University of Illinois at Chicago

Quantum topology seminar
January 15, 2008

Generalized duality for graphs on surfaces and its application to links

Sergei Chmutov
The Ohio State University, Mansfield

M. B. Thistlethwaite,

L. Kauffman, K.Murasugi, F.Jaeger

Up to a sign and a power of t the Jones polynomial $V_{L}(t)$ of an alternating link L is equal to the Tutte polynomial $T_{\Gamma_{L}}\left(-t,-t^{-1}\right)$.

$$
V_{L}(t)=t+t^{3}-t^{4}
$$

$$
T_{\Gamma_{L}}(x, y)=y+x+x^{2}
$$

$$
=-t^{2}\left(-t^{-1}-t+t^{2}\right)
$$

$$
T_{\Gamma_{L}}\left(-t,-t^{-1}\right)=-t^{-1}-t+t^{2}
$$

Graphs on surfaces

Graph Γ on a torus

Dual graph $\Gamma^{\{e\}}$ with respect to the edge e is embedded into a sphere

Ribbon graphs

A ribbon graph G is a surface represented as a union of verticesdiscs and edges-ribbons

- discs and ribbons intersect by disjoint line segments,
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

Examples

$$
\begin{aligned}
& \text { (0) } 0.0 \\
& 0-0 \\
& 0-0.0
\end{aligned}
$$

Generalized duality with respect to the set of edges

forming the $\xrightarrow{\square}$
new vertex

Examples.

$1-\oplus ; 2-\oplus ; 3-\oplus \quad 1-\oplus ; 2-\oplus ; 3-\oplus$

$$
={ }_{1 \bigcirc 2}^{2}=
$$

The Bollobás-Riordan polynomial

Let - F be a ribbon graph;

- $v(F)$ be the number of its vertices;
- $e(F)$ be the number of its edges;
- $k(F)$ be the number of components of F;
- $r(F):=v(F)-k(F)$ be the rank of F;
- $n(F):=e(F)-r(F)$ be the nullity of F;
- bc (F) be the number of boundary components of F;
- $s(F):=\frac{e_{-}(F)-e_{-}(\bar{F})}{2}$.
$R_{G}(x, y, z):=$
$\sum_{F} x^{r(G)-r(F)+s(F)} y^{n(F)-s(F)} z^{k(F)-\mathrm{bc}(F)+n(F)}$

Relations to the Tutte polynomial.

$$
R_{G}(x-1, y-1,1)=T_{G}(x, y)
$$

If G is planar (genus zero):

$$
R_{G}(x-1, y-1, z)=T_{G}(x, y)
$$

Example.

- $r(F):=v(F)-k(F) ;$
- $n(F):=e(G)-r(F)$;
- $\mathrm{bc}(F)$ is the number of boundary components;
- $s(F):=\frac{e_{-}(F)-e_{-}(\bar{F})}{2}$.

$$
R_{G}(x, y, z)=x+2+y+x y z^{2}+2 y z+y^{2} z .
$$

Duality theorem [Ch]

For any choice of the subset of edges E^{\prime}. the restriction of the polynomial $x^{k(G)} y^{v(G)} z^{v(G)+1} R_{G}(x, y, z)$ to the surface $x y z^{2}=1$ is invariant under the generalized duality:

$$
\begin{aligned}
& \left.x^{k(G)} y^{v(G)} z^{v(G)+1} R_{G}(x, y, z)\right|_{x y z^{2}=1}=\left.x^{k\left(G^{\prime}\right)} y^{v\left(G^{\prime}\right)} z^{v\left(G^{\prime}\right)+1} R_{G^{\prime}}(x, y, z)\right|_{x y z^{2}=1} \\
& \quad \text { where } G^{\prime}:=G^{E^{\prime}}
\end{aligned}
$$

Idea of the proof.

$$
x^{k(G)} y^{v(G)} z^{v(G)+1} R_{G}(x, y, z)=\sum_{F} M_{G}(F)
$$

One-to-one correspondence $E(G) \supseteq F \leftrightarrow F^{\prime} \subseteq E\left(G^{\prime}\right)$:
An edge e of G^{\prime} belongs to the spanning subgraph
F^{\prime} if and only if either $e \in E^{\prime}$ and $e \notin F$, or $e \notin E^{\prime}$ and $e \in F$.

$$
\left.M_{G}(F)\right|_{x y z^{2}=1}=\left.M_{G^{\prime}}\left(F^{\prime}\right)\right|_{x y z^{2}=1}
$$

Virtual links

Virtual crossings

Reidemeister moves

$$
x x_{n+0} x
$$

The Kauffman bracket

Let L be a virtual link diagram.

$$
\begin{aligned}
& \text { A-splitting: } \frac{1}{1} \mathrm{ArO}_{\mathrm{O}} \mathrm{~J} \\
& \text { A state } S \text { is a choice of } \\
& \text { either } A \text { - or } B \text {-splitting at } \\
& \text { every classical crossing. } \\
& \alpha(S)=\#(\text { of } A \text {-splittings } \\
& \text { in } S \text {) } \\
& \beta(S)=\#(\text { of } B \text {-splittings } \\
& \text { in } S \text {) } \\
& \delta(S)=\#(\text { of circles in } S) \\
& {[L](A, B, d):=\sum_{S} A^{\alpha(S)} B^{\beta(S)} d^{\delta(S)-1}} \\
& J_{L}(t):=(-1)^{w(L)} t^{3 w(L) / 4}[L]\left(t^{-1 / 4}, t^{1 / 4},-t^{1 / 2}-t^{-1 / 2}\right)
\end{aligned}
$$

Example

Construction of a ribbon graph from a virtual link diagram

Attaching planar bands
Replacing bands by arrows

Untwisting state circles
Pulling state circles apart

Forming the ribbon graph G_{L}^{s}

Theorem [Ch]

Let L be a virtual link diagram with e classical crossings, G_{L}^{s} be the signed ribbon graph corresponding to a state s, and $v:=v\left(G_{L}^{s}\right), k:=k\left(G_{L}^{s}\right)$. Then $e=e\left(G_{L}^{s}\right)$ and

$$
[L](A, B, d)=A^{e}\left(\left.x^{k} y^{v} z^{v+1} R_{G_{L}^{s}}(x, y, z)\right|_{x=\frac{A d}{B}, y=\frac{B d}{A}, z=\frac{1}{d}}\right)
$$

Idea of the proof.

One-to-one correspondence between states s^{\prime} of L and spanning subgraphs F^{\prime} of G_{L}^{s} :

An edge e of G_{L}^{s} belongs to the spanning subgraph F^{\prime} if and only if the corresponding crossing was split in s^{\prime} differently comparably with s.

Theorem of [CP]: The state s comes from a checkerboard coloring of the diagram L.

Theorem of [CV]: The state s is the Seifert state, i.e. all splittings preserve the orientation of L.

Theorem of [DFKLS]: The state $s=s_{A}$, i.e. all splittings are A-splittings.

References

[BR] B. Bollobás and O. Riordan, A polynomial of graphs on surfaces, Math. Ann. 323 (2002) 81-96.
[Ch] S. Chmutov, Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial, preprint arXiv:math.CO/0711.3490.
[CP] S. Chmutov, I. Pak, The Kauffman bracket of virtual links and the Bollobás-Riordan polynomial, preprint arXiv:math.GT/0609012, Moscow Mathematical Journal 7(3) (2007) 409-418.
[CV] S. Chmutov, J. Voltz, Thistlethwaite's theorem for virtual links, preprint arXiv:math.GT/0704.1310. To appear in Journal of Knot Theory and its Ramifications.
[DFKLS] O. Dasbach, D. Futer, E. Kalfagianni, X.-S. Lin, N. Stoltzfus, The Jones polynomial and graphs on surfaces, Preprint math.GT/0605571. To appear in Journal of Combinatorial Theory Ser.B.
[Th] M. Thistlethwaite, A spanning tree expansion for the Jones polynomial, Topology 26 (1987) 297-309.

