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Motivation

Knot theory: two different generalizations of Thistlethwaite’s
theorem to virtual links.
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Thistlethwaite’s theorem

Up to a sign and a power of t the Jones polynomial VL(t) of an
alternating link L is equal to the Tutte polynomial TΓL(−t ,−t−1).

L ΓL

VL(t) = t + t3 − t4 TΓL(x , y) = y + x + x2

= −t2(−t−1 − t + t2) TΓL(−t ,−t−1) = −t−1 − t + t2
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The Bollobás–Riordan polynomial

For a doubly weighted ribbon graph G with weights (xe, ye) of
an edge e ∈ G we have

BG(X ,Y ,Z ) =
∑

F⊆G

(
∏

e∈F

xe)(
∏

e∈G\F

ye)X k(F )−k(G)Y n(F )Z k(F )−bc(F )+n(F ),

where

k(F ) be the number of components of F ;

n(F ) := e(F )− v(F ) + k(F ) be the nullity of F ;

bc(F ) be the number of boundary components of F .
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Virtual Thistlethwaite’s theorem (J. Voltz, — ’06)

Let L be a virtual link diagram, GL be the corresponding signed
ribbon graph, and n := n(GL), k := k(GL),

x+ := y+ := 1, x− :=
B
A
, y− :=

A
B
.

Then

[L](A,B, d) = AnBe−ndk−1 RGL

(

Ad
B
,
Bd
A
,

1
d

)

.
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Construction of GL

Diagram

L

Seifert state
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Seifert circles

+ −

−

+ −

−
Pulling Seifert circles apart Glue in the vertex-discs

GL
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The relative Tutte polynomial

TΓ,H :=
∑

F⊆Γ\H

(
∏

e∈F

xe)(
∏

e∈F

ye)X k(F∪H)−k(Γ)Y n(F )ψ(HF )

where F := Γ \ (F ∪ H), and HF := (F ∪ H)/F . Our choice of ψ
is

ψ(HF ) := dδ(HF )−k(HF )wv(HF )−k(HF ) ,

δ(HF ) is the number of circles that immerse to the medial graph
of HF .
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Virtual Thistlethwaite’s theorem (Y. Diao, G.Hetyei’08)

Let L be a virtual link diagram, and Γ the relative plane Tait
graph of L. Then, under the substitution

X =
Bd
A
, Y =

Ad
B
, w =

B
A
, x+ = y+ = 1, x− =

B
A
, y− =

A
B

we have,

[L](A,B, d) = Av(Γ)−k(Γ)B|E(Γ\H)|−v(Γ)+k(Γ)dk(Γ)−1TΓ,H .
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Construction of (Γ,H)

+

+-edge

−

−-edge 0-edge

Example.

L Γ

H
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From ribbon graphs to relative plane graphs

Let G be a ribbon graph. Consider a planar projection of G
which is 1-to-1 except the points of singularities. These
singularities are restricted to two types.
The first occurs when a ribbon twists over itself; in this case a
whole line interval on the ribbon is projected to a single point.
The second type occurs when the images of two edge ribbons
cross. In this case, the projection is 2-to-1 over the disc of the
intersection.
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Construction of Γ. (Step 1.)

On each edge of G we choose a portion of the ribbon on which
the projection is 1-to-1. We will call it a regular edge. The
regular edges are the non-zero edges of the relative plane
graph Γ.

regular edges
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Construction of Γ. (Step 2.)

Extend the vertex discs of G through to the regular edge of
each ribbon.

regular edges
Extension of vertices
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Construction of Γ. (Step 3.)

Each of these extended vertices is segmented by the regular
edges and the singularities of the projection. These segments
become the vertices of G.
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Construction of G. (Step 4.)

The 0-edges of Γ correspond to the double points of the
restriction of the projection to the boundary of G. They connect
the vertices of Γ which correspond to the extended regions
sharing the same double point in a checkerboard manner.
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Example
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Another example
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Theorem

Suppose G is a ribbon graph, and Γ is a relative plane graph of
a projection of G.

Then under the substitution w =
√

X
Y , d =

√
XY,

XαY βTG,H(X ,Y ) = BR(X ,Y ,
1√
XY

) ,

where β = −1
2(v(R)− v(G)) ,

α = k(G)− k(R)− β .
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