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Graphs on surfaces

Ribbon graphs

A ribbon graph G is a surface represented as a union of vertices-

discs and edges-ribbons

• discs and ribbons intersect by disjoint line segments,

• each such line segment lies on the boundary of precisely one

vertex and precisely one edge;

• every edge contains exactly two such line segments.
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Duality
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Γ∗ = Γ{1,2,3,4,5,6}

Generalized duality

1

2

3

4
5

6

Γ

Γ∗ = Γ{1,2,3,4,5}



Examples
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Graph Γ on a torus

e

Dual graph Γ{e} with respect

to the edge e is embedded

into a sphere
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The Bollobás-Riordan polynomial
Let • F be a ribbon graph;

• v(F ) be the number of its vertices;

• e(F ) be the number of its edges;

• k(F ) be the number of components of F ;

• r(F ) := v(F ) − k(F ) be the rank of F ;

• n(F ) := e(F ) − r(F ) be the nullity of F ;

• bc(F ) be the number of boundary components of F ;

• s(F ) :=
e−(F ) − e−(F )

2
.

RG(x, y, z) :=

∑

F

xr(G)−r(F )+s(F )yn(F )−s(F )zk(F )−bc(F )+n(F )

Relations to the Tutte polynomial.

RG(x − 1, y − 1, 1) = TG(x, y)

If G is planar (genus zero):

RG(x − 1, y − 1, z) = TG(x, y)



Example.
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(k, r, n, bc, s) (1, 1, 1, 2, 1) (1, 1, 0, 1, 0) (1, 1, 0, 1, 0) (2, 0, 0, 2,−1)
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(1, 1, 2, 1, 1) (1, 1, 1, 1, 0) (1, 1, 1, 1, 0) (2, 0, 1, 2,−1)

• r(F ) := v(F ) − k(F );

• n(F ) := e(G) − r(F );

• bc(F ) is the number of boundary components;

• s(F ) :=
e−(F ) − e−(F )

2
.

RG(x, y, z) = x + 2 + y + xyz2 + 2yz + y2z .



Duality theorem [Ch]

For any choice of the subset of edges E ′. the restriction

of the polynomial xk(G)yv(G)zv(G)+1RG(x, y, z) to the surface

xyz2 = 1 is invariant under the generalized duality:

xk(G)yv(G)zv(G)+1RG(x, y, z)
∣

∣

∣

xyz2=1
= xk(G′)yv(G′)zv(G′)+1RG′(x, y, z)

∣

∣

∣

xyz2=1

where G′ := GE′
.

Idea of the proof.

xk(G)yv(G)zv(G)+1RG(x, y, z) =
∑

F

MG(F )

One-to-one correspondence E(G) ⊇ F ↔ F ′ ⊆ E(G′):

An edge e of G′ belongs to the spanning subgraph

F ′ if and only if either e ∈ E ′ and e 6∈ F , or

e 6∈ E ′ and e ∈ F .

MG(F )
∣

∣

∣

xyz2=1
= MG′(F ′)

∣

∣

∣

xyz2=1
,

Corollary

Let G be a connected plane ribbon graph, i.e. its underlying

graph Γ is embedded into the plane. Then

TΓ(x, y) = TΓ∗(y, x)



Virtual links

Virtual crossings

Reidemeister moves



The Kauffman bracket
Let L be a virtual link diagram.

A-splitting:

B-splitting:

A state S is a choice of

either A- or B-splitting at

every classical crossing.

α(S) = #(of A-splittings

in S)

β(S) = #(of B-splittings

in S)

δ(S) = #(of circles in S)

[L](A, B, d) :=
∑

S

Aα(S) Bβ(S) dδ(S)−1

JL(t) := (−1)w(L)t3w(L)/4[L](t−1/4, t1/4,−t1/2 − t−1/2)

Example

(α, β, δ) (3, 0, 1) (2, 1, 2) (2, 1, 2) (1, 2, 1)

(2, 1, 2) (1, 2, 1) (1, 2, 3) (0, 3, 2)

[L] = A3 + 3A2Bd + 2AB2 + AB2d2 + B3d; JL(t) = 1



Construction of a ribbon graph from
a virtual link diagram
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Forming the ribbon graph Gs
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Theorem [Ch]

Let L be a virtual link diagram with e classical crossings,

Gs
L be the signed ribbon graph corresponding to a state s, and

v := v(Gs
L), k := k(Gs

L). Then e = e(Gs
L) and

[L](A, B, d) = Ae

(

xkyvzv+1RGs
L
(x, y, z)

∣

∣

∣

x=Ad

B
, y=Bd

A
, z=1

d

)

.

Idea of the proof.

One-to-one correspondence between states s′ of L and spanning

subgraphs F ′ of Gs
L:

An edge e of Gs
L belongs to the spanning subgraph

F ′ if and only if the corresponding crossing was

split in s′ differently comparably with s.



Theorem of [CP]: The state s comes from a checkerboard

coloring of the diagram L.

Theorem of [CV]: The state s is the Seifert state, i.e. all

splittings preserve the orientation of L.

Theorem of [DFKLS]: The state s = sA, i.e. all splittings

are A-splittings.
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