Partial duality of hypermaps

Sergei Chmutov

Ohio State University, Mansfield

Conference Legacy of Vladimir Arnold, Fields Institute, Toronto.

Joint with Fabien Vignes-Tourneret
arXiv:1409.0632 [math.CO]

Tuesday, November 25, 2014
9:00-9:30am

Maps (Graphs on surfaces)

Hypermaps

τ-model for hypermaps

$$
\begin{aligned}
& \tau_{0}=(1,11)(2,12)(3,10)(4,8)(5,9)(6,7) \\
& \tau_{1}=(1,2)(3,4)(5,6)(7,9)(8,10)(11,12) \\
& \tau_{2}=(1,6)(2,3)(4,5)(7,11)(8,9)(10,12)
\end{aligned}
$$

σ-model. Example.

$$
\begin{aligned}
& \sigma_{V}=(1,3,5)(7,8,12)=\left.\tau_{2} \tau_{1}\right|_{\{1,3,5,7,8,12\}} \\
& \sigma_{E}=(1,7)(3,12)(5,8)=\left.\tau_{0} \tau_{2}\right|_{\{1,3,5,7,8,12\}} \\
& \sigma_{F}=(1,12)(3,8)(5,7)=\left.\tau_{1} \tau_{0}\right|_{\{1,3,5,7,8,12\}}
\end{aligned}
$$

Duality for graphs

Partial duality for graphs

$$
G^{\{1,2,3,4,5\}}=? ? ?
$$

Partial duality for graphs (continuation)

Partial duality for graphs (continuation)

Partial duality for hypermaps

Let S be a subset of the vertex-cells of G.
Choose a different type of cells, say hyperedges.
Step 1. ∂F is the boundary a surface F which is the union of the cells from S and all hyperedge-cells.
Step 2. Glue in a disk to each connected component of ∂F.
These will be the hyperedge-cells for G^{S}.

Partial duality for hypermaps (continuation)

Step 3. Gluing the vertex-cells.

Partial duality for hypermaps (continuation)

Step 4. Forming the partial dual hypermap G^{S}.

(a) The resulting hypermap does not depend on the choice of type at the beginning.
(b) $\left(G^{S}\right)^{S}=G$.
(c) There is a bijection between the cells of type S in G and the cells of the same type in G^{S}. This bijection preserves the valency of cells. The number of cell of other types may change.
(d) Is $s \notin S$ but has the same type as the cells of S, then $G^{S \cup\{s\}}=\left(G^{S}\right)^{\{s\}}$.
(e) $\left(G^{S}\right)^{S^{\prime}}=G^{\Delta\left(S, S^{\prime}\right)}$, where $\Delta\left(S, S^{\prime}\right):=\left(S \cup S^{\prime}\right) \backslash\left(S \cap S^{\prime}\right)$ is the symmetric difference of sets.
(f) The partial duality preserves orientability of hypermaps.

Theorem. Consider the τ-model for a hypermap G given by the permutations $\tau_{0}(G):(v, e, f) \mapsto\left(v^{\prime}, e, f\right)$, $\tau_{1}\left(G:(v, e, f) \mapsto\left(v, e^{\prime}, f\right), \tau_{2}(G):(v, e, f) \mapsto\left(v, e, f^{\prime}\right)\right.$ of its local flags. Let V^{\prime} be a subset of its vertices, $\tau_{1}^{V^{\prime}}$ be the product of all transpositions in τ_{1} for $v \in V^{\prime}$, and $\tau_{2}^{V^{\prime}}$ be the product of all transpositions in τ_{2} for $v \in V^{\prime}$. Then its partial dual $G^{V^{\prime}}$ is given by the permutations

$$
\tau_{0}\left(G^{V^{\prime}}\right)=\tau_{0}, \quad \tau_{1}\left(G^{V^{\prime}}\right)=\tau_{1} \tau_{1}^{V^{\prime}} \tau_{2}^{V^{\prime}}, \quad \tau_{2}\left(G^{V^{\prime}}\right)=\tau_{1} \tau_{1}^{V^{\prime}} \tau_{2}^{V^{\prime}}
$$

In other words the permutations τ_{1} and τ_{2} swap their transpositions of local flags around the vertices in V^{\prime}. The similar statement hold for partial duality relative to the subset of hyperedges E^{\prime} and for a subset of faces F^{\prime}.

$$
\begin{aligned}
& \tau_{0}=(1,11)(2,12)(3,10)(4,8)(5,9)(6,7) \\
& \tau_{1}=(1,2)(3,4)(5,6)(7,9)(8,10)(11,12) \\
& \tau_{2}=(1,6)(2,3)(4,5)(7,11)(8,9)(10,12)
\end{aligned}
$$

$$
\tau_{0}=(1,11)(2,12)(3,10)(4,8)(5,9)(6,7)
$$

$$
\tau_{1}=(1,6)(2,3)(4,5)(7,9)(8,10)(11,12)
$$

$$
\tau_{2}=(1,2)(3,4)(5,6)(7,11)(8,9)(10,12)
$$

Theorem. Let S be a subsets $S:=V^{\prime}$ of vertices (resp. subset of hyperedges $S:=E^{\prime}$ and subset of faces $S:=F^{\prime}$) of a hypermap G. Then its partial dual is given by the permutations

$$
\begin{aligned}
& G^{V^{\prime}}=\left(\sigma_{\overline{V^{\prime}}} \sigma_{V^{\prime}}^{-1}, \sigma_{E} \sigma_{V^{\prime}}, \sigma_{V^{\prime}} \sigma_{F}\right) \\
& G^{E^{\prime}}=\left(\sigma_{E^{\prime}} \sigma_{V}, \sigma_{\overline{\bar{E}^{\prime}}} \sigma_{E^{\prime}}^{-1}, \sigma_{F} \sigma_{E^{\prime}}\right) \\
& G^{F^{\prime}}=\left(\sigma_{V} \sigma_{F^{\prime}}, \sigma_{F^{\prime}} \sigma_{E}, \sigma_{\overline{\bar{F}^{\prime}}} \sigma_{F^{\prime}}^{-1}\right)
\end{aligned}
$$

where $\sigma_{V^{\prime}}, \sigma_{E^{\prime}}, \sigma_{F^{\prime}}$ denote the permutations consisting of cycles corresponding to the elements of $V^{\prime}, E^{\prime}, F^{\prime}$ respectively, and overline means the complementary set of cycles.

$$
\begin{aligned}
& \sigma_{V}=(1,3,5)(7,8,12) \\
& \sigma_{E}=(1,7)(3,12)(5,8) \\
& \sigma_{F}=(1,12)(3,8)(5,7)
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{V}\left(G^{\{v\}}\right)=\sigma_{\overline{V^{\prime}}} \sigma_{V^{\prime}}^{-1}=(1,5,3)(7,8,12) \\
& \sigma_{E}\left(G^{\{v\}}\right)=\sigma_{E^{\prime}} \sigma_{V^{\prime}}=(1,12,3,8,5,7) \\
& \sigma_{F}\left(G^{\{v\}}\right)=\sigma_{V^{\prime}} \sigma_{F}=(1,12,3,8,5,7)
\end{aligned}
$$

