Partial duality of graphs on surfaces

Sergei Chmutov

Ohio State University, Mansfield

AMS Sectional Meeting # 1062 Syracuse University, Syracuse, NY Special Session on Graphs Embedded in Surfaces, and Their Symmetries

> Saturday, October 2, 2010 5:00 — 5:20 p.m.

Graphs on surfaces

Sergei Chmutov Partial duality of graphs on surfaces

A ribbon graph R is a surface represented as a union of

vertices-discs

and edges-ribbons

- discs and ribbons intersect by disjoint line segments,
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

Duality

Partial duality

$$R^{\{1,2,3,4,5\}} = ???$$

Partial duality

Partial duality

Let $A \subseteq E(R)$ for a ribbon graph R. (a) $R^{\emptyset} = R$. (b) $R^{E(R)} = R^*$. (c) $(R^A)^A = R$. (d) For an edge $e \notin A$, $R^{A \cup \{e\}} = (R^A)^{\{e\}} = (R^{\{e\}})^A$. (e) $(R^A)^{A'} = R^{(A \cup A') \setminus (A \cap A')}$. (f) Partial duality preserves orientability.

Bollobás-Riordan polynomial

Let *F* be a ribbon graph;

- v(F) be the number of its vertices;
- *e*(*F*) be the number of its edges;
- k(F) be the number of components of F;
- r(F) := v(F) k(F) be the *rank* of *F*;
- n(F) := e(F) r(F) be the *nullity* of *F*;
- bc(F) be the number of boundary components of F;

$$B_{R}(X, Y, Z) := \sum_{F \subseteq R} (\prod_{e \in F} x_{e}) (\prod_{e \in R \setminus F} y_{e})$$
$$X^{r(R) - r(F)} Y^{n(F)} Z^{k(F) - bc(F) + n(F)}$$

$$x_e = y_e = 1$$

 $B_R(x - 1, y - 1, 1) = T_R(x, y)$

If *R* is planar (genus zero): $B_R(x - 1, y - 1, z) = T_R(x, y)$

Signed graphs:

+-edge:
$$x_e := 1$$
, $y_e := 1$.
--edge: $x_e := \sqrt{X/Y}$, $y_e := \sqrt{Y/X}$.

The restriction of the polynomial $(YZ)^{v(R)}B_R(X, Y, Z)$ to the surface $XYZ^2 = 1$ is invariant under the partial duality:

$$(YZ)^{\nu(R)}B_{R}(X, Y, Z)\Big|_{XYZ^{2}=1} = (YZ)^{\nu(R')}B_{R'}(X, Y, Z)\Big|_{XYZ^{2}=1}$$

where $R' := R^A$ with the weights correspondence

$$x'_e = \left\{ egin{array}{ll} x_e & ext{if } e
ot\in A, \end{array}
ight. egin{array}{ll} y_e & ext{if } e
ot\in A, \end{array}
ight. egin{array}{ll} y'_e = \left\{ egin{array}{ll} y_e & ext{if } e
ot\in A, \end{array}
ight.
ight. egin{array}{ll} x_e \ YZ & ext{if } e
ot\in A. \end{array}
ight.$$

Idea of the proof

$$(YZ)^{\nu(R)}B_R(X, Y, Z) = \sum_F M_R(F)$$

The weight correspondence gives

a one-to-one correspondence:

$$egin{array}{rcl} F &\subseteq & E(R) \ \updownarrow & & \parallel \ F' &\subseteq & E(R') \end{array}$$

.

 $F' = (F \cup A) \setminus (F \cap A)$.

$$M_R(F)\bigg|_{XYZ^2=1} = M_{R'}(F')\bigg|_{XYZ^2=1}$$

Corollary 1. Let $g := k(R) - \chi(\tilde{R})/2$, where \tilde{R} is a closed surface obtained from R by capping all boundary components. Then

$$X^{g}B_{R}(\{x_{e}, y_{e}\}, X, Y, Z) \bigg|_{XYZ^{2}=1} = Y^{g}B_{R^{*}}(\{y_{e}, x_{e}\}, Y, X, Z)\bigg|_{XYZ^{2}=1}$$

ı

Corollary 2. Let R be a connected plane graph. Then

L.

$$T_R(x,y)=T_{R^*}(y,x)$$