Explicitly, the operator F is given by
FT = divD(divDT ) + 〈ρD, T 〉, where 〈 , 〉 stands for the natural pairing between covariant
and contravariant 2-tensors. In coordinates, FT = T jk,jk + T jkRjk .

PROOF. Let us fix a D-parallel area element ±α on Σ , and let α−1 be the reciprocal
bivector of α, with the components αjk such that αjl αlk = δ

j
k . Thus, αjkαjk = − 2, and,

whenever Ajklm are the components of a 2-form A valued in 2-forms, 4ψ = αjkαlmAjklm

for the function ψ such that A = ψα ⊗ α. Now, if Lτ = A, the components Ajklm are given
by (16). Hence, for reasons of skew-symmetry, 4ψ = αjkαlm(τmk,lj+τmkRlj ), which equals
T jk,jk + T jkRjk as α−1 is D-parallel and T jk = αjl αkmτml . �

REMARK 11.3. In the notation of Lemma 11.2, we have FT = 1 for the non-Ric-
ci-recurrent equiaffine translation-invariant projectively flat torsionfree connection D on the
2-torusΣ described in Example 9.2 (with a = − 2) and a suitable translation-invariant twice-
contravariant symmetric tensor field T on Σ . Indeed, it suffices to choose T so that the
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constant 〈ρD, T 〉 equals 1, as the function divD(divDT ), being translation-invariant (that is,
constant), must vanish by the divergence formula (Remark 7.3).

LEMMA 11.4. Given a projectively flat torsionfree connection D on a surface Σ , a
D-parallel area element ±α, and a function f : Σ → (0,∞), let D̃ be the projectively flat
torsionfree connection on Σ with D̃ = D + 2ξ 
 Id for ξ = − d log f , cf. Lemma 3.1. The
formula α̃ = f−3α then defines a D̃-parallel area element ±α̃ on Σ . Furthermore, if L
and F are the operators described in (15) and Lemma 11.2, while L̃ and F̃ stand for their
analogues corresponding to D̃ and α̃, then

(a) L̃(f−2τ ) = f−2Lτ for any symmetric covariant 2-tensor τ on Σ ,
(b) F̃(f 4T ) = f 4FT for any symmetric contravariant 2-tensor T on Σ .

PROOF. The D̃-divergence of any vector fieldw (or, twice-contravariant symmetric ten-
sor field T ) clearly equals divDw + (r + 1)ξ(w) (or, divDT + (r + 3)T ξ ) whenever D and
D̃ are torsionfree connections on a manifold Σ of dimension r and D̃ = D + 2ξ 
 Id. Using
Lemma 3.1(i), we now easily obtain F̃T = FT + (r2 + 5r + 2)〈T , ξ ⊗ ξ〉 + 4〈T ,Dξ〉 +
(2r + 4)ξ(divDT ). When r = 2 and ξ = − d log f , this yields (b). As we then obviously
have D̃α̃ = 0 for α̃ = f−3α, assertion (a) follows. �

LEMMA 11.5. Let g a Riemannian metric of constant Gaussian curvature K on a
closed surface Σ , and let F be the operator defined in Lemma 11.2 with D replaced by the
Levi-Civita connection ∇ of g . If K < 0, or Σ is nonorientable and K > 0, then F is a
surjective operator from the space of C∞ twice-contravariant symmetric tensor fields on Σ
onto the space of C∞ functionsΣ → R.

PROOF. Let g−1 be the reciprocal metric, with the components gjk. The operator given
by f 
→ F(f g−1) clearly equals � + 2K , that is, sends any C∞ function f to �f + 2Kf ,
where � is the Laplacian of g , acting by �f = gjkf,jk . Since � + 2K is self-adjoint and
elliptic, its surjectivity will be immediate once we establish its injectivity.

Injectivity of � + 2K is clear when K < 0, as � + 2K then is a negative operator.
Suppose now that Σ is nonorientable and K > 0. The two-fold covering of Σ is the round
sphere S2 of curvature K , on which 2K is the lowest positive eigenvalue of −�, and the
corresponding eigenspace Ker(�+ 2K) consists of restrictions of linear functionals on R3 to
S2 treated as a sphere in R3 centered at 0. Eigenfunctions thus cannot descend to the projective
planeΣ , as they change sign under the antipodal involution, and injectivity of �+ 2K on Σ
follows. This completes the proof. �

Note that F is not surjective in the remaining cases: ifK = 0, orΣ is orientable andK is
a positive constant, the image of F is the L2-orthogonal complement of the kernel of�+2K .
Indeed, Ker(�+ 2K) = KerF∗ for the adjoint F∗ of F , given by F∗ψ = ∇dψ +Kψg for
any function ψ .
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12. Proof of Theorem 11.1. To prove Theorem 11.1, it suffices, by Lemma 11.2, to
exhibit a connection D on Σ with the stated properties and a twice-contravariant symmetric
tensor field T onΣ such that FT = 1, i.e., divD(divDT )+ 〈ρD, T 〉 = 1.

When Σ is diffeomorphic to the 2-torus, D and T exist according to Remark 11.3.
If our surface is diffeomorphic to the Klein bottle, we may denote it by Σ/Z2 (rather

thanΣ), and let Σ,D, T be as in Remark 11.3, the Z2 action on the torus Σ being generated
by the affine involution Ψ of Example 9.2. As FT = FT ′ = 1, where T ′ is the push-forward
of T under Ψ , the Ψ -invariant tensor field (T + T ′)/2 on Σ descends to the required tensor
field on the Klein bottle Σ/Z2.

If Σ is not diffeomorphic to the 2-torus, or the Klein bottle, or the 2-sphere, we may
choose on Σ a Riemannian metric g of constant Gaussian curvature and denote by ∇ its Le-
vi-Civita connection. The required connection D on Σ can now be obtained from ∇ by a
projective modification. Namely, we set D = ∇ + 2ξ 
 Id (notation of Lemma 3.1), with
ξ = − d log f for a suitable function f : Σ → (0,∞). In view of Lemma 11.4(a) with D̃,D
replaced by D,∇, the operator F corresponding to D is surjective since so is, by Lemma 11.5,
the analogue of F corresponding to ∇.

We still need to verify here that, for a suitable choice of f , the connection D will not be
Ricci-recurrent. Although this might be justified by very general reasons (namely, Ricci-re-
currence of D would amount to imposing on f a system of partial differential equations), a
direct geometric argument is also possible. Specifically, given a nonempty contractible open
set U ⊂ Σ for which the immersion F : U → KerB of Lemma 4.3 is an embedding,
a compactly supported small deformation of the image F(Σ) yields a surface Ŝ in KerB,
again transverse to lines through 0, and such that the radial projection π : F(U) → Ŝ is a
diffeomorphism; π sends F -images of geodesics in U onto (re-parametrized) geodesics of
the centroaffine connection D̃ on Ŝ. (See Remark 3.4(a).) Let the connection D on Σ now be
the result of replacing ∇, just on U, with the pullback of D̃ under the composite π ◦ F . By
Lemma 3.1, D = ∇ + 2ξ 
 Id with ξ = − d log f for some function f : Σ → (0,∞) equal
to 1 outside a compact subset of U. Choosing Ŝ so that some nonempty open subset of Ŝ is
not contained in a quadric surface, and at the same time contains no nontrivial line segment,
we now ensure that D is not Ricci-recurrent. (Cf. Theorems 6.1 and 6.2.)

Finally, the existence of the required D and T on the 2-sphere is immediate from their
existence on the projective plane.

PART II. NULL PARALLEL DISTRIBUTIONS

A general local-coordinate form of pseudo-Riemannian metrics with null parallel dis-
tributions was found by Walker [27]; for a coordinate-free version, see [7]. In this part we
discuss a certain class of null parallel distributions without using Walker’s theorem directly.
However, our ultimate application (in Part III) of the results obtained here does lead to a
special type of Walker coordinates; see formulae (29) in Section 22.
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13. Curvature conditions. Let P be a null parallel distribution of dimension r on
an n-dimensional pseudo-Riemannian manifold (M, g). Thus, the g-orthogonal complement
P⊥ is a parallel distribution of dimension n − r . If the sign pattern of g has i− minuses and
i+ pluses, then

(i) r ≤ min(i−, i+) , (ii) P ⊂ P⊥ , (iii) r ≤ n/2 .(18)

In fact, P is null, which gives (18-ii) and hence r ≤ n−r , that is, (18-iii). Now (18-i) follows:
in a pseudo-Euclidean space with the sign pattern as above, i± is the maximum dimension of
a subspace on which the inner product is positive/negative semidefinite.

Every null parallel distribution P satisfies the curvature conditions

(a) R(P,P⊥, ·, ·) = 0 , (b) R(P,P, ·, ·) = 0 , (c) R(P⊥,P⊥,P, ·) = 0 ,(19)

where (19-a) states that R(v, u,w,w′) = 0 for all vector fields v, u,w,w′ such that v is
a section of P and u is a section of P⊥, and similarly for (19-b), (19-c). Indeed, given
such v, u,w,w′, (1) implies that R(w,w′)v is a section of P , and so it is orthogonal to u.
This gives (19-a), while (19-a) and (18-ii) yield (19-b). Finally, (19-a) and the first Bianchi
identity imply (19-c).

We will focus our discussion on the case where, in addition to (19), the conditions

(i) R(P, ·,P⊥, ·) = 0 , (ii) R(P⊥,P⊥, ·, ·) = 0(20)

hold for a null parallel distribution P on a pseudo-Riemannian manifold.
Our interest in (20) arises from the fact that a 2-dimensional null parallel distribution P

with (20) exists on every conformally symmetric pseudo-Riemannian manifold (M, g) with
rank W= 1. (See Lemma 17.3(ii).)

REMARK 13.1. A vector field w on the total space M of a bundle is π-projectable
onto the base manifold Σ , where π : M → Σ is the bundle projection, if and only if, for
every vertical vector field u onM , the Lie bracket [w,u] is also vertical. This is easily verified
in local coordinates forM that make π appear as a Euclidean projection.

14. Projectability of the Levi-Civita connection. We will use the following assump-
tion. The clause about the leaves of P⊥ follows from the other hypotheses if one replaces M
by a suitable neighborhood of any given point.

P is an r -dimensional null parallel distribution on a pseudo-Riemannian mani-
fold (M, g) with dimM = n, and P⊥ has contractible leaves which are the
fibres of a bundle projection π :M→Σ for some r -dimensional manifold Σ .

(21)

Given a null parallel distribution P on a pseudo-Riemannian manifold (M, g), we say that
the Levi-Civita connection ∇ of g is P⊥-projectable, cf. [12], if, for π,Σ chosen, locally, as
in (21), and for any vector fields w, v in M such that w is π-projectable and v is a section of
P parallel along P⊥, the section ∇wv of P is parallel along P⊥ as well.
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LEMMA 14.1. A null parallel distribution P on a pseudo-Riemannian manifold
(M, g) satisfies condition (20-i) if and only if the Levi-Civita connection ∇ of (M, g) is P⊥-
projectable.

PROOF. For w, v as above and any section u of P⊥, (1) gives ∇u∇wv = R(w, u)v, as
the other two terms in (1) vanish: v is parallel along P⊥, and so ∇uv = ∇[w,u]v = 0, where
[w,u] is a section of P⊥ = Ker dπ due to π-projectability of w and Remark 13.1. �

Let us now assume (21), and let the Levi-Civita connection ∇ be P⊥-projectable.
(i) For any π-projectable vector field w, if u is a section of P⊥, then so is ∇uw.

(ii) Sections v of P parallel along P⊥ are in a natural bijective correspondence Λ with
sections ξ of T ∗Σ . It assigns to v the 1-form ξ = Λ(v) on Σ such that ξ((dπ)w) = g(v,w)
for any π-projectable vector field w on M . (Here and below (dπ)w denotes the vector field
on Σ onto which w projects.)

(iii) For any φ : Σ → R treated as a function on M constant along P⊥, the g-gradient
v = ∇φ is a section of P parallel along P⊥ and Λ(v) = ξ for the section ξ = dφ of T ∗Σ .

(iv) ∇ gives rise to a torsionfree connection D in the tangent bundle TΣ , which we call
the P⊥-projected connection for g and P , and which is characterized by D(dπ)wξ = Λ(∇wv)
whenever ξ = Λ(v), for π-projectable vector fields w on M and sections v of P parallel
along P⊥.

(v) Λ(R(w,w′ )v) = − ξRD((dπ)w, (dπ)w′) if ξ = Λ(v), with ξRD as in (7), for
sections v of P parallel along P⊥, the curvature tensors R of g and RD of the P⊥-projected
connection D onΣ , and π-projectable vector fields w,w′ on M .

(vi) P is g̃-parallel for the conformally related metric g̃ = f −2g on M , whenever
f : Σ → (0,∞), so that f may be treated as a function on M constant along P⊥. The
Levi-Civita connection ∇̃ of g̃ then is P⊥-projectable, and its P⊥-projected connection is
D̃ = D + 2dφ 
 Id with φ = − log f (notation of Lemma 3.1).

Indeed, (i) follows as ∇uw = [u,w] + ∇wu, while [u,w] (or ∇wu) is a section of P⊥
by Remark 13.1 (or, respectively, since P⊥ is parallel). Next, ξ in (ii) is well defined: two
choices of w having the same (dπ)w differ by a section of P⊥ (orthogonal to v). Also, the
function g(v,w) : M → R descends to Σ . Namely, du[g(v,w)] = 0 for any section u of
P⊥, as ∇uv = 0 and, by (i), g(v,∇uw) = 0. Injectivity of Λ is obvious; its surjectivity easily
follows, since, by (19-c) and (1), the connections induced by ∇ in the restrictions of P to the
leaves of P⊥ are all flat. This proves (ii). Next, (iii) is obvious from (ii), as v = ∇φ, being
orthogonal to P⊥, is a section of P , and hence so is ∇wv for any vector field w, which gives
g(∇uv,w) = g(∇wv, u) = 0 for sections u of P⊥. In (iv), D is clearly well-defined, and it is
torsionfree: the second covariant derivative Ddφ of any function φ : Σ → R is symmetric,
as (iii) yields (Ddφ)((dπ)w, (dπ)w′) = g(∇wv,w′) = (∇dφ)(w,w′) for v = ∇φ and π-
projectable vector fields w,w′ on M . Finally, (v) follows from (iv), (1), (4) and (7-i), while
(a) in Section 2, (iii) and (i) imply (vi).
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15. Pullbacks of covariant tensors. We will say that a k-times covariant tensor field
λ on a manifoldM annihilates a distributionP onM if k ≥ 1 and λ(v1, . . . , vk) = 0 whenever
v1, . . . , vk are vector fields onM and vj is a section of P for some j ∈ {1, . . . , k}.

LEMMA 15.1. Suppose that we have (21) and (20-i), D is the P⊥-projected connec-
tion on Σ , cf. Section 14, and τ is a k-times covariant tensor field on Σ .

(a) If k ≥ 1, the pullback π∗τ of τ to M annihilates P⊥.
(b) For k ≥ 0, we have ∇(π∗τ ) = π∗(Dτ ), with both covariant derivatives treated as

(k + 1)-times covariant tensor fields.
Also, if λ is a k-times covariant tensor field on M and k ≥ 1, while λ and ∇λ both

annihilate P⊥, then λ = π∗τ for a unique k-times covariant tensor field τ onΣ .

PROOF. Since P⊥ = Ker dπ , (a) follows. To obtain (b), we need only to consider the
cases k = 0 and k = 1, as the class of covariant tensor fields τ onΣ with ∇(π∗τ ) = π∗(Dτ )
is closed under both addition (with any fixed k) and tensor multiplication. For k = 0, (b) is
obvious; on functions, ∇ = D = d . If k = 1, so that τ is a section of T ∗Σ , (ii) in Section
14 gives π∗τ = g(v, ·) for a section v of P parallel along P⊥, and then ∇(π∗τ ) = π∗(Dτ )
by (iv) in Section 14. This proves (b). In the final clause, we set τ ((dπ)w1, . . . , (dπ)wk) =
λ(w1, . . . , wk) for π-projectable vector fields wj onM . That du[λ(w1, . . . , wk)] = 0 for any
section u of P⊥ now follows, since ∇λ annihilates P⊥ (and so ∇uλ = 0), while each ∇uwj is
a section of P⊥ by (i) in Section 14. �

16. Riemann extensions. Let M = T ∗Σ be the total space of the cotangent bundle
of a manifoldΣ . Our convention is that, as a set, T ∗Σ = {(y, η); y ∈ Σ and η ∈ TyΣ}. Any
fixed connection D onΣ gives rise to the pseudo-Riemannian metric hD on T ∗Σ characterized
by the condition

hD
x (w,w) = 2wvrt(dπxw

hrz) for x = (y, η) ∈ M = T ∗Σ and w ∈ T xM ,(22)

wvrt, whrz being the vertical and D-horizontal components of w, with wvrt ∈ T ∗
yΣ due to the

identification between the vertical space at x and the fibre T ∗
yΣ . In other words, all vertical and

all D-horizontal vectors are hD-null, while hD
x (ζ,w) = ζ(dπxw) for x = (y, η) ∈ T ∗Σ = M ,

a vertical vector ζ ∈ Ker dπx = T ∗
yΣ , and any vector w ∈ T xM . Here π : T ∗Σ → Σ is the

bundle projection.
Our hD is one of Patterson and Walker’s Riemann extension metrics [19]. In the coordi-

nates yj, pj for T ∗Σ obtained from an arbitrary local coordinate system yj in Σ ,

hD = 2dpjdyj − 2pjΓ
j
kl dy

kdyl ,(23)

where the products of differentials stand for symmetric products, and Γ kjl are the components

of D in the coordinates yj. Namely, due to the coordinate expression for the covariant deriv-
ative, the horizontal lift of a vector field w tangent to Σ has the components ẏj = wj and
ṗl = Γ

j
kl w

kpj in the coordinates yj, pj . Thus, (23) implies (22).
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We will not use the easily-verified facts that the vertical distribution P on T ∗Σ is hD-par-
allel, its Levi-Civita connection is P⊥-projectable in the sense of Section 14, and the P⊥-pro-
jected connection on Σ coincides with the original D.

Another interesting example [27] arises whenΣ is a manifold of dimension r ≥ 2 with a
global coordinate system yj and with a fixed twice-covariant symmetric tensor field λ, while
D̃ is the flat torsionfree connection on Σ with component functions in the coordinates yj all
equal to zero. On N = T ∗Σ we have the pseudo-Riemannian metric

h̃ = 2dqjdyj − 2λkldykdyl with λkl not depending on the coordinates qj ,(24)

in the standard coordinate system for N = T ∗Σ , this time denoted by yj, qj . Then
(a) the vertical subbundle P of TN is a null parallel distribution on the pseudo-Riem-

annian manifold (N, h̃), and it is spanned by h̃-parallel vector fields,
(b) the Levi-Civita connection ∇̃ of h̃ is P⊥-projectable (cf. Section 14), and the cor-

responding P⊥-projected connection is D̃, and
(c) h̃ is Ricci-flat, while its four-times covariant curvature and Weyl tensors are given

by R̃ = W̃ = π∗(L̃λ), with L̃ as in Remark 10.3 (for D̃ rather than D).
(See also Lemma 20.3.) As usual, π : N → Σ is the bundle projection.

Indeed, with the index ranges j, k, l,m ∈ {1, . . . , r} and µ, ν ∈ {r + 1, . . . , 2r}, let cµj
be a nonsingular r × r matrix of constants. In the new coordinates yj, yµ for N defined by
qj = cµjy

µ, the components of h̃ are h̃jk = − 2λjk, h̃µν = 0 and h̃µj = h̃jµ = cµj , so that
all three-times “covariant” Christoffel symbols of h̃ vanish except Γ̃jkl = λjk,l −λkl,j −λjl,k ,
the comma denoting partial differentiation. This gives (a) and (b); the yµ coordinate vector
fields are parallel and span Ker dπ . Also (cf. (3)), R̃jklm = Γ̃j lm,k − Γ̃klm,j = λmk,lj −
λlk,mj −λmj,lk +λlj,mk are the only (possibly) nonzero curvature components, which implies
(c), Ricci-flatness of h̃ now being clear, since h̃jk = 0.

PART III. CONFORMALLY SYMMETRIC MANIFOLDS

This part deals with the central topic of the present paper. In Sections 17 through 20 we
provide successive steps leading to a proof, in Section 22, of our main classification result.

17. Basic properties. Given a pseudo-Riemannian manifold (M, g) of dimension
n ≥ 4 which is conformally symmetric (that is, ∇W = 0), let rankW be the rank of its
Weyl tensor acting on exterior 2-forms at each point, and let P be the parallel distribution on
M spanned by all vector fields of the formW(u, v)v′ for arbitrary vector fields u, v, v′ onM .

LEMMA 17.1. For any conformally symmetric pseudo-Riemannian manifold (M, g),
the following three conditions are equivalent:

(i) rankW = 1,
(ii) the parallel distribution P introduced above is two-dimensional and null,

(iii) W = εω⊗ ω for some ε = ±1 and some parallel differential 2-form ω �= 0 on M ,
defined, at each point, only up to a sign, and having rank 2 at every point.
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Each of conditions (i) through (iii) holds if (M, g) is essentially conformally symmetric,
but not Ricci-recurrent, as defined in the Introduction.

PROOF. Since W acting on 2-forms is self-adjoint, (i) implies (iii): rank ω = 2 as
ω ∧ ω = 0 by the first Bianchi identity for W = εω⊗ ω. If (iii) holds, P is the image of
the vector-bundle morphism acting by u 
→ ωu (see (10) for τ = ω), and so dimP = 2.
As contractions of W vanish, all vectors in P are null. Thus, (iii) yields (ii). Finally, if we
assume (ii) and choose, locally, a differential 2-form ω′ such that the image of the morphism
u 
→ ω′u is P , then ω′ will span the image of W acting on 2-forms, proving (i). The final
clause is a known result [6, Theorem 9(ii)]. �

LEMMA 17.2. In any conformally symmetric pseudo-Riemannian manifold (M, g) of
dimension n ≥ 4 such that rank W= 1,

(a) the scalar curvature s is identically zero,
(b) the Ricci tensor ρ satisfies the Codazzi equation d∇ρ = 0, cf. Remark 1.2,
(c) R = W + (n− 2)−1g ∧ρ, with notation as at the end of Section 2,
(d) for every vector field u, the image ρu, defined by (10), is a section of the null

parallel distribution P appearing in Lemma 17.1(ii).

PROOF. For ω as in Lemma 17.1(iii), Rjkmsωsl = Rjkl
sωsm by (9) with λ = ω. Thus,

Rskωsl = Rjklsω
sj . Summing cyclically over j, k, l, we get Rjklsωsj = 0 (as P is the image

of ω, and so Rklsjωsj = 0 by (19-b)). Hence Rskωsl = 0. Also, W = εω ⊗ ω, so that
Wjkl

sωsm = ωjkWl
s
sm = 0. AsW = R− (n− 2)−1g ∧ σ (see the end of Section 2), we thus

have 0 = (n− 1)(n− 2)Wklsjω
sj = 2sωkl , and (a) follows. Next, sinceWjkl

sωsm, Rskωsl and
s all vanish, symmetry of Rjklsωsm in l,m, established above, implies analogous symmetry
of Rjlωkm − Rklωjm. Choosing a basis of a given tangent space in which ωjl = 0 unless
{j, l} = {1, 2}, then setting k = 1, m = 2, and using the latter symmetry for j, l > 2, or
j = 2 and l > 2, we obtain Rjl = 0 unless j, l ∈ {1, 2}. As P is the image of ω, this yields
(d). Finally, div∇W = 0 (i.e., Wjkl

s
,s = 0), since ∇W = 0. Hence, by the second Bianchi

identity, the Codazzi equation holds for the Schouten tensor σ (see the end of Section 2). As
(a) gives σ = ρ, (b) and (c) follow. �

For the case ∇R �= 0 in Lemma 17.2, see also [5, Theorem 7] and [6, Theorem 7].

LEMMA 17.3. For any conformally symmetric pseudo-Riemannian manifold (M, g)
with rank W= 1, and for ω,P as in Lemma 17.1, let ρ denote the Ricci tensor. Then

(i) ω, ρ,∇ρ and W all annihilate P⊥, in the sense of Section 15,
(ii) P satisfies the curvature conditions (20).

PROOF. To obtain (i), we fix a vector field v. Since ∇ρ is totally symmetric by Lemma
17.2(b), we only need to verify that the images of the vector-bundle morphisms TM → TM ,
obtained from ω, ρ and ∇vρ by index raising (cf. (10)), are all contained in P . (The case of
W in (i) is immediate from that of ω, sinceW = εω⊗ω.) For ω, the last claim is obvious: P
is the image of ω. For ρ, it follows from Lemma 17.2(b). For ∇vρ, it is immediate from the
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assertion about ρ, since P is parallel. This proves (i). Finally, (i) applied toW implies (ii), by
Lemma 17.2(c), since g(P,P⊥) = 0, while ρ annihilates P⊥ and P by (i) and (18-ii). �

THEOREM 17.4. Let (M, g) be a conformally symmetric pseudo-Riemannian mani-
fold of dimension n ≥ 4 such that rank W= 1, and let P be the 2-dimensional null parallel
distribution on M , described above. We may assume, locally, that the leaves of P⊥ are the
fibres of a bundle projection π : M → Σ for some surface Σ , and so, by Lemma 17.3(ii), Σ
carries the P⊥-projected torsionfree connection D defined in Section 14. Then

(i) the Ricci tensor ρD of D is symmetric,
(ii) g has the Ricci tensor ρ = (n− 2)π∗ρD,

(iii) dDρD= 0, that is, D is projectively flat, cf. Theorem 3.3,
(iv) DρD = 0 at π(x) ∈ Σ if and only if ∇R = 0 at x ∈ M ,
(v) ρD is recurrent, in the sense of Section 6, if and only if so is ρ,

(vi) the 2-form ω of Lemma 17.1(iii) equals π∗α for a D-parallel area form α defined,
locally in Σ , up to a sign.

PROOF. By Lemma 17.3(i) with ∇ω = 0, the final clause of Lemma 15.1 applies to
both λ = ω and λ = ρ. We thus get (vi) (where Dα = 0 in view of Lemma 15.1(b) for τ = α,
as ∇ω = 0), and ρ = (n− 2)π∗τ for some symmetric covariant 2-tensor τ on Σ .

Lemma 17.2(c) gives (n − 2)R(w,w′)v = g(w, v)ρw′ − g(w′, v)ρw for any section v
of P⊥ and vector fields w,w′ on M . (Notation of (10); the terms involving W and ρv vanish
as W and ρ annihilate P⊥, by Lemma 17.3(i).) If w and w′ are π-projectable, while v is a
section of P parallel along P⊥, this equality, (v) in Section 14 and the relation ρ = (n−2)π∗τ
give RD = τ ∧ Id on Σ (cf. (5)); by contraction, we get τ = ρD, which proves (i) and (ii).
Now Lemmas 15.1(b) and 17.2(b) yield (iii) through (v). �

18. Conformal changes of the metric. Given a conformally symmetric pseudo-
Riemannian manifold (M, g) with rank W= 1, let us consider the following conditions im-
posed on a function f : M → R:

a) (2 − n)∇df = fρ, where n = dimM and ρ is the Ricci tensor,
b) the gradient ∇f is a section of the distribution P (see Section 17).

(25)

REMARK 18.1. Condition (25-b) for a null parallel distribution P on any pseudo-
Riemannian manifold (M, g) and a function f : M → R implies that �f = g(v, v) = 0 for
the section v = ∇f of P . Indeed, the image of ∇v : TM → TM is contained in P , and,
since ∇v is self-adjoint, its kernel contains P⊥ (and P); we thus get �f = 0 evaluating tr∇v
in a basis of any tangent space T xM , a part of which spans Px .

LEMMA 18.2. Let (M, g) be a conformally symmetric pseudo-Riemannian manifold
of dimension n ≥ 4 such that rank W= 1.

(i) Some neighborhood of any point of M admits a function f > 0 with (25), and, for
any such f , the conformally related metric g̃ = f−2g is Ricci-flat.
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(ii) If M is simply connected, then the vector space of functions f : Σ → R with (25)
is 3-dimensional, and such a function f is uniquely determined by its value and gradient at
any given point x, which are arbitrary elements of R and Px .

PROOF. The formula ∇(ξ, f ) = (∇ξ + (n− 2)−1fρ, df − ξ), with ρ standing for the
Ricci tensor of g , defines a connection ∇ in the vector bundle T ∗M ⊕ (M × R). (Notation as
in the lines preceding Remark 4.2; sections of T ∗M⊕ (M×R) are pairs (ξ, f ) consisting of a
1-form ξ and a function f .) The curvature tensor R of ∇ , evaluated from (1) with ψ = (ξ, f )

and (4), is given by R(u, v)ψ = (ξ ′(u, v), 0), where ξ ′ = − d∇∇ξ−(n−2)−1(ξ∧ρ+f d∇ρ)
with d∇∇ξ as in (7) for Σ = M and D = ∇. By (7), d∇∇ξ = ξR. As d∇ρ = 0 (see
Lemma 17.2(b)), ξ ′ = − ξR − (n− 2)−1ξ ∧ ρ.

Let the subbundle Y of T ∗M ⊕ (M × R) be the direct sum Z ⊕ (M × R), where Z is
the subbundle of T ∗M whose sections are the 1-forms ξ onM that annihilate P⊥ in the sense
of Section 15. The subbundle Y is ∇-parallel, that is, invariant under ∇-parallel transports,
since the distribution P⊥ is parallel. Consequently, Y is also ∇-parallel, due to the definition
of ξ ∧ ρ in Section 2 and the fact that ρ annihilates P⊥ (see Lemma 17.3(i)). Thus, ∇ has a
restriction to a connection in Y . Next, given a section (ξ, f ) of Y , Lemma 17.2(c) allows us
to replace R in ξR by (n− 2)−1g ∧ ρ. (Indeed, ξ = g(v, ·), where v is a section of P , so that
W(v, ·, ·, ·) = 0 and ρv = 0 by Lemma 17.3(i) and (18-ii).) However, ξ(g ∧ ρ) = − ξ ∧ ρ,
as ρv = 0. Thus, ξ ′ = 0 (see the last paragraph), and so the restriction of ∇ to Y is flat.

Finally, if M is simply connected, the assignment f 
→ (df, f ) is a linear isomorphism
of the space S of all functions f : Σ → R with (25) onto the space S ′ of ∇-parallel sections
of Y . Namely, injectivity of f 
→ (df, f ) is obvious; that it maps S into S ′, and is surjective,
follows from the definition of ∇. Our assertion is now immediate, as Remark 18.1 and (c) in
Section 2 imply Ricci-flatness of g̃ . �

PROPOSITION 18.3. If (M, g) is a conformally symmetric pseudo-Riemannian man-
ifold of dimension n ≥ 4 such that rank W= 1, and f : M → R is a positive function with
(25), then the conformally related metric g̃ = f −2g on M is, locally, a Riemannian product
of a Ricci-flat metric h̃ with the signature −−++ on a four-manifold N and a flat metric γ
on a manifold V of dimension n− 4. In addition,

(i) the 2-dimensional null parallel distribution P onM defined in Section 17 is tangent
to the N factor,

(ii) both P and P⊥ are spanned, locally, by g̃-parallel vector fields,
(iii) f is constant in the direction of the V factor.

PROOF. From (a) in Section 2 for any vector field u and any section v of P⊥, with
φ = − log f and w = ∇φ, we get ∇̃uv = ∇uv + g(u,w)v − g(u, v)w, where g(v,w)u = 0,
since w = ∇φ = − f−1∇f is, by (25-b), a section of P . The subbundles P⊥ and P of
TM , with P ⊂ P⊥, are thus ∇̃-parallel (invariant under ∇̃-parallel transports). Furthermore,
the restriction of ∇̃ to the subbundle P⊥ is flat: as g̃ = f−2g is Ricci-flat (Lemma 18.2(i)),
its four-times covariant curvature tensor R̃ equals its Weyl tensor W̃ = f−2W, and so it
annihilates P⊥ by Lemma 17.3(i). This proves (ii).
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Let U be a simply connected neighborhood of any given point of M . The g̃-parallel
(that is, ∇̃-parallel) sections of P⊥ defined on U form a vector space E of dimension n − 2,
on which g̃ is a degenerate symmetric bilinear form. The 2-dimensional g̃-nullspace E ′ of
E (i.e., the g̃-orthogonal complement of E) consists of all g̃-parallel sections of P . Since
g̃ descends to a (nondegenerate) pseudo-Euclidean inner product on E/E ′, we may choose a
(n−4)-dimensional vector subspace of E/E ′, on which g̃ is nondegenerate, and realize it as the
projection image of some subspace X of E with dimX = n− 4 such that g̃ is nondegenerate
on X . The distribution of dimension n − 4 on U spanned by the vector fields forming X
is clearly g̃-parallel and nondegenerate. Hence, by a classical result of Thomas [26], it is a
factor distribution, tangent to some factor manifold (V, γ ), in a local Riemannian-product
decomposition of (M, g). Obviously, γ is flat, as elements of X constitute γ -parallel vector
fields spanning the tangent bundle of V . Denoting by (N, h) the other factor manifold, we
get (i) (since P is orthogonal to all sections of P⊥, including elements of X ), as well as (iii)
(which follows from (i) and (25-b)). �

REMARK 18.4. Locally, condition (25) can be conveniently rephrased in terms of the
quotient surface Σ with the P⊥-projected connection D (cf. Theorem 17.4). Namely, (25-b)
means that f may be treated as a functionΣ → R, and then (25) is equivalent to the condition
Ddf = − fρD. This is immediate from Theorem 17.4(ii) and Lemma 15.1(b) applied to both
λ = f and λ = df .

Lemma 18.2(ii) could therefore be derived from an analogous statement about the equa-
tion Ddf = − fρD on Σ , which can be proved by the same argument, and constitutes the
2-dimensional case of a more general result of Gardner, Kriele and Simon [11].

19. Reduction of the dimension. Our next step in classifying conformally symmetric
manifolds with rank W= 1, in dimensions n ≥ 4, consists in reducing the problem to the case
n = 4.

For pseudo-Riemannian manifolds (N, h), (V, γ ) and a C∞ function f : N → (0,∞),
the warped product with the base (N, h), fibre (V, γ ), and warping function f is the pseu-
do-Riemannian manifold (M, g) given by M = N × V and g = h + f 2γ . (Here g, f, h
also stand for their own pullbacks to N × V.) See [1, p. 237] for more details. Note that
g = h+ f 2γ is conformally related to the product metric f−2g = f−2h+ γ .

In the next lemma, all Weyl tensors are four-times covariant tensors.

LEMMA 19.1. Given pseudo-Riemannian manifolds (N, h̃) and (V, γ ) such that h̃ is
Ricci-flat and γ is flat, while dimN ≥ 4, let f be a positive function onN, and let Wh denote
the Weyl tensor of the conformally related metric h = f 2h̃ on N. The Weyl tensor W of the
warped product metric g = h + f 2γ on N × V then equals the pullback of Wh under the
projection N × V → V .

This is clear from the conformal transformation rule for W. Namely, W is related to the
four-times covariant Weyl and curvature tensors W̃, R̃ of the product metric g̃ = f−2g =
h̃+ γ by W = f 2W̃ = f 2R̃, where W̃ = R̃, since g̃ is Ricci-flat. Next, R̃ is the pullback of
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the curvature tensor R′ of h̃ under N × V → V , while, as h̃ is Ricci-flat, R′ equals the Weyl
tensor W ′ of h̃ = f−2h, that is, f−2Wh.

THEOREM 19.2. In any conformally symmetric pseudo-Riemannian manifold (M, g)
of dimension n ≥ 4 such that rank W= 1, every point has a connected neighborhood isomet-
ric to a warped product (N × V, h+ f 2γ ), for any solution f > 0 to (25), and

(a) (N, h) is a conformally symmetric manifold with dimN = 4 and rankWh= 1,
(b) (V, γ ) is flat, dimV = n− 4 ≥ 0, and f is constant in the V-factor direction,
(c) f treated as a function on (N, h) satisfies (25) with n replaced by 4.

Conversely, every warped product (M, g) = (N × V, h + f 2γ ) with (a)–(c) is conformally
symmetric, has rank W= 1, and f satisfies (25) on (M, g).

PROOF. Let (M, g) satisfy the conditions ∇W = 0 and rank W = 1. By Proposi-
tion 18.3, every point ofM has a connected neighborhood U such that (U, f −2g) is isometric
to a Riemannian product manifold (N × V, h̃ + γ ), in which the factor (N, h̃) is 4-dimen-
sional and Ricci-flat, while (V, γ ) is flat; since f , which exists by Lemma 18.2(i), may be
treated as a function on N (Proposition 18.3(iii)), (U, g) is isometric to the warped product
(N × V, h+ f 2γ ), where h = f 2h̃.

As the N-factor submanifolds are totally geodesic in (M, g) and h represents their sub-
manifold metrics, restricting to any of them the g-parallel 2-form ω appearing in Lemma
17.1(iii), we obtain an h-parallel 2-form ωh on N. Next, the relation W = εω⊗ ω �= 0 com-
bined with Lemma 19.1 gives Wh = εωh⊗ ωh �= 0, so that rank ωh = 2 by the first Bianchi
identity for Wh. Hence (N, h) is conformally symmetric and, by Lemma 17.1, rankWh= 1.
Also, P (tangent to the N factor by Proposition 18.3(i)) is the distribution defined as in Sec-
tion 17 for (N, h) rather than (M, g). By Remark 18.1, f treated as a function on N has
vanishing h-Laplacian and its h-gradient is null, so that Ricci-flatness of h̃ = f−2h and (c) in
Section 2 give (25-a) with n = 4.

Conversely, let (M, g) = (N × V, h + f 2γ ), with (a)–(c). As Wh = εωh⊗ ωh �= 0 in
(N, h), where ωh is an h-parallel 2-form (Lemma 17.1(iii)), we get W = εω⊗ ω �= 0, by
Lemma 19.1, for the 2-form ω onM obtained as the pullback of ωh under the factor projection
M → N. For the Levi-Civita connection ∇̃ of the product metric g̃ = f−2g = h̃ + γ and
any vector field u, we have ∇̃uω = −2(duφ)ω + ω(u, ·) ∧ dφ, where φ = − log f , since
the same is true for the Levi-Civita connection of h̃ and ωh (rather than ω) in view of (b) in
Section 2 and the fact that ωh is h-parallel. Using (b) in Section 2 again, we now see that ω is
g-parallel. Thus, by Lemma 17.1, (M, g) is conformally symmetric and rank W= 1. �

COROLLARY 19.3. Theorem 19.2 remains true also when the dimensions 4 and n− 4
in (a)–(c) are replaced by k and n− k, for any given k ∈ {4, . . . , n}.

PROOF. Writing γ in Theorem 19.2 as the product γ ′′ + γ ′ of two flat metrics, we
obtain a new warped-product decomposition of g = h + f 2γ , namely, g = h′ + f 2γ ′, with
h′ = h+ f 2γ ′′ having the required properties as a consequence of Theorem 19.2. �
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In Theorem 19.2 and Corollary 19.3, the existence of a local warped-product decompo-
sition is a consequence of the conditions ∇W = 0 and rank W = 1 imposed on the given
pseudo-Riemannian manifold. Hotloś [13] studied the case where an essentially conformally
symmetric manifold is assumed to be a warped product. The final clause of our Theorem 19.2,
and the generalized version of that final clause provided by Corollary 19.3, are closely related
to one of his results [13, Theorem 4.2].

20. Dimension four. Four-dimensional conformally symmetric manifolds (N, h)
with rankWh = 1, where Wh is the Weyl tensor of h, can be constructed as follows. Let
there be given an equiaffine projectively flat torsionfree connection D on a surface Σ with a
D-parallel area element ±α (see Section 7), a factor ε ∈ {1,−1}, and a twice-covariant sym-
metric tensor field τ onΣ with Lτ = εα⊗α. Locally, such τ always exists (Theorem 10.2(i)).
We now set (N, h) = (T ∗Σ,hD− 2τ ), where hD is the metric on T ∗Σ given by (22), and the
symbol τ also stands for the pullback of τ to T ∗Σ . It should be pointed out that the tensor τ is
not really a parameter for the above construction; locally, up to an isometry, different choices
of τ lead to the same metric hD− 2τ . See Section 21.

THEOREM 20.1. Every pseudo-Riemannian four-manifold (N, h) = (T ∗Σ,hD− 2τ )
obtained as above is conformally symmetric and rankWh= 1, for its Weyl tensor Wh, while
P defined as in Section 17 coincides with the vertical distribution on T ∗Σ , and D used in the
construction is the same as the P⊥-projected connection in Theorem 17.4.

Conversely, every point of any conformally symmetric pseudo-Riemannian four-mani-
fold (N, h) with rankWh= 1 has a connected neighborhood isometric to an open subset of
a manifold (T ∗Σ,hD− 2τ ) constructed as above.

We precede the proof of Theorem 20.1 with two lemmas. Conformal flatness of D̃ in
Lemma 20.2 is a result of Walker [28, p. 69]. Lemma 20.3 is due to Ruse [23] for r = 2
(which is the only case that we need), and to Walker [27] for arbitrary r .

LEMMA 20.2. For a projectively flat torsionfree connection D on a manifold Σ whose
Ricci tensor is symmetric, the metric hD on T ∗Σ , given by (22), is conformally flat. Fur-
thermore, using Lemma 3.1 we can find, locally in Σ , a function f > 0 such that, for
ξ = − d log f , the connection D̃ = D + 2ξ 
 Id is flat. Choosing any local coordinates
yj for Σ in which the components of D̃ all vanish, and letting yj, pj be the corresponding
coordinates in T ∗Σ , we then have the symmetric-product relations

a) Γ jkl dy
kdyl = 2f−1df dyj , b) f−2hD = 2d(f−2pj )dy

j ,

c) f−1Rkldy
kdyl = d[∂j (f−1)]dyj ,

(26)

where ∂j = ∂/∂yj, while Γ jkl and Rkl are the components of D and its Ricci tensor ρD.

PROOF. Since f Γ jkl = f,kδ
j
l + f,lδ

j
k (cf. Lemma 3.1), (a) follows. Now (23) gives

(b). Conformal flatness of hD is in turn obvious from (b): the metric f−2hD, having con-
stant component functions in the new coordinates yj , f−2pj , is flat. Finally, by Remark 3.2,
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Ddf = − fρD, that is, fRkl = − f,kl , while f,kl = ∂l∂kf − Γ
j

kl ∂jf . Thus, (a) implies
(c), completing the proof. �

LEMMA 20.3. Every pseudo-Riemannian metric h̃ on a manifold N of dimension 2r
with an r -dimensional h̃-null distribution P spanned by h̃-parallel vector fields has, locally,
the form (24) in some coordinates yj, qj such that the qj coordinate vector fields span P . In
addition, the Levi-Civita connection ∇̃ of h̃ is P-projectable, cf. Section 14, its P-projected
connection D̃ on a local leaf space Σ for P is flat, and the components of D̃ are all zero in
the local coordinates forΣ provided by the functions yj.

PROOF. Letting U stand for increasingly small neighborhoods of any given point x of
N, we may choose r functions yj onU whose h̃-gradients vj = ∇̃yj are linearly independent
h̃-parallel sections of P . The Ricci identity (7-i) for D = ∇̃, its curvature tensor R̃, and
ξ = h̃(vj , ·), shows that R̃ annihilates P (cf. Section 15), and so P-projectability of ∇̃ follows
from Lemma 14.1. Being constant along P⊥ = P , our yj descend to Σ , where they form
a local coordinate system with D̃-parallel differentials dyj (by (iii)–(iv) in Section 14); thus,
the component functions of the P-projected connection D̃ all vanish. Any fixed submanifold
Σ ′ of U such that x ∈ Σ ′ and the projection π : U → Σ sendsΣ ′ diffeomorphically ontoΣ
gives rise to r functions qj on U with qj = 0 on U ∩Σ ′ and (dqj )(vk) = δjk . (As the vector
fields vj commute, they form coordinate vector fields on each leaf Y of P for the coordinates
qj on Y.) Thus, τ (vk, ·) = 0 for τ = h̃ − 2dqjdyj and each k, and so τ = − 2λkldykdyl

for some λkl . In the coordinates yj, yµ for N obtained from yj, qj as at the end of Section
16, the relations ∇̃vj = 0 now give ∂µλjk = Γ̃jkµ = 0, as h̃jµ = cµj are constants and
h̃jk = − 2λjk . �

By (23), hD− 2τ = 2dpjdyj − 2(pjΓ
j
kl + τkl)dy

kdyl in the coordinates yj, pj for T ∗Σ
corresponding to local coordinates yj in Σ . This expression can be further simplified if yj,
rather than being arbitrary, are chosen, along with a function f > 0, as in Lemma 20.2. In
the new coordinates yj, f−2pj for T ∗Σ , we then get, from (26-b),

h̃ = 2d(f−2pj )dy
j − 2f−2τjkdy

jdyk ,(27)

where h̃ = f−2(hD− 2τ ).

PROOF OF THEOREM 20.1. Our h̃ in (27) is a special case of (24). Hence, by (c) in
Section 16, h̃ has the Weyl tensor W̃ = π∗(L̃(f−2τ )), for L̃ associated with the connection
D̃ of Lemma 20.2, so that D̃ = D + 2ξ 
 Id for ξ = − d log f . Lemma 11.4(a) now gives
L̃(f−2τ ) = f−2Lτ , and so the Weyl tensor of h = hD− 2τ = f 2h̃ is Wh = f 2W̃ =
π∗(Lτ ) = εωh⊗ωh, where ωh = π∗α. Also, the vertical distribution P on T ∗Σ is h̃-null and
h̃-parallel, while the Levi-Civita connection ∇̃ of h̃ is P⊥-projectable and D̃ is its P⊥-project-
ed connection. (See (a), (b) in Section 16.) Hence, by (vi) in Section 14, the same is true for
P if one replaces h̃, D̃ by h,D. As α is D-parallel, Lemmas 14.1 and 15.1(b) for τ = α now
imply that ωh is h-parallel. The first part of Theorem 20.1 thus follows from Lemma 17.1.
(The image of ωh is P , as ωh annihilates P = P⊥.)
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For the second part of Theorem 20.1, let (N, h) be conformally symmetric, with dimN =
4 and rankWh= 1. By Lemma 18.2(i), every x ∈ N has a neighborhood U such that both
(25) and (21) hold, for r = 2, some function f : U → (0,∞), a suitable quotient surface
Σ , and the distribution P defined in Section 17, with U instead of M in (21). According to
Remark 18.4, f descends to a functionΣ → R, and Ddf = − fρD for f : Σ → R and the
P⊥-projected connection D on Σ , which in turn means that the connection D̃ = D + 2ξ 
 Id
on Σ , with ξ = − d log f , is flat (Remark 3.2).

Proposition 18.3(ii) (with n = 4,P⊥ = P, g = h, g̃ = h̃) and Lemma 20.3 imply
that, locally, h̃ has the form (24), for some twice-covariant symmetric tensor field λ on Σ ,
and local coordinates yj in Σ , in which the components of D̃ all vanish. By (c) in Section
16, W̃ = π∗(L̃λ). Therefore, εωh ⊗ ωh = Wh = f 2W̃ = π∗(Lτ ) for τ = f 2λ and
L corresponding to D as in (15), with the successive equalities due to Lemma 17.1(iii), the
relation h = f 2h̃, and Lemma 11.4(a). However, by Theorem 17.4(vi), ωh = π∗α, where ±α
is a D-parallel area element onΣ . Hence Lτ = εα⊗α. By (27), h and hD− 2τ are isometric,
as they have the same form in suitable coordinates. �

All four-dimensional conformally symmetric manifolds with rank W = 1 belong to a
class of conformally recurrent four-manifolds for which Olszak [16] provided a local classifi-
cation. Olszak’s result states that the latter manifolds have, locally, the form (T ∗Σ,hD− 2τ )
for some torsionfree connection D on a surfaceΣ and some twice-covariant symmetric tensor
field τ onΣ . To derive Theorem 20.1 from it, one needs to determine what requiring hD− 2τ
to be conformally symmetric means for D and τ . As our discussion shows, the answer is:
Lτ = εα ⊗ α for some D-parallel area element ±α.

21. The local structure theorem. Although a local classification of conformally
symmetric manifolds with rank W = 1 could now be easily derived from Theorems 19.2
and 20.1, we state it differently, for reasons explained in Remark 21.2 below. Namely, let the
following objects be given:

(i) an integer n ≥ 4,
(ii) a surface Σ with a projectively flat torsionfree connection D,

(iii) a D-parallel area element ±α on Σ (see Section 7),
(iv) a sign factor ε = ±1,
(v) a real vector space V of dimension n− 4,

(vi) a pseudo-Euclidean inner product 〈 , 〉 on V .
We are also assuming the existence of a twice-covariant symmetric tensor τ on Σ with Lτ =
εα ⊗ α. Locally, such τ always exists, by Theorem 10.2(i).

The data (i)–(vi) give rise to the n-dimensional pseudo-Riemannian manifold

(M, g) = (T ∗Σ × V, hD− 2τ + γ − θρD) ,(28)

where hD is the metric (22) on T ∗Σ and γ is the constant pseudo-Riemannian metric on V
corresponding to the inner product 〈 , 〉, while θ : V → R is given by θ(v) = 〈v, v〉. As
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before, the symbols for functions or covariant tensor fields on Σ , or on the factor manifolds
T ∗Σ and V , are also used to represent their pullbacks to T ∗Σ × V .

For coordinate descriptions of the metric g in (28), see formulae (29) in Section 22.
We treat n,Σ,D, α, ε, V and 〈 , 〉 in (i)–(vi) as parameters for our construction, while τ

is merely an object assumed to exist, even though the metric g in (28) clearly depends on τ .
The reason is that, if the data (i)–(vi) are fixed, the metrics corresponding to two choices of τ
are, locally, isometric to each other (Remark 22.1 below).

We can now state our local classification result; for a proof, see Section 22.

THEOREM 21.1. The pseudo-Riemannian manifold (28) obtained as above from data
(i) through (vi) with the stated properties is conformally symmetric and has rank W= 1. Also,

(a) the manifold (28) is locally symmetric, or Ricci-recurrent, if and only if so is D,
(b) the distribution P defined in Section 17 is tangent to the T ∗Σ factor, and coincides

with the vertical distribution of T ∗Σ ,
(c) the P⊥-projected connection for P , cf. Theorem 17.4, is the original D.

Conversely, in any conformally symmetric pseudo-Riemannian manifold with rank W=
1, every point has a connected neighborhood isometric to an open subset of a manifold (28)
constructed above from some data (i) through (vi).

REMARK 21.2. A general local form of a conformally symmetric metric with
rank W = 1 is the warped product h + f 2γ with h = hD− 2τ and Ddf = − fρD on Σ
(for details, see Theorems 19.2, 20.1 and Remark 18.4). As shown in Section 22, this is
equivalent to (28). We chose to state the classification theorem in terms of (28) to avoid using,
in addition to τ , yet another object (the function f ), which is not a genuine parameter of the
construction, as the local isometry type of the resulting metric does not depend on it.

22. Proof of Theorem 21.1. The metric g defined by (28) has the local-coordinate
expressions

i) g = 2dpjdyj − (2pjΓ
j

kl + 2τkl +γabvavbRkl)dykdyl + γabdv
advb ,

ii) f−2g = 2dqjdyj − 2f−2τjkdy
jdyk + γabdu

adub .
(29)

In (29-i), yj, pj , va are product coordinates for T ∗Σ × V formed by the coordinates yj, pj
in T ∗Σ obtained as usual from any given local coordinates yj in Σ , and linear coordi-
nates va in V corresponding to a basis ea , with γab = 〈ea, eb〉, while Γ jkl and Rkl stand
for the components of D and its Ricci tensor ρD. Thus, (29-i) is obvious from (23). As
for (29-ii), we start from the coordinates yj, pj for T ∗Σ based on coordinates yj in Σ
that, instead of being arbitrary, are chosen (along with the function f ) as in Lemma 20.2.
We then replace the resulting product coordinates yj, pj , va in T ∗Σ × V (with va as be-
fore) by the new coordinates yj, qj , ua such that 2qj = 2f−2pj + γabv

avbf−3∂jf and
ua = f−1va. By (27), f−2(hD− 2τ ) = 2d(f−2pj )dy

j − 2f−2τjkdy
jdyk, while, at the

same time, f−2(γ − θρD) = f−2(γabdv
advb − γabv

avbRkldy
kdyl), and so (26-c) gives

f−2(γ − θρD) = f−2γabdv
advb − γabv

avbf−1d[∂j (f−1)]dyj, proving (29-ii).
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In view of (29-ii), g is, locally, a warped product h + f 2γ with the factor metrics
h = 2f 2dqjdy

j − 2τjkdyjdyk (in dimension 4, coordinates: yj, qj ) and γ = γabdu
adub

(dimension n− 4, coordinates: ua). Since γab = 〈ea, eb〉 are constants, γ is flat. On the other
hand, h is isometric to the metric hD− 2τ defined as in Section 20 using the data (i)–(iv) of
Section 21. Namely, by (27), hD− 2τ equals 2f 2dq̂jdy

j − 2τjkdyjdyk in coordinates yj, q̂j
formed by our yj and some q̂j , while f and τkl depend only on yj. By Theorem 20.1, (N, h)
is conformally symmetric and rankWh= 1, so that Theorem 19.2 yields the same for (28),
while Theorems 20.1 and 17.4(iv), (v) imply (a)–(c).

Conversely, let (M, g) be conformally symmetric, with rank W = 1. Thus, locally,
g = h + f 2γ with h, γ, f as in Theorem 19.2, and, by Theorem 20.1, h = hD− 2τ , for
suitable D and τ . Now (27) gives g = 2f 2d(f−2pj )dy

j − 2τjkdyjdyk + f 2γabdu
adub

in some coordinates yj, f−2pj , u
a, with constants γab such that γ = γabdu

adub. (Note
that Ddf = − fρD, by Remark 18.4; hence, according to Remark 3.2, f is chosen as in
Lemma 20.2.) This gives (29-ii) for qj = f−2pj , and Theorem 21.1 follows.

REMARK 22.1. For (M, g) in (28) and (M, g ′) = (T ∗Σ × V, hD− 2τ ′ + γ − θρD)

constructed as in Section 21 from the same data (i)–(vi), but with (possibly) different 2-ten-
break sors τ and τ ′, an isometry J of (M, g ′) onto (M, g) can be defined by the formula
J (y, η, v) = (y, η+ξ(y)−(d〈L,Hv〉)y,Hv+L(y)) (notation of Section 16), for any function
L : Σ → V with DdL = − LρD, any 〈 , 〉-preserving linear isomorphism H : V → V , and
any 1-form ξ on Σ such that 2(τ − τ ′) = B(ξ + d〈L,L〉/4) (cf. (12)); 〈L,Hv〉 and 〈L,L〉
are functions Σ → R. In fact, J ∗g = g ′, since J ∗g is obtained by replacing pj and va in
(29-i) with pj + ξj − γabH

b
c v

c∂j L
b and Ha

b x
b + La. Cf. [19, §8].

LetΣ now be simply connected. First, (M, g ′) is isometric to (M, g), as one sees, choos-
ing J with L = 0,H = Id and ξ such that 2(τ−τ ′) = Bξ (which exists by Theorem 10.2(ii)).
Secondly, for every y ∈ Σ , the set {y} × TyΣ × V is contained in an orbit of the isometry
group of (M, g). In fact, L with DdL = − LρD and ξ ′ with Bξ ′ = 0 realize all values
L(y) ∈ V and ξ ′

y ∈ T ∗
yΣ , cf. Remarks 18.4, 4.2 and Lemma 4.3.

23. Compactness the quotient surface. We do not know whether there exist any
compact essentially conformally symmetric manifolds.1) However, some such manifolds do
have a compactness-type property, namely, the leaf space of P is a globally well-defined
(Hausdorff) closed surface.

EXAMPLE 23.1. Given a closed surface Σ , an integer n ≥ 4, and a metric signature
−− · · · ++ with n signs, containing at least two minuses and at least two pluses, there exists
an essentially conformally symmetric manifold (M, g) of dimension n such that

(i) g is not Ricci-recurrent, and has the prescribed signature −− · · · ++,
(ii) the leaves of the distribution P defined in Section 17 are the fibres of a bundle with

the total space M and base Σ .

1) (Added in proof.) They do exist: see our preprint math.DG/0702491.
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Indeed, we may choose (M, g) to be the manifold (28) obtained from the construction in
Section 21, using 〈 , 〉 of the appropriate signature, and D, along with ±α and τ on our surface
Σ , that satisfy the required assumptions; they exist by Theorem 11.1, while (i) follows from
Theorem 21.1(a), since D is not Ricci-recurrent.

24. Further comments. Let us consider triples (M, g, x) formed by a manifold M ,
a point x ∈ M , and a conformally symmetric metric g on M having a fixed signature
−− · · · ++ with two or more minuses and two or more pluses, and satisfying the condition
rank W= 1. (Note that the signature determines dimM .) We call two such triples (M, g, x)
and (M ′, g ′, x ′) equivalent if some isometry of a neighborhood of x inM onto a neighborhood
of x ′ in M ′ sends x to x ′, and we refer to the set of equivalence classes of this relation as the
local moduli space of conformally symmetric metrics of the given signature with rank W= 1.

We similarly define the local moduli space of equiaffine, projectively flat torsionfree
connections on surfaces, to be the set of equivalence classes of quadruples (Σ,D,±α, y)
formed by a surface Σ with such a connection D (see Section 7), a D-parallel area element
±α on Σ , and a point y ∈ Σ . The equivalence relation is defined similarly, except that
isometries are replaced by (local) unimodular affine diffeomorphisms.

By Theorem 21.1, given −− · · · ++, the former moduli space is in a natural one-to-one
correspondence with the latter: the correspondence sends the equivalence class of (M, g, x)
to that of (Σ,D,±α, y) obtained in Theorem 17.4, with y = π(x).

Our next comment concerns Ricci-recurrence. In Theorem 21.1 one cannot simply re-
place the condition rank W = 1 by ‘not being Ricci-recurrent’ (both for (M, g) and for D
in (iii) of Section 21), and still obtain a classification result with an analogous final clause.
Namely, there is no principle of unique continuation, either for conformally symmetric met-
rics g with rank W= 1, or for projectively flat torsionfree connections D on surfaces. (Thus,
neither of the two can in general be made real-analytic by a suitable choice of local coordi-
nates.) In fact, both g,D can be Ricci-recurrent on some nonempty open set, without being
so everywhere. Examples are immediate from Theorem 6.2: it suffices to deform a cylinder
surface so as to make it non-cylindrical just in a small subset. The construction of Section 21,
applied to the corresponding centroaffine connection D, then yields a metric g with the stated
property.

Finally, any conformally symmetric pseudo-Riemannian manifold (M, g) of dimension
n ≥ 4 with rank W= 1, and any pseudo-Euclidean inner product 〈 , 〉′ on a k-dimensional real
vector space V ′, treated as a translation-invariant metric γ ′ on V ′, give rise to the conformally
symmetric metric g ′ = g − (n − 2)−1θ ′ρ + γ ′ with rank W= 1 on M × V , where ρ is the
Ricci tensor of g and θ ′ : V → R is defined by θ ′(v) = 〈v, v〉′. (Notation of (28).) In fact,
g ′ can also be constructed as in Section 21, since, by Theorem 17.4(ii), we may replace ρD in
(28) with (n− 2)−1ρ.

REFERENCES

[ 1 ] A. L. BESSE, Einstein manifolds, Ergeb. Math. Grenzgeb. (3) 10, Springer-Verlag, Berlin, 1987.



PROJECTIVELY FLAT SURFACES 601

[ 2 ] M. C. CHAKI AND B. GUPTA, On conformally symmetric spaces, Indian J. Math. 5 (1963), 113–122.
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[ 6 ] A. DERDZIŃSKI AND W. ROTER, Some properties of conformally symmetric manifolds which are not Ricci-

recurrent, Tensor (N.S.) 34 (1980), 11–20.
[ 7 ] A. DERDZINSKI AND W. ROTER, Walker’s theorem without coordinates, J. Math. Phys. 47 (2006), 062504,

8 pp.
[ 8 ] R. DESZCZ, On hypercylinders in conformally symmetric manifolds, Publ. Inst. Math. (Beograd) (N.S.) 51(65)

(1992), 101–114.
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