Heidelberg University

WORKSHOP "The Mathematics of Knots: Theory and Application"

Combinatorics of Gauss diagrams and the HOMFLYPT polynomial.

Sergei Chmutov

Max-Planck-Institut für Mathematik, Bonn The Ohio State University, Mansfield

Joint work with Michael Polyak

Monday, December 15, 2008

Plan

- Gauss diagrams and virtual links.
- HOMFLYPT polynomial and Jaeger's state model for it.
- Two HOMFLYPTs for virtual links.
- Gauss diagram formulas for Vassiliev invariants.

Gauss diagrams

A Gauss diagram is a collection of oriented circles with a distinguished set of ordered pairs of distinct points. Each pair carries a sign ± 1 .

Ordered Gauss diagram is an ordered collection of circles with a base point $*_1, *_2, \ldots, *_m$ on each.

is a not realizable Gauss diagram.

Reidemeister moves

A *virtual link* is a Gauss diagram up to the Reidemeister moves.

The HOMFLYPT polynomial

$$aP(\mathbf{i}) - a^{-1}P(\mathbf{i}) = zP(\mathbf{i});$$

$$P(\mathbf{i}) = 1.$$

State models on Gauss diagram

A state S on a Gauss diagram G is a subset of its arrows.

Let G(S) be the Gauss diagram obtained by doubling every arrow in S:

c(S) := # of circles of G(S).

Theorem (F.Jaeger'90).

$$P(G) = \sum_{S} \prod_{\alpha \in G} \langle \alpha | G | S \rangle \cdot \left(\frac{a - a^{-1}}{z} \right)^{c(S) - 1}$$

Table of local weights $\langle \alpha | G | S \rangle$:

First passage:
$$\varepsilon = \varepsilon = \varepsilon = 0$$
 $\varepsilon = \varepsilon = 0$ $\varepsilon = \varepsilon = 0$

Example. For the Gauss diagram of the trefoil the states with non-zero weights are:

$$1 \cdot a^{2} \cdot 1 \left| 1 \cdot (-az)a^{2}(\frac{a-a^{-1}}{z}) \right| 1 \cdot (-az)(-az)$$

$$P(G) = (2a^{2} - a^{4}) + z^{2}a^{2}$$

Invariance under the Reidemeister moves

Theorem. P(G) is invariant under Reidemeister moves of ordered Gauss diagrams and thus defines an invariant of ordered virtual links.

Proof.

$$\Omega_2: \begin{array}{c} \alpha_1 \\ \alpha_2 \end{array}$$

$$S, S \cup \alpha_1, S \cup \alpha_2, S \cup \alpha_1 \cup \alpha_2 \xleftarrow{4:1} S$$

Three cases:

- (1) the first entrance to this fragment in S is on the right string;
- (2a) the first entrance is on the left string and both strings belong to the same circle of G(S);
- (2b) the first entrance is on the left string and the strings belong to two different circles of G(S).

		Y		Y
$\overline{(1)}$	1	0	0	0
(2a)	1	$-\varepsilon a^{-\varepsilon}z$	$\varepsilon a^{\varepsilon}z$	$\left (a - a^{-1})z \right $
(2b)	1	$-\varepsilon a^{\varepsilon}z$	$\left \varepsilon a^{arepsilon} z \right $	0

Corollary.

- 1. HOMFLYPT extends to an invariant of ordered virtual links.
- 2. Interchanging "head" and "tail" of the arrows in the table of local weight of the Jaeger model gives another extension of the HOMFLYPT to virtual links.
- 3. These two extensions coincide on classical links.

Gauss diagram formulas

Let \mathcal{S} be the space generated by all Gauss diagrams. A map $I: \mathcal{S} \to \mathcal{S}$ is defined as

$$I(G) = \sum_{A \subseteq G} A =: \sum \langle A, G \rangle A$$

The pairing $\langle A, G \rangle$ extends to a bilinear pairing $\langle \cdot, \cdot \rangle : \mathcal{S} \times \mathcal{S} \to \mathcal{S}$.

A Gauss diagram formula for a link invariant v is a linear combination $\sum \lambda_i A_i$ presenting v in a form

$$v(L) = \langle \sum \lambda_i A_i, G_L \rangle$$

Shorter notation.

$$:=\bigcap_{1}^{+}\bigcap_{2}^{+}\bigcap_{2}^{-$$

Theorem of Goussarov.

Any Vassiliev knot invariant can be represented by a Gauss diagram formula.

Coefficients of the HOMFLYPT polynomial

$$P(L)|_{a=e^h} =: \sum p_{k,l}(L)h^k z^l$$

Goussarov's Lemma.

The coefficient $p_{k,l}$ is a Vassiliev invariant of order $\leq k+l$.

$$p_{k,l}(K) =: \langle A_{k,l}, G_K \rangle$$

$$A_{0,2} = \bigcirc$$
 ; $A_{2,0} = 0$;

 $A_{2,2} = 78 \text{ terms.}$