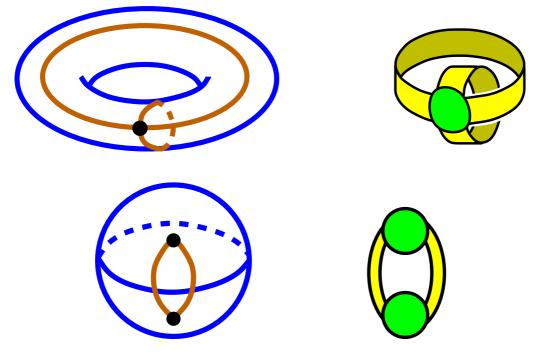
AMS Sectional Meeting # 1037 Louisiana State University, Baton Rouge, LA Special Session on Knot and 3-Manifold Invariants

Duality of graphs on surfaces and Thistlethwaite's type theorems

Sergei Chmutov The Ohio State University, Mansfield

Saturday, March 29, 2008 10:00 — 10:20 a.m.

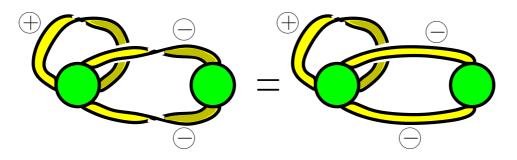
Graphs on surfaces

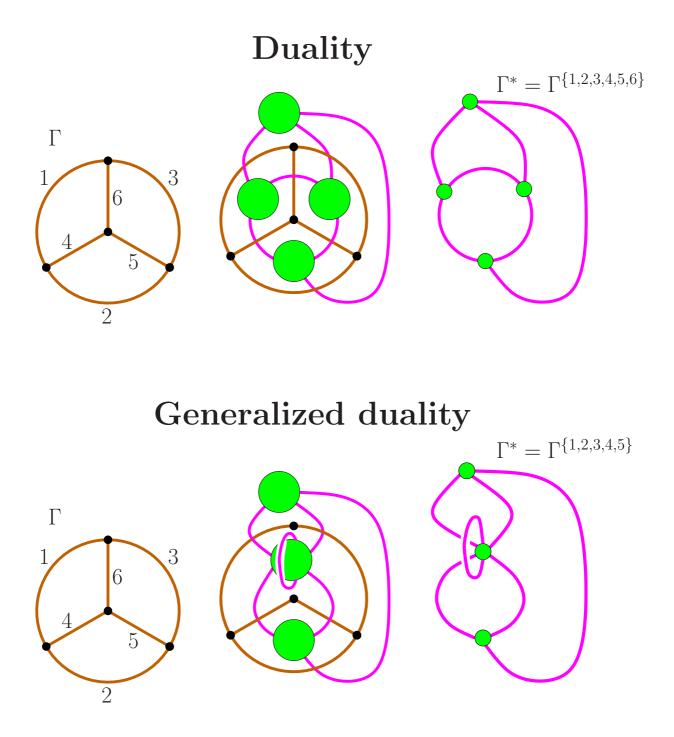


Ribbon graphs

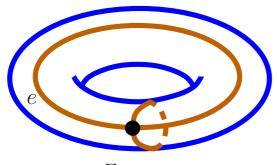
A ribbon graph G is a surface represented as a union of verticesdiscs and edges-ribbons

- discs and ribbons intersect by disjoint line segments,
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

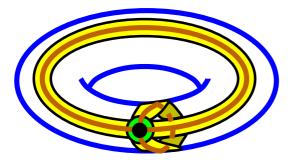


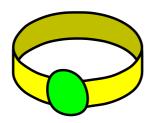


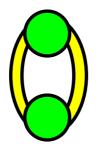
Examples



Graph Γ on a torus

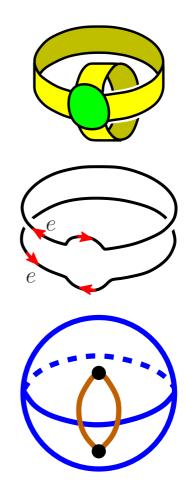


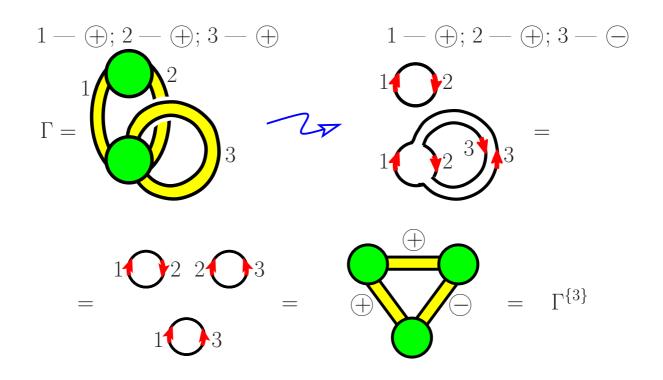


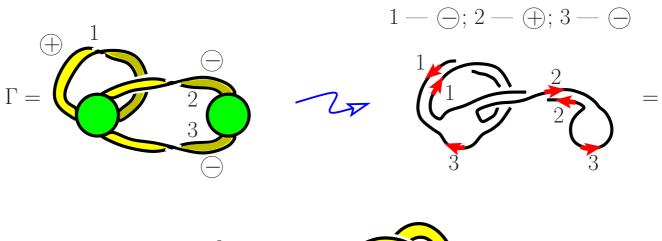


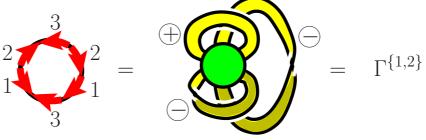


Dual graph $\Gamma^{\{e\}}$ with respect to the edge e is embedded into a sphere









The Bollobás-Riordan polynomial

Let \bullet *F* be a ribbon graph;

- v(F) be the number of its vertices;
- e(F) be the number of its edges;
- k(F) be the number of components of F;
- r(F) := v(F) k(F) be the *rank* of *F*;
- n(F) := e(F) r(F) be the *nullity* of F;
- bc(F) be the number of boundary components of F;

•
$$s(F) := \frac{e_{-}(F) - e_{-}(\overline{F})}{2}$$
.

$$\begin{array}{ll} R_G(x,y,z) &:= \\ \displaystyle \sum_F x^{r(G)-r(F)+s(F)}y^{n(F)-s(F)}z^{k(F)-\mathrm{bc}(F)+n(F)} \end{array}$$

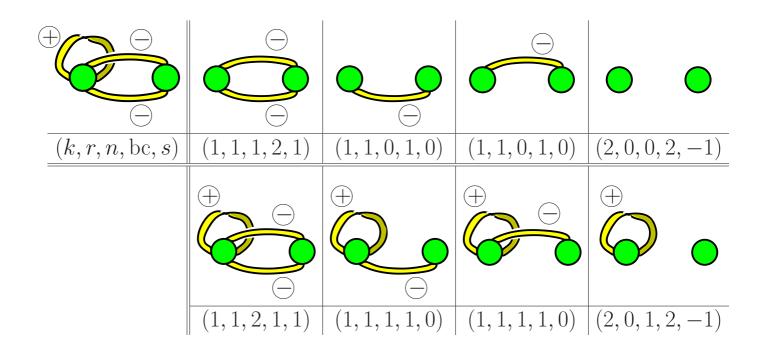
Relations to the Tutte polynomial.

$$R_G(x - 1, y - 1, 1) = T_G(x, y)$$

If G is planar (genus zero):

$$R_G(x-1, y-1, z) = T_G(x, y)$$

Example.



•
$$r(F) := v(F) - k(F);$$

•
$$n(F) := e(G) - r(F);$$

• bc(F) is the number of boundary components;

•

•
$$s(F) := \frac{e_-(F) - e_-(\overline{F})}{2}$$

$$R_G(x, y, z) = x + 2 + y + xyz^2 + 2yz + y^2z$$
.

Duality theorem [Ch]

For any choice of the subset of edges E'. the restriction of the polynomial $x^{k(G)}y^{v(G)}z^{v(G)+1}R_G(x, y, z)$ to the surface $xyz^2 = 1$ is invariant under the generalized duality:

$$x^{k(G)}y^{v(G)}z^{v(G)+1}R_G(x,y,z)\Big|_{xyz^2=1} = x^{k(G')}y^{v(G')}z^{v(G')+1}R_{G'}(x,y,z)\Big|_{xyz^2=1}$$
where $C' := C^{E'}$

where $G' := G^{E}$.

Idea of the proof.

$$x^{k(G)}y^{v(G)}z^{v(G)+1}R_G(x,y,z) = \sum_F M_G(F)$$

One-to-one correspondence $E(G) \supseteq F \leftrightarrow F' \subseteq E(G')$:

An edge e of G' belongs to the spanning subgraph F' if and only if either $e \in E'$ and $e \notin F$, or $e \notin E'$ and $e \in F$.

$$M_G(F)\Big|_{xyz^2=1} = M_{G'}(F')\Big|_{xyz^2=1}$$
,

Corollary

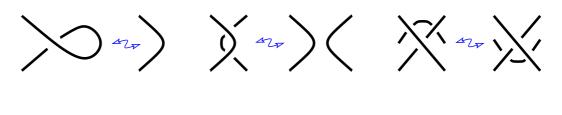
Let G be a connected plane ribbon graph, i.e. its underlying graph Γ is embedded into the plane. Then

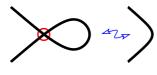
$$T_{\Gamma}(x,y) = T_{\Gamma^*}(y,x)$$

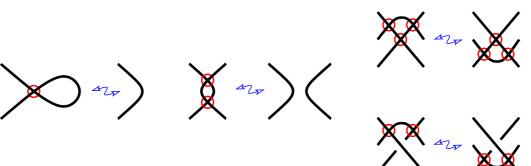
Virtual links

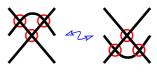
Virtual crossings

Reidemeister moves





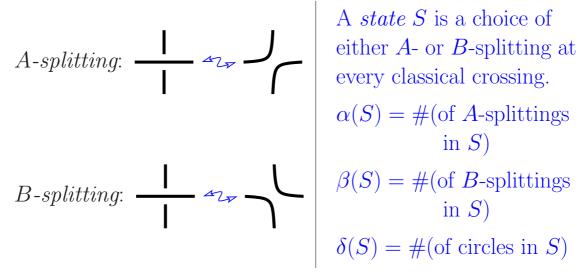






The Kauffman bracket

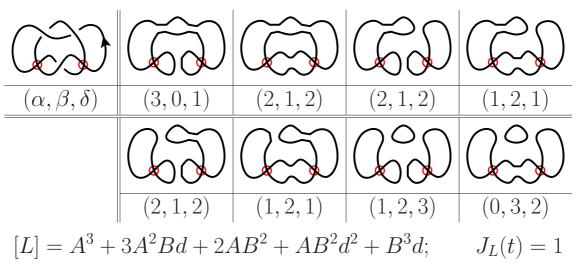
Let L be a virtual link diagram.



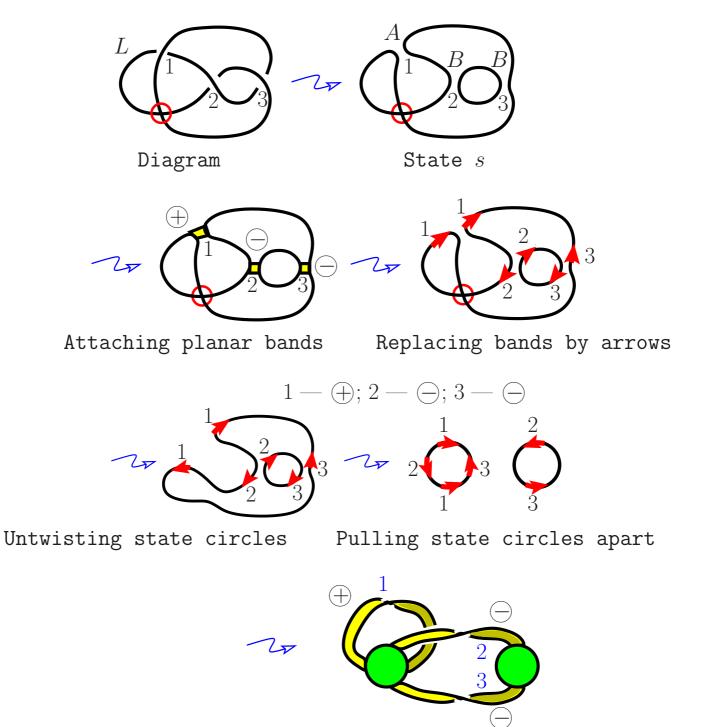
A state S is a choice of $\alpha(S) = \#(\text{of } A \text{-splittings})$ in S)

$$\begin{bmatrix} L \\ (A, B, d) \\ \vdots \\ S \end{bmatrix} = \sum_{S} A^{\alpha(S)} B^{\beta(S)} d^{\delta(S)-1}$$
$$J_L(t) \ := (-1)^{w(L)} t^{3w(L)/4} [L] (t^{-1/4}, t^{1/4}, -t^{1/2} - t^{-1/2})$$

Example



Construction of a ribbon graph from a virtual link diagram



Forming the ribbon graph G_L^s

Theorem [Ch]

Let L be a virtual link diagram with e classical crossings, G_L^s be the signed ribbon graph corresponding to a state s, and $v := v(G_L^s), k := k(G_L^s).$ Then $e = e(G_L^s)$ and

$$[L](A, B, d) = A^e \left(x^k y^v z^{v+1} R_{G_L^s}(x, y, z) \Big|_{x = \frac{Ad}{B}, y = \frac{Bd}{A}, z = \frac{1}{d}} \right) .$$

Idea of the proof.

One-to-one correspondence between states s' of L and spanning subgraphs F' of G_L^s :

An edge e of G_L^s belongs to the spanning subgraph F' if and only if the corresponding crossing was split in s' differently comparably with s.

Theorem of [CP]: The state s comes from a checkerboard coloring of the diagram L.

Theorem of [CV]: The state s is the Seifert state, i.e. all splittings preserve the orientation of L.

Theorem of [DFKLS]: The state $s = s_A$, i.e. all splittings are A-splittings.

References

- [BR] B. Bollobás and O. Riordan, A polynomial of graphs on surfaces, Math. Ann. **323** (2002) 81–96.
- [Ch] S. Chmutov, Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial, preprint arXiv:math.CO/0711.3490.
- [CP] S. Chmutov, I. Pak, The Kauffman bracket of virtual links and the Bollobás-Riordan polynomial, preprint arXiv:math.GT/0609012, Moscow Mathematical Journal 7(3) (2007) 409–418.
- [CV] S. Chmutov, J. Voltz, *Thistlethwaite's theorem for* virtual links, preprint arXiv:math.GT/0704.1310. To appear in Journal of Knot Theory and its Ramifications.
- [DFKLS] O. Dasbach, D. Futer, E. Kalfagianni, X.-S. Lin, N. Stoltzfus, *The Jones polynomial and graphs on surfaces*, Preprint math.GT/0605571. To appear in Journal of Combinatorial Theory Ser.B.
- [Th] M. Thistlethwaite, A spanning tree expansion for the Jones polynomial, Topology **26** (1987) 297–309.