The Tutte polynomial, its applications and generalizations

Sergei Chmutov

The Ohio State University, Mansfield

Thursday, April 15, 2010
3:30 - 4:30 p.m.

Chromatic polynomial

$C_{\Gamma}(q):=\#$ of proper colorings of $V(\Gamma)$ in q colors Example. $C_{\square \square}(q)=q(q-1)\left(q^{2}-3 q+3\right)$

Properties: $C_{\Gamma}=C_{\Gamma-e}-C_{\Gamma / e}, \quad C_{\Gamma_{1} \sqcup \Gamma_{2}}=C_{\Gamma_{1}} \cdot C_{\Gamma_{2}}, \quad C \bullet=q$.

$$
\begin{gathered}
\mathcal{S}:=\{V(\Gamma) \rightarrow\{1, \ldots, q\}\} \\
C_{\Gamma}(q)=\sum_{\sigma \in \mathcal{S}} \prod_{(a, b) \in E(\Gamma)}(1-\delta(\sigma(a), \sigma(b)))
\end{gathered}
$$

Dichromatic polynomial

$$
Z_{\Gamma}(q, v):=\sum_{\sigma \in \mathcal{S}} \prod_{(a, b) \in E(\Gamma)}(1+v \delta(\sigma(a), \sigma(b)))
$$

$$
C_{\Gamma}(q)=Z_{\Gamma}(q,-1) . \quad Z_{\Gamma}(q, v)=\sum_{F \subseteq E(\Gamma)} q^{k(F)} v^{e(F)} .
$$

Properties: $Z_{\Gamma}=Z_{\Gamma-e}+v Z_{\Gamma / e}, \quad Z_{\Gamma_{1} \sqcup \Gamma_{2}}=Z_{\Gamma_{1}} \cdot Z_{\Gamma_{2}}, \quad Z \bullet=q$.

The Tutte polynomial

Let • Γ be a graph;

- $v(\Gamma)$ be the number of its vertices;
- $e(\Gamma)$ be the number of its edges;
- $k(\Gamma)$ be the number of components of Γ;
- $r(\Gamma):=v(\Gamma)-k(\Gamma)$ be the rank of Γ;

- $n(\Gamma):=e(\Gamma)-r(\Gamma)$ be the nullity of Γ;

$$
T_{\Gamma}(x, y):=\sum_{F \subseteq E(\Gamma)}(x-1)^{r(\Gamma)-r(F)}(y-1)^{n(F)}
$$

$$
Z_{\Gamma}(q, v)=q^{k(\Gamma)} v^{r(\Gamma)} T_{\Gamma}\left(1+q v^{-1}, 1+v\right)
$$

Properties.

$T_{\Gamma}=T_{\Gamma-e}+T_{\Gamma / e} \quad$ if e is neither a bridge nor a loop ;
$T_{\Gamma}=x T_{\Gamma / e} \quad$ if e is a bridge ;
$T_{\Gamma}=y T_{\Gamma-e} \quad$ if e is a loop ;
$T_{\Gamma_{1} \sqcup \Gamma_{2}}=T_{\Gamma_{1} \cdot \Gamma_{2}}=T_{\Gamma_{1}} \cdot T_{\Gamma_{2}}$ for a disjoint union, $\Gamma_{1} \sqcup \Gamma_{2}$
$T_{\bullet}=1 . \quad$ and a one-point join, $\Gamma_{1} \cdot \Gamma_{2} ;$
$T_{\Gamma}(1,1)$ is the number of spanning trees of Γ;
$T_{\Gamma}(2,1)$ is the number of spanning forests of Γ;
$T_{\Gamma}(1,2)$ is the number of spanning connected subgraphs of Γ;
$T_{\Gamma}(2,2)=2^{|E(\Gamma)|}$ is the number of spanning subgraphs of Γ.

The Potts model

C.Domb (1952). $q=2$ the Ising model; W.Lenz (1920).

Atoms are located at the sites of vertices $V(\Gamma)$.
Nearest neighbors are indicated by edges $E(\Gamma)$.
An atom exists in one of q different states (spins).
A state, $\sigma \in \mathcal{S}$, is an assignments of spins to all vertices $V(\Gamma)$.
Neighboring atoms interact with each other only is their spins are the same.
The energy of the interaction is $-J$ (coupling constant).
The model is called ferromagnetic if $J>0$ and antiferromagnetic if $J<0$.

Energy of a state σ (Hamiltonian),

$$
H(\sigma)=-J \sum_{(a, b) \in E(\Gamma)} \delta(\sigma(a), \sigma(b))
$$

Boltzmann weight of σ :

$$
e^{-\beta H(\sigma)}=\prod_{(a, b) \in E(\Gamma)} e^{J \beta \delta(\sigma(a), \sigma(b))}=\prod_{(a, b) \in E(\Gamma)}\left(1+\left(e^{J \beta}-1\right) \delta(\sigma(a), \sigma(b))\right)
$$

where the inverse temperature $\beta=\frac{1}{\kappa T}, T$ is the temperature, $\kappa=1.38 \times 10^{-23}$ joules/Kelvin is the Boltzmann constant.

The Potts partition function

$$
Z_{\Gamma}^{\mathrm{Potts}}:=\sum_{\sigma \in \mathcal{S}} e^{-\beta H(\sigma)}=Z_{\Gamma}\left(q, e^{J \beta}-1\right)
$$

Probability of a state $\sigma: \quad P(\sigma):=e^{-\beta H(\sigma)} / Z_{\Gamma}$.
Expected value of a function $f(\sigma)$:

$$
\langle f\rangle:=\sum_{\sigma} f(\sigma) P(\sigma)=\sum_{\sigma} f(\sigma) e^{-\beta H(\sigma)} / Z_{\Gamma} .
$$

Expected energy:

$$
\langle H\rangle=\sum_{\sigma} H(\sigma) e^{-\beta H(\sigma)} / Z_{\Gamma}=-\frac{d}{d \beta} \ln Z_{\Gamma}
$$

Example. $\Gamma=\underbrace{\mathrm{O}}_{n \text { vertices }}$
$T_{\Gamma}=x^{n-1}, \quad Z_{\Gamma}=q v^{n-1}\left(1+q v^{-1}\right)^{n-1}=q(q+v)^{n-1}$

$$
=q\left(q-1+e^{\beta J}\right)^{n-1}
$$

Expected energy: $\langle H\rangle=(n-1) \frac{-J e^{\beta J}}{q-1+e^{\beta J}}$.
Expected energy per atom as $n \rightarrow \infty$:

$$
\lim _{n \rightarrow \infty} \frac{\langle H\rangle}{n}=\frac{-J e^{\beta J}}{q-1+e^{\beta J}}
$$

$\underline{T \rightarrow \infty}(\beta \rightarrow 0)$: The energy per atom $\rightarrow-J / q$. $\underline{T \rightarrow 0}(\beta \rightarrow \infty)$.
$J<0$ (antiferromagnetic): The energy per atom $\rightarrow 0$. In general, $e^{\beta J} \rightarrow 0$ and the partition function $\rightarrow Z_{\Gamma}(q,-1)=C_{\Gamma}(q)$.
$J>0$ (ferromagnetic): The energy per atom $\rightarrow-J$.

Morwen Thistlethwaite (1987)

Up to a sign and a power of t the Jones polynomial $V_{L}(t)$ of an alternating link L is equal to the Tutte polynomial $T_{\Gamma_{L}}\left(-t,-t^{-1}\right)$.

$$
\begin{aligned}
V_{L}(t) & =t+t^{3}-t^{4} \\
& =-t^{2}\left(-t^{-1}-t+t^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& T_{\Gamma_{L}}(x, y)=y+x+x^{2} \\
& T_{\Gamma_{L}}\left(-t,-t^{-1}\right)=-t^{-1}-t+t^{2}
\end{aligned}
$$

The Kauffman bracket

Let L be a virtual link diagram.

A-splitting

B-splitting

A state S is a choice of
either A - or B-splitting at
every classical crossing.
$\alpha(S)=\#($ of A-splittings
in $S)$
$\beta(S)=\#($ of B-splittings in S)
$\delta(S)=\#($ of circles in $S)$

$$
[L](A, B, d):=\sum_{S} A^{\alpha(S)} B^{\beta(S)} d^{\delta(S)-1}
$$

$$
J_{L}(t):=(-1)^{w(L)} t^{3 w(L) / 4}[L]\left(t^{-1 / 4}, t^{1 / 4},-t^{1 / 2}-t^{-1 / 2}\right)
$$

Example

	60	∞	6∞	-
(α, β, δ)	$(3,0,1)$	$(2,1,2)$	$(2,1,2)$	$(1,2,1)$
	Qo	(a)	60	-
	(2, 1, 2)	(1, 2, 1)	(1, 2, 3)	(0, 3, 2)
$[L]=A^{3}+3 A^{2} B d+2 A B^{2}+A B^{2} d^{2}+B^{3} d ;$				$J_{L}(t)=1$

Graphs on surfaces

Ribbon graphs

A ribbon graph G is a surface represented as a union of verticesdiscs and edges-ribbons

- discs and ribbons intersect by disjoint line segments,
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

The Bollobás-Riordan polynomial

Let - F be a ribbon graph;

- $v(F)$ be the number of its vertices;
- $e(F)$ be the number of its edges;
- $k(F)$ be the number of components of F;
- $r(F):=v(F)-k(F)$ be the rank of F;
- $n(F):=e(F)-r(F)$ be the nullity of F;
- bc (F) be the number of boundary components of F;
- $s(F):=\frac{e_{-}(F)-e_{-}(\bar{F})}{2}$.
$R_{G}(x, y, z):=$
$\sum_{F} x^{r(G)-r(F)+s(F)} y^{n(F)-s(F)} z^{k(F)-\mathrm{bc}(F)+n(F)}$

Relations to the Tutte polynomial.

$$
R_{G}(x-1, y-1,1)=T_{G}(x, y)
$$

If G is planar (genus zero):

$$
R_{G}(x-1, y-1, z)=T_{G}(x, y)
$$

Example.

- $r(F):=v(F)-k(F) ;$
- $n(F):=e(G)-r(F)$;
- $\mathrm{bc}(F)$ is the number of boundary components;
- $s(F):=\frac{e_{-}(F)-e_{-}(\bar{F})}{2}$.

$$
R_{G}(x, y, z)=x+2+y+x y z^{2}+2 y z+y^{2} z .
$$

Construction of a ribbon graph from a virtual link diagram

Attaching planar bands
Replacing bands by arrows

Untwisting state circles
Pulling state circles apart

Forming the ribbon graph G_{L}^{s}

Theorem

Let L be a virtual link diagram with e classical crossings, G_{L}^{s} be the signed ribbon graph corresponding to a state s, and $v:=v\left(G_{L}^{s}\right), k:=k\left(G_{L}^{s}\right)$. Then $e=e\left(G_{L}^{s}\right)$ and

$$
[L](A, B, d)=A^{e}\left(\left.x^{k} y^{v} z^{v+1} R_{G_{L}^{s}}(x, y, z)\right|_{x=\frac{A d}{B}, y=\frac{B d}{A}, z=\frac{1}{d}}\right)
$$

Idea of the proof.

One-to-one correspondence between states s^{\prime} of L and spanning subgraphs F^{\prime} of G_{L}^{s} :

An edge e of G_{L}^{s} belongs to the spanning subgraph F^{\prime} if and only if the corresponding crossing was split in s^{\prime} differently comparably with s.

Further developments

Iain Moffatt:

- Knot invariants and the Bollobás-Riordan polynomial of embedded graphs, European Journal of Combinatorics, 29 (2008) 95-107. arXiv:math/0605466.
- Partial duality and Bollobás and Riordan's ribbon graph polynomial, Discrete Mathematics, 310 (2010) 174-183. arXiv:0809. 3014.
- A characterization of partially dual graphs. arXiv:0901.1868.

Fabien Vignes-Tourneret:

- The multivariate signed Bollobás-Riordan polynomial, Discrete Mathematics, 309 (2009) 5968-5981. arXiv:0811. 1584.
- (joint with T. Krajewski, V. Rivasseau) Topological graph polynomials and quantum field theory, Part II: Mehler kernel theories. arXiv:0912.5438. (non-commutative GrosseWulkenhaar quantum field theory)

