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Maps (Graphs on surfaces)
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Hypermaps
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τ -model for hypermaps
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τ -model. Example.
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τ0 = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7)

τ1 = (1, 2)(3, 4)(5, 6)(7, 9)(8, 10)(11, 12)

τ2 = (1, 6)(2, 3)(4, 5)(7, 11)(8, 9)(10, 12)
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σ-model for oriented hypermaps
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σ-model. Example.
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σV = (1, 3, 5)(7, 8, 12) = τ2τ1|{1,3,5,7,8,12}

σE = (1, 7)(3, 12)(5, 8) = τ0τ2|{1,3,5,7,8,12}

σF = (1, 12)(3, 8)(5, 7) = τ1τ0|{1,3,5,7,8,12}
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Duality for graphs

G

G∗ = G{1,2,3,4,5,6}
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Partial duality for graphs
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G{1,2,3,4,5} = ???
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Partial duality for graphs (continuation)
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Partial duality for graphs (continuation)

R{1,2,3,4,5}
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Partial duality for hypermaps

Let S be a subset of the vertex-cells of G.
Choose a different type of cells, say hyperedges.
Step 1. ∂F is the boundary a surface F which is the union of
the cells from S and all hyperedge-cells.
Step 2. Glue in a disk to each connected component of ∂F .
These will be the hyperedge-cells for GS.
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Partial duality for hypermaps (continuation)

Step 3. Gluing the vertex-cells.
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Partial duality for hypermaps (continuation)

Step 4. Forming the partial dual hypermap GS.
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Partial duality. Properties.

(a) The resulting hypermap does not depend on the choice of
type at the beginning.

(b)
(

GS
)S

= G.

(c) There is a bijection between the cells of type S in G and
the cells of the same type in GS. This bijection preserves
the valency of cells. The number of cell of other types may
change.

(d) Is s 6∈ S but has the same type as the cells of S, then
GS∪{s} =

(

GS
){s}.

(e)
(

GS
)S′

= G∆(S,S′), where ∆(S,S′) := (S ∪ S′) \ (S ∩ S′) is
the symmetric difference of sets.

(f) The partial duality preserves orientability of hypermaps.
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Partial duality in τ -model.

Theorem. Consider the τ -model for a hypermap G given by the
permutations τ0(G) : (v , e, f ) 7→ (v ′, e, f ),
τ1(G : (v , e, f ) 7→ (v , e′, f ), τ2(G) : (v , e, f ) 7→ (v , e, f ′) of its
local flags. Let V ′ be a subset of its vertices, τV ′

1 be the product
of all transpositions in τ1 for v ∈ V ′, and τV ′

2 be the product of
all transpositions in τ2 for v ∈ V ′. Then its partial dual GV ′

is
given by the permutations

τ0(G
V ′
) = τ0, τ1(G

V ′
) = τ1τ

V ′

1 τV ′

2 , τ2(G
V ′
) = τ1τ

V ′

1 τV ′

2 .

In other words the permutations τ1 and τ2 swap their
transpositions of local flags around the vertices in V ′. The
similar statement hold for partial duality relative to the subset of
hyperedges E ′ and for a subset of faces F ′.
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Partial duality in τ -model. Example.
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τ0 = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7)

τ1 = (1,2)(3,4)(5,6) (7, 9)(8, 10)(11, 12)

τ2 = (1,6)(2,3)(4,5) (7, 11)(8, 9)(10, 12)
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τ0 = (1, 11)(2, 12)(3, 10)(4, 8)(5, 9)(6, 7)

τ1 = (1,6)(2,3)(4,5) (7, 9)(8, 10)(11, 12)

τ2 = (1,2)(3,4)(5,6) (7, 11)(8, 9)(10, 12)
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Partial duality in σ-model.

Theorem. Let S be a subsets S := V ′ of vertices (resp. subset
of hyperedges S := E ′ and subset of faces S := F ′) of a
hypermap G. Then its partial dual is given by the permutations

GV ′
= (σV ′σ

−1
V ′ , σEσV ′ , σV ′σF )

GE ′
= (σE ′σV , σE ′σ

−1
E ′ , σFσE ′)

GF ′
= (σVσF ′ , σF ′σE , σF ′σ

−1
F ′ ) ,

where σV ′ , σE ′ , σF ′ denote the permutations consisting of
cycles corresponding to the elements of V ′, E ′, F ′ respectively,
and overline means the complementary set of cycles.
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Partial duality in σ-model. Example.
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σV = (1, 3, 5)(7, 8, 12)

σE = (1, 7)(3, 12)(5, 8)

σF = (1, 12)(3, 8)(5, 7)
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σV (G{v}) = σV ′σ
−1
V ′ = (1, 5, 3)(7, 8, 12)

σE(G{v}) = σEσV ′ = (1, 12, 3, 8, 5, 7)
σF (G{v}) = σV ′σF = (1, 12, 3, 8, 5, 7)
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