Algebra and Geometry around Knots and Braids
Euler Institute, St. Petersburg, Russia
September 10 - 14, 2007

Thistlethwaite's theorem for virtual links

Sergei Chmutov
The Ohio State University, Mansfield
Joint work with Jeremy Voltz

M. B. Thistlethwaite,

L. Kauffman, K.Murasugi, F.Jaeger

Up to a sign and a power of t the Jones polynomial $V_{L}(t)$ of an alternating link L is equal to the Tutte polynomial $T_{\Gamma_{L}}\left(-t,-t^{-1}\right)$.

$$
V_{L}(t)=t+t^{3}-t^{4}
$$

$$
T_{\Gamma_{L}}(x, y)=y+x+x^{2}
$$

$$
=-t^{2}\left(-t^{-1}-t+t^{2}\right)
$$

$$
T_{\Gamma_{L}}\left(-t,-t^{-1}\right)=-t^{-1}-t+t^{2}
$$

Virtual links

Virtual crossings

Reidemeister moves

$$
x x_{n+0} x
$$

The Kauffman bracket

Let L be a virtual link diagram.

$$
\begin{aligned}
& \text { A-splitting: } \frac{1}{1} \mathrm{ArO}_{\mathrm{O}} \mathrm{~J} \\
& \text { A state } S \text { is a choice of } \\
& \text { either } A \text { - or } B \text {-splitting at } \\
& \text { every classical crossing. } \\
& \alpha(S)=\#(\text { of } A \text {-splittings } \\
& \text { in } S \text {) } \\
& \beta(S)=\#(\text { of } B \text {-splittings } \\
& \text { in } S \text {) } \\
& \delta(S)=\#(\text { of circles in } S) \\
& {[L](A, B, d):=\sum_{S} A^{\alpha(S)} B^{\beta(S)} d^{\delta(S)-1}} \\
& J_{L}(t):=(-1)^{w(L)} t^{3 w(L) / 4}[L]\left(t^{-1 / 4}, t^{1 / 4},-t^{1 / 2}-t^{-1 / 2}\right)
\end{aligned}
$$

Example

\&	+	∞	6	-
(α, β, δ)	$(3,0,1)$	$(2,1,2)$	$(2,1,2)$	$(1,2,1)$
	¢	-	$6 \bigcirc$	(\%)
	$(2,1,2)$	$(1,2,1)$	$(1,2,3)$	$(0,3,2)$
$[L]=A^{3}+3 A^{2} B d+2 A B^{2}+A B^{2} d^{2}+B^{3} d ;$				$J_{L}(t)=1$

Ribbon graphs

A ribbon graph G is a surface represented as a union of verticesdiscs \square and edges-ribbons

- discs and ribbons intersect by disjoint line segments,
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

Examples

The Bollobás-Riordan polynomial

Let • F be a ribbon graph;

- $v(F)$ be the number of its vertices;
- $e(F)$ be the number of its edges;
- $k(F)$ be the number of components of F;
- $r(F):=v(F)-k(F)$ be the rank of F;
- $n(F):=e(F)-r(F)$ be the nullity of F;
- bc (F) be the number of boundary components of F;
- $s(F):=\frac{e_{-}(F)-e_{-}(\bar{F})}{2}$.

$$
\begin{aligned}
& R_{G}(x, y, z):= \\
& \sum_{F} x^{r(G)-r(F)+s(F)} y^{n(F)-s(F)} z^{k(F)-\mathrm{bc}(F)+n(F)}
\end{aligned}
$$

Relations to the Tutte polynomial.

$$
R_{G}(x-1, y-1,1)=T_{G}(x, y)
$$

If G is planar (genus zero):

$$
R_{G}(x-1, y-1, z)=T_{G}(x, y)
$$

Example
(1,

- $r(F):=v(F)-k(F) ;$
- $n(F):=e(G)-r(F)$;
- $\mathrm{bc}(F)$ is the number of boundary components;
- $s(F):=\frac{e_{-}(F)-e_{-}(\bar{F})}{2}$.

$$
R_{G}(x, y, z)=x+2+y+x y z^{2}+2 y z+y^{2} z .
$$

Theorem

Let L be a virtual link diagram, G_{L} be the corresponding signed ribbon graph, and $n:=n\left(G_{L}\right), r:=r\left(G_{L}\right), k:=k\left(G_{L}\right)$. Then

$$
[L]=A^{n} B^{r} d^{k-1} R_{G_{L}}\left(\frac{A d}{B}, \frac{B d}{A}, \frac{1}{d}\right) .
$$

Pulling Seifert circles apart

Glue in the vertex-discs

