Cleveland State University

Graphs on surfaces and knot theory

Sergei Chmutov
The Ohio State University, Mansfield

Friday, April 11, 2008
 3:00 - 4:00 p.m.

M. B. Thistlethwaite'87 [Th],

L. Kauffman, K.Murasugi, F.Jaeger

Up to a sign and a power of t the Jones polynomial $V_{L}(t)$ of an alternating $\operatorname{link} L$ is equal to the Tutte polynomial $T_{\Gamma_{L}}\left(-t,-t^{-1}\right)$.

$$
V_{L}(t)=t+t^{3}-t^{4}
$$

$$
T_{\Gamma_{L}}(x, y)=y+x+x^{2}
$$

$$
=-t^{2}\left(-t^{-1}-t+t^{2}\right)
$$

$$
T_{\Gamma_{L}}\left(-t,-t^{-1}\right)=-t^{-1}-t+t^{2}
$$

The Tutte polynomial

Let • F be a graph;

- $v(F)$ be the number of its vertices;
- $e(F)$ be the number of its edges;
- $k(F)$ be the number of components of F;
- $r(F):=v(F)-k(F)$ be the rank of F;

- $n(F):=e(F)-r(F)$ be the nullity of F;

$$
T_{\Gamma}(x, y):=\sum_{F \subseteq E(\Gamma)}(x-1)^{r(\Gamma)-r(F)}(y-1)^{n(F)}
$$

Properties.

$T_{\Gamma}=T_{\Gamma-e}+T_{\Gamma / e} \quad$ if e is neither a bridge nor a loop ;
$T_{\Gamma}=x T_{\Gamma / e}$ if e is a bridge ;
$T_{\Gamma}=y T_{\Gamma-e} \quad$ if e is a loop ;
$T_{\Gamma_{1} \sqcup \Gamma_{2}}=T_{\Gamma_{1} \cdot \Gamma_{2}}=T_{\Gamma_{1}} \cdot T_{\Gamma_{2}}$ for a disjoint union, $G_{1} \sqcup G_{2}$
and a one-point join, $G_{1} \cdot G_{2}$;
$T_{\bullet}=1$.
$T_{\Gamma}(1,1)$ is the number of spanning trees of Γ;
$T_{\Gamma}(2,1)$ is the number of spanning forests of Γ;
$T_{\Gamma}(1,2)$ is the number of spanning connected subgraphs of Γ;
$T_{\Gamma}(2,2)=2^{|E(\Gamma)|}$ is the number of spanning subgraphs of Γ.

Virtual links

Virtual crossings

Reidemeister moves

(

$x^{x+3 x}$

The Kauffman bracket

Let L be a virtual link diagram.

$$
\begin{aligned}
& \text { A-splitting: } \frac{1}{1} \mathrm{ArO}_{\mathrm{O}} \mathrm{~J} \\
& \text { A state } S \text { is a choice of } \\
& \text { either } A \text { - or } B \text {-splitting at } \\
& \text { every classical crossing. } \\
& \alpha(S)=\#(\text { of } A \text {-splittings } \\
& \text { in } S \text {) } \\
& \beta(S)=\#(\text { of } B \text {-splittings } \\
& \text { in } S \text {) } \\
& \delta(S)=\#(\text { of circles in } S) \\
& {[L](A, B, d):=\sum_{S} A^{\alpha(S)} B^{\beta(S)} d^{\delta(S)-1}} \\
& J_{L}(t):=(-1)^{w(L)} t^{3 w(L) / 4}[L]\left(t^{-1 / 4}, t^{1 / 4},-t^{1 / 2}-t^{-1 / 2}\right)
\end{aligned}
$$

Example

¢	¢	∞	6	∞
(α, β, δ)	$(3,0,1)$	$(2,1,2)$	$(2,1,2)$	$(1,2,1)$
	¢	-	60	Q
	$(2,1,2)$	$(1,2,1)$	(1, 2, 3)	$(0,3,2)$
$[L]=A^{3}+3 A^{2} B d+2 A B^{2}+A B^{2} d^{2}+B^{3} d$				$J_{L}(t)=1$

Graphs on surfaces

Ribbon graphs

A ribbon graph G is a surface represented as a union of verticesdiscs and edges-ribbons

- discs and ribbons intersect by disjoint line segments,
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

The Bollobás-Riordan polynomial

Let - F be a ribbon graph;

- $v(F)$ be the number of its vertices;
- $e(F)$ be the number of its edges;
- $k(F)$ be the number of components of F;
- $r(F):=v(F)-k(F)$ be the rank of F;
- $n(F):=e(F)-r(F)$ be the nullity of F;
- bc (F) be the number of boundary components of F;
- $s(F):=\frac{e_{-}(F)-e_{-}(\bar{F})}{2}$.
$R_{G}(x, y, z):=$
$\sum_{F} x^{r(G)-r(F)+s(F)} y^{n(F)-s(F)} z^{k(F)-\mathrm{bc}(F)+n(F)}$

Relations to the Tutte polynomial.

$$
R_{G}(x-1, y-1,1)=T_{G}(x, y)
$$

If G is planar (genus zero):

$$
R_{G}(x-1, y-1, z)=T_{G}(x, y)
$$

Example.

- $r(F):=v(F)-k(F) ;$
- $n(F):=e(G)-r(F)$;
- $\mathrm{bc}(F)$ is the number of boundary components;
- $s(F):=\frac{e_{-}(F)-e_{-}(\bar{F})}{2}$.

$$
R_{G}(x, y, z)=x+2+y+x y z^{2}+2 y z+y^{2} z .
$$

Construction of a ribbon graph from a virtual link diagram

Attaching planar bands
Replacing bands by arrows

Untwisting state circles
Pulling state circles apart

Forming the ribbon graph G_{L}^{s}

Theorem [Ch]

Let L be a virtual link diagram with e classical crossings, G_{L}^{s} be the signed ribbon graph corresponding to a state s, and $v:=v\left(G_{L}^{s}\right), k:=k\left(G_{L}^{s}\right)$. Then $e=e\left(G_{L}^{s}\right)$ and

$$
[L](A, B, d)=A^{e}\left(\left.x^{k} y^{v} z^{v+1} R_{G_{L}^{s}}(x, y, z)\right|_{x=\frac{A d}{B}, y=\frac{B d}{A}, z=\frac{1}{d}}\right)
$$

Idea of the proof.

One-to-one correspondence between states s^{\prime} of L and spanning subgraphs F^{\prime} of G_{L}^{s} :

An edge e of G_{L}^{s} belongs to the spanning subgraph F^{\prime} if and only if the corresponding crossing was split in s^{\prime} differently comparably with s.

Generalized duality

Examples

Graph Γ on a torus

Duality theorem [Ch]

For any choice of the subset of edges E^{\prime}. the restriction of the polynomial $x^{k(G)} y^{v(G)} z^{v(G)+1} R_{G}(x, y, z)$ to the surface $x y z^{2}=1$ is invariant under the generalized duality:

$$
\left.x^{k(G)} y^{v(G)} z^{v(G)+1} R_{G}(x, y, z)\right|_{x y z^{2}=1}=\left.x^{k\left(G^{\prime}\right)} y^{v\left(G^{\prime}\right)} z^{v\left(G^{\prime}\right)+1} R_{G^{\prime}}(x, y, z)\right|_{x y z^{2}=1}
$$

where $G^{\prime}:=G^{E^{\prime}}$.

Idea of the proof.

$$
x^{k(G)} y^{v(G)} z^{v(G)+1} R_{G}(x, y, z)=\sum_{F} M_{G}(F)
$$

One-to-one correspondence $E(G) \supseteq F \leftrightarrow F^{\prime} \subseteq E\left(G^{\prime}\right)$:
An edge e of G^{\prime} belongs to the spanning subgraph
F^{\prime} if and only if either $e \in E^{\prime}$ and $e \notin F$, or
$e \notin E^{\prime}$ and $e \in F$.

$$
\left.M_{G}(F)\right|_{x y z^{2}=1}=\left.M_{G^{\prime}}\left(F^{\prime}\right)\right|_{x y z^{2}=1},
$$

Corollary

Let G be a connected plane ribbon graph, i.e. its underlying graph Γ is embedded into the plane. Then

$$
T_{\Gamma}(x, y)=T_{\Gamma^{*}}(y, x)
$$

Theorem of [CP]: The state s comes from a checkerboard coloring of the diagram L.

Theorem of [CV]: The state s is the Seifert state, i.e. all splittings preserve the orientation of L.

Theorem of [DFKLS]: The state $s=s_{A}$, i.e. all splittings are A-splittings.

References

[BR] B. Bollobás and O. Riordan, A polynomial of graphs on surfaces, Math. Ann. 323 (2002) 81-96.
[Ch] S. Chmutov, Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial, preprint arXiv:math.CO/0711.3490.
[CP] S. Chmutov, I. Pak, The Kauffman bracket of virtual links and the Bollobás-Riordan polynomial, preprint arXiv:math.GT/0609012, Moscow Mathematical Journal 7(3) (2007) 409-418.
[CV] S. Chmutov, J. Voltz, Thistlethwaite's theorem for virtual links, preprint arXiv:math.GT/0704.1310. To appear in Journal of Knot Theory and its Ramifications.
[DFKLS] O. Dasbach, D. Futer, E. Kalfagianni, X.-S. Lin, N. Stoltzfus, The Jones polynomial and graphs on surfaces, Preprint math.GT/0605571. To appear in Journal of Combinatorial Theory Ser.B.
[Th] M. Thistlethwaite, A spanning tree expansion for the Jones polynomial, Topology 26 (1987) 297-309.

