Physics and mathematics of knots

Sergei Chmutov

Ohio State University, Mansfield

Ohio Wesleyan University
Tuesday, March 1, 2011 12:15-12:55 PM

Unknots＝Trivial Knots
为 或尼 $\sqrt{3} 8$

Planar isotopy:

RIII:

Potts model (C.Domb 1952)

$q=2$ the Ising model (W.Lenz, 1920)
Let G be a graph.
Particles are located at vertices of G.
Each particle has a spin, which takes q different values.
A state, $\sigma \in \mathcal{S}$, is an assignment of spins
 to all vertices of G.
Neighboring particles interact with each other only is their spins are the same. The energy of the interaction along an edge e is $-J_{e}$ (coupling constant).
The model is called ferromagnetic if $J_{e}>0$ and antiferromagnetic if $J_{e}<0$.

Potts model

Energy of a state σ (Hamiltonian),

$$
H(\sigma)=-\sum_{(a, b)=e \in E(G)} J_{e} \delta(\sigma(a), \sigma(b)) .
$$

Boltzmann weight of σ :

$$
e^{-\beta H(\sigma)}=\prod_{(a, b)=e \in E(G)} e^{J^{\beta \beta \delta(\sigma(a), \sigma(b))}}=\prod_{(a, b)=e \in E(G)}\left(1+\left(e^{J_{e \beta} \beta}-1\right) \delta(\sigma(a), \sigma(b))\right),
$$

where the inverse temperature $\beta=\frac{1}{\kappa T}, T$ is the temperature, $\kappa=1.38 \times 10^{-23}$ joules/Kelvin is the Boltzmann constant.
The Potts partition function (for $x_{e}:=e^{J_{e} \beta}-1$)

$$
Z_{G}\left(q, x_{e}\right):=\sum_{\sigma \in \mathcal{S}} e^{-\beta H(\sigma)}=\sum_{\sigma \in \mathcal{S}} \prod_{\theta \in E(G)}\left(1+x_{e} \delta(\sigma(a), \sigma(b))\right)
$$

Potts model (properties)

Probability of a state $\sigma: \quad P(\sigma):=e^{-\beta H(\sigma)} / Z_{G}$.
Expected value of a function $f(\sigma)$:

$$
\langle f\rangle:=\sum_{\sigma} f(\sigma) P(\sigma)=\sum_{\sigma} f(\sigma) e^{-\beta H(\sigma)} / Z_{G} .
$$

Expected energy: $\langle H\rangle=\sum_{\sigma} H(\sigma) e^{-\beta H(\sigma)} / Z_{G}=-\frac{d}{d \beta} \ln Z_{G}$.
Fortuin-Kasteleyn'1972: $Z_{G}\left(q, x_{e}\right)=\sum_{F \subseteq E(G)} q^{k(F)} \prod_{e \in F} x_{e}$,
where $k(F)$ is the number of connected components of the spanning subgraph F.
$Z_{G}=Z_{G \backslash e}+x_{e} Z_{G / e}$.

From knots to graphs

Kauffman bracket

Let L be a diagram of a link, G_{L} be the corresponding signed graph, e_{-}be the number of negative edges of G_{L}, e_{+}be the number of positive edges of G_{L}, v be the number of vertices of G_{L}.
Then

$$
[L](A, B, d)=\frac{A^{e_{+}} B^{e_{-}}}{d^{v+1}} Z_{G_{L}}\left(q, x_{e}\right)
$$

where $q=d^{2}, x_{+}=\frac{B d}{A}$, and $x_{-}=\frac{A d}{B}$.

Jones polynomial

$$
\begin{aligned}
& \left.J_{L}(t)=(-1)^{w(L)}\right)^{33 W(L) / 4}[L]\left(t^{-1 / 4}, t^{1 / 4},-t^{1 / 2}-t^{-1 / 2}\right)
\end{aligned}
$$

where $q=t+t^{-1}+2, x_{+}=-t-1$, and $x_{-}=-t^{-1}-1$.

