Partial duality of graphs on surfaces

Sergei Chmutov

Ohio State University, Mansfield

AMS Sectional Meeting \# 1062 Syracuse University, Syracuse, NY
 Special Session on Graphs Embedded in Surfaces, and Their Symmetries

Saturday, October 2, 2010 5:00-5:20 p.m.

Graphs on surfaces

Ribbon graphs

A ribbon graph R is a surface represented as a union of vertices-discs
 and edges-ribbons

- discs and ribbons intersect by disjoint line segments,
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

Duality

Partial duality

$$
R^{\{1,2,3,4,5\}}=? ? ?
$$

Partial duality

Partial duality

Examples

Properties

Let $A \subseteq E(R)$ for a ribbon graph R.
(a) $R^{\emptyset}=R$.
(b) $R^{E(R)}=R^{*}$.
(c) $\left(R^{A}\right)^{A}=R$.
(d) For an edge $e \notin A, R^{A \cup\{e\}}=\left(R^{A}\right)^{\{e\}}=\left(R^{\{e\}}\right)^{A}$.
(e) $\left(R^{A}\right)^{A^{\prime}}=R^{\left(A \cup A^{\prime}\right) \backslash\left(A \cap A^{\prime}\right)}$.
(f) Partial duality preserves orientability.

Bollobás-Riordan polynomial

Let F be a ribbon graph;

- $v(F)$ be the number of its vertices;
- $e(F)$ be the number of its edges;
- $k(F)$ be the number of components of F;
- $r(F):=v(F)-k(F)$ be the rank of F;
- $n(F):=e(F)-r(F)$ be the nullity of F;
- $\operatorname{bc}(F)$ be the number of boundary components of F;

$$
\begin{aligned}
& B_{R}(X, Y, Z):=\sum_{F \subseteq R}(\left.\prod_{e \in F} x_{e}\right)(\\
&\left.\prod_{e \in R \backslash F} y_{e}\right) \\
& X^{r(R)-r(F)} Y^{n(F)} Z^{k(F)-b c(F)+n(F)}
\end{aligned}
$$

Relation to the Tutte polynomial

$x_{e}=y_{e}=1$

$$
B_{R}(x-1, y-1,1)=T_{R}(x, y)
$$

If R is planar (genus zero): $B_{R}(x-1, y-1, z)=T_{R}(x, y)$
Signed graphs:

+ -edge: $x_{e}:=1, \quad y_{e}:=1$.
--edge: $x_{e}:=\sqrt{X / Y}, \quad y_{e}:=\sqrt{Y / X}$.

Duality theorem

The restriction of the polynomial $(Y Z)^{v(R)} B_{R}(X, Y, Z)$ to the surface $X Y Z^{2}=1$ is invariant under the partial duality:

$$
\left.(Y Z)^{v(R)} B_{R}(X, Y, Z)\right|_{X Y Z^{2}=1}=\left.(Y Z)^{v\left(R^{\prime}\right)} B_{R^{\prime}}(X, Y, Z)\right|_{X Y Z^{2}=1}
$$

where $R^{\prime}:=R^{A}$ with the weights correspondence

$$
x_{e}^{\prime}=\left\{\begin{array}{ll}
x_{e} & \text { if } e \notin A \\
y_{e} X Z & \text { if } e \in A,
\end{array} \quad y_{e}^{\prime}= \begin{cases}y_{e} & \text { if } e \notin A \\
x_{e} Y Z & \text { if } e \in A .\end{cases}\right.
$$

Idea of the proof

$$
(Y Z)^{v(R)} B_{R}(X, Y, Z)=\sum_{F} M_{R}(F)
$$

The weight correspondence gives
a one-to-one correspondence:

$$
F^{\prime}=(F \cup A) \backslash(F \cap A) .
$$

$$
\left.M_{R}(F)\right|_{X Y Z^{2}=1}=\left.M_{R^{\prime}}\left(F^{\prime}\right)\right|_{X Y Z^{2}=1}
$$

Corollaries

Corollary 1. Let $g:=k(R)-\chi(\widetilde{R}) / 2$, where \widetilde{R} is a closed surface obtained from R by capping all boundary components. Then
$\left.X^{g} B_{R}\left(\left\{x_{e}, y_{e}\right\}, X, Y, Z\right)\right|_{X Y Z^{2}=1}=\left.Y^{g} B_{R^{*}}\left(\left\{y_{e}, x_{e}\right\}, Y, X, Z\right)\right|_{X Y Z^{2}=1}$

Corollary 2. Let R be a connected plane graph. Then

$$
T_{R}(x, y)=T_{R^{*}}(y, x)
$$

