Mutant knots.

Conway
(11n34, genus $=3$)

Kinoshita--Terasaka (11n42, genus $=2$)

Mutant chord diagrams.
A share in a chord diagram is a union of two arcs of the outer circle and chords ending on them such that every chord one of whose ends belongs to these arcs has both ends on these arcs.

A share

Not a share

Two shares

Definition. A mutation of a chord diagram is another chord diagram obtained by a rotation (reflection) of a share.

Intersection graph of a chord diagram

chord
intersection
\square

vertex
edge

Not every graph is the intersection graph of a chord diagram:

Three diagrams with the same intersection graph

Theorem. Two chord diagrams have the same intersection graph if and only if they are related by a sequence of mutations.

A split of a (simple) graph Γ is a disjoint bipartition $\left\{V_{1}, V_{2}\right\}$ of its set of vertices $V(\Gamma)$ such that each part contains at least 2 vertices, and there are subsets $W_{1} \subseteq V_{1}, W_{2} \subseteq V_{2}$ possessing the following property: all the edges of Γ connecting V_{1} with V_{2} form the complete bipartite graph $K\left(W_{1}, W_{2}\right)$ with the parts W_{1} and W_{2}.

A prime graph is a graph with at least three vertices admitting no splits.
A. Bouchet [Bu, Statement 4.4], and C. P. Gabor, K. J. Supowit, W.-L. Hsu [GSH, Section 6]:

There is a unique way to realize a prime graph intersection graph by a chord diagram.

Consider two graphs Γ_{1} and Γ_{2} each having a distinguished vertex $v_{1} \in V\left(\Gamma_{1}\right)$ and $v_{2} \in V\left(\Gamma_{2}\right)$, respectively, called markers. Construct the new graph $\Gamma=\Gamma_{1} \boxtimes_{\left(v_{1}, v_{2}\right)} \Gamma_{2}$ whose set of vertices is

$$
V(\Gamma)=\left\{V\left(\Gamma_{1}\right)-v_{1}\right\} \cup\left\{V\left(\Gamma_{2}\right)-v_{2}\right\}
$$

and whose set of edges is

$$
\begin{aligned}
E(\Gamma)= & \left\{\left(v_{1}^{\prime}, v_{1}^{\prime \prime}\right) \in E\left(\Gamma_{1}\right): v_{1}^{\prime} \neq v_{1} \neq v_{1}^{\prime \prime}\right\} \cup \\
& \left\{\left(v_{2}^{\prime}, v_{2}^{\prime \prime}\right) \in E\left(\Gamma_{2}\right): v_{2}^{\prime} \neq v_{2} \neq v_{2}^{\prime \prime}\right\} \cup
\end{aligned}
$$

$\left\{\left(v_{1}^{\prime}, v_{2}^{\prime}\right):\left(v_{1}^{\prime}, v_{1}\right) \in E\left(\Gamma_{1}\right)\right.$ and $\left.\left(v_{2}, v_{2}^{\prime}\right) \in E\left(\Gamma_{2}\right)\right\}$.

Representation of Γ as $\Gamma_{1} \boxtimes_{\left(v_{1}, v_{2}\right)} \Gamma_{2}$ is called a decomposition of Γ, Γ_{1} and Γ_{2} are called the components of the decomposition. The partition $\left\{V\left(\Gamma_{1}\right)-v_{1}, V\left(\Gamma_{2}\right)-v_{2}\right\}$ is a split of Γ.

A decomposition of a graph is said to be canonical if the following conditions are satisfied:
(i) each component is either a prime graph, or a complete graph K_{n}, or a star S_{n}, which is the tree with a vertex, the center, adjacent to n other vertices;
(ii) no two components that are complete graphs are neighbors, that is, their markers are not connected by a dashed edge;
(iii) the markers of two components that are star graphs connected by a dashed edge are either both centers or both not centers of their components.
W. H. Cunningham proved $[\mathrm{Cu}$, Theorem 3] that each graph with at least six vertices possesses a unique canonical decomposition.

The canonical decomposition

Chord diagram

Intersection graph

Canonical decomposition

Idea of the proof.

THEOREM. If a Vassiliev invariant knot invariant does not distinguish mutant knots, then the corresponding weight system depends only on the intersection graphs of chord diagrams.

Sliding the double point 1

Shrinking the arcs

Forming the tangle T_{S}

References

[Bu] A. Boucher Reducing prime graphs and recognizing circle graphs, Combinatorica, 7, no. 3, 243-254 (1987)
[Cu] W. H. Cunningham, Decomposition of directed graphs, SlAM J. Algor. Discrete Math.,3, no. 2, 214-228 (1982)
[GSH] C. P. Gabor, K. J. Supowit, W.-L. Hsu, Recognizing circle graphs in polynomial time, Journal of the ACM (JACM) (3), 36, no. 3, 435-473 (1989)
[CL] S. V. Chmutov, S. K. Lando, Mutant knots and intersection graphs, Preprint arXiv:math.GT/0704.1013. To appear in Algebraic and Geometric Topology.

