WORKSHOP "The Mathematics of Knots: Theory and Application"

Combinatorics of Gauss diagrams and the HOMFLYPT polynomial.

> Sergei Chmutov

Max-Planck-Institut für Mathematik, Bonn

The Ohio State University, Mansfield

Joint work with Michael Polyak

Monday, December 15, 2008

Plan

- Gauss diagrams and virtual links.
- HOMFLYPT polynomial and Jaeger's state model for it.
- Two HOMFLYPTs for virtual links.
- Gauss diagram formulas for Vassiliev invariants.

Gauss diagrams

A Gauss diagram is a collection of oriented circles with a distinguished set of ordered pairs of distinct points. Each pair carries a sign ± 1.

Ordered Gauss diagram is an ordered collection of circles with a base point $\boldsymbol{*}_{1}, \boldsymbol{*}_{2}, \ldots, \boldsymbol{*}_{m}$ on each.

is a not realizable Gauss diagram.

Reidemeister moves

$$
\begin{aligned}
& \Omega_{1}: \quad \sum_{\varepsilon}^{\uparrow} \leftrightarrow \uparrow \rightarrow \varepsilon_{\varepsilon}^{\uparrow} \\
& \Omega_{2}: \quad\left|\frac{-\varepsilon \uparrow}{\boxed{\varepsilon}}\right| \rightarrow \downarrow \downarrow
\end{aligned}
$$

A virtual link is a Gauss diagram up to the Reidemeister moves.

The HOMFLYPT polynomial

 $P(\square)=1$.

State models on Gauss diagram
A state S on a Gauss diagram G is a subset of its arrows.
Let $G(S)$ be the Gauss diagram obtained by doubling every arrow in S :

$\xrightarrow{2}$

$c(S):=\#$ of circles of $G(S)$.

Theorem (F.Jaeger'90).
$P(G)=\sum_{S} \prod_{\alpha \in G}\langle\alpha| G|S\rangle \cdot\left(\frac{a-a^{-1}}{z}\right)^{c(S)-1}$
Table of local weights $\langle\alpha| G|S\rangle$:

Example. For the Gauss diagram of the trefoil the states with non-zero weights are:

$$
\begin{aligned}
& 1 \cdot a^{2} \cdot 1 \left\lvert\, 1 \cdot(-a z) a^{2}\left(\frac{a-a^{-1}}{z}\right)\right. \\
& P(G)=\left(2 a^{2}-a^{4}\right)+z^{2} a^{2}
\end{aligned}
$$

Invariance under the Reidemeister moves

Theorem. $\quad P(G)$ is invariant under Reidemeister moves of ordered Gauss diagrams and thus defines an invariant of ordered virtual links.
Proof.

$$
\begin{aligned}
& \Omega_{1}: \quad \oint_{\varepsilon}^{\alpha} \uparrow \leftrightarrow \nrightarrow \leftrightarrow \underbrace{\alpha}_{\varepsilon} \uparrow \\
& \left.\begin{array}{c}
S \\
S \cup \alpha
\end{array}\right\} \stackrel{2: 1}{\stackrel{1: 2}{\longrightarrow}}\left\{\begin{array}{c}
S \\
S \cup \alpha
\end{array}\right. \\
& \left.\begin{array}{c}
\langle G \mid S\rangle \\
0
\end{array}\right\} \quad\langle G \mid S\rangle \quad\left\{\begin{array}{c}
a^{-2 \varepsilon}\langle G \mid S\rangle \\
\varepsilon a^{-\varepsilon} z \frac{a-a^{-1}}{z}\langle G \mid S\rangle
\end{array}\right. \\
& a^{-2 \varepsilon}+a^{-\varepsilon}\left(a-a^{-1}\right) \equiv 1
\end{aligned}
$$

$S, S \cup \alpha_{1}, S \cup \alpha_{2}, S \cup \alpha_{1} \cup \alpha_{2} \stackrel{4: 1}{4} S$

Three cases:

(1) the first entrance to this fragment in S is on the right string;
(2a) the first entrance is on the left string and both strings belong to the same circle of $G(S)$;
(2b) the first entrance is on the left string and the strings belong to two different circles of $G(S)$.

(1)	1	0	0	0
$(2 \mathrm{a})$	1	$-\varepsilon a^{-\varepsilon} z$	$\varepsilon a^{\varepsilon} z$	$\left(a-a^{-1}\right) z$
$(2 \mathrm{~b})$	1	$-\varepsilon a^{\varepsilon} z$	$\varepsilon a^{\varepsilon} z$	0

$\Omega_{3}:$

Two of the 14 cases:
$a^{-1} z \cdot a^{-1} z \cdot a^{-2}$

$a^{-1} z \cdot a^{-1} z \cdot 1$

Corollary.

1. HOMFLYPT extends to an invariant of ordered virtual links.
2. Interchanging "head" and "tail" of the arrows in the table of local weight of the Jaeger model gives another extension of the HOMFLYPT to virtual links.
3. These two extensions coincide on classical links.

Gauss diagram formulas

Let \mathcal{S} be the space generated by all Gauss diagrams. A map $I: \mathcal{S} \rightarrow \mathcal{S}$ is defined as

$$
I(G)=\sum_{A \subseteq G} A=: \sum\langle A, G\rangle A
$$

The pairing $\langle A, G\rangle$ extends to a bilinear pairing $\langle\cdot, \cdot\rangle: \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}$.
A Gauss diagram formula for a link invariant v is a linear combination $\sum \lambda_{i} A_{i}$ presenting v in a form

$$
v(L)=\left\langle\sum \lambda_{i} A_{i}, G_{L}\right\rangle
$$

Shorter notation.

Theorem of Goussarov.
Any Vassiliev knot invariant can be represented by a Gauss diagram formula.

Coefficients of the HOMFLYPT polynomial

$$
\left.P(L)\right|_{a=e^{h}}=: \sum p_{k, l}(L) h^{k} z^{l}
$$

Goussarov's Lemma.

The coefficient $p_{k, l}$ is a Vassiliev invariant of order $\leqslant k+l$.

$$
p_{k, l}(K)=:\left\langle A_{k, l}, G_{K}\right\rangle
$$

$$
A_{0,2}=A_{2,0}=0 ;
$$

$$
A_{0,4}=\theta+\theta+\theta+\theta+\infty+
$$

$$
+\infty+\infty+\infty+\infty+\infty+\infty)+\theta+\theta)+\theta
$$

$$
A_{2,2}=78 \text { terms. }
$$

$$
\begin{aligned}
& A_{0,3}=0 ; \quad A_{3,0}=-4 A_{1,2} ;
\end{aligned}
$$

$$
\begin{aligned}
& +(x+2) \text {; }
\end{aligned}
$$

