Krushkal polynomial of graphs on surfaces

Sergei Chmutov

Ohio State University, Mansfield

Workshop on the Tutte Polynomial Royal Holloway University

Sunday, July 12, 2015
10:00-10:30am

Polynomials of graphs on surfaces.

Krushkal polynomial.

Definition. Let G be a graph embedded into a surface Σ.

$$
K_{G, \Sigma}(X, Y, A, B):=\sum_{F \subseteq G} X^{k(F)-k(G)} Y^{k(\Sigma \backslash F)-k(\Sigma)} A^{g(F)} B^{g^{\perp}(F)}
$$

where the sum runs over all spanning subgraphs considered as ribbon graphs;
$k(F)$ stands for the number of connected components of the surface F;
the parameters $g(F)$ and $g^{\perp}(F)$ stand for the genera of surfaces F and $\Sigma \backslash F$.
For non-orientable surfaces they are equal to one half of the number of Möbius bands glued into spheres to represent the surfaces.

Topological meaning of exponents.

$$
\begin{aligned}
k(\Sigma \backslash F)-k(\Sigma) & =\operatorname{dim}\left(\operatorname{ker}\left(H_{1}\left(F ; \mathbb{Z}_{2}\right) \rightarrow H_{1}\left(\Sigma ; \mathbb{Z}_{2}\right)\right)\right), \\
s(F) & =\operatorname{dim} H_{1}\left(\widetilde{F} ; \mathbb{Z}_{2}\right) \\
s^{\perp}(F) & =\operatorname{dim} H_{1}\left(\widetilde{\Sigma \backslash F} ; \mathbb{Z}_{2}\right),
\end{aligned}
$$

where \widetilde{F} and $\widetilde{\Sigma \backslash F}$ are the surfaces obtained by gluing a disc to each boundary component of surfaces F and $\Sigma \backslash F$.

Properties.

$$
K_{G, \Sigma}= \begin{cases}K_{G / e, \Sigma}+K_{G-e, \Sigma} & \text { if } e \text { is ordinary, that is neither } \\ (1+X) \cdot K_{G / e, \Sigma} & \text { a bridge nor a loop, } e \text { is a bridge. } \\ (1+Y) \cdot B R_{G-e, \Sigma} & \text { if } e \text { is a separable loop, the one } \\ & \text { whose removal together with its } \\ & \text { vertex separates the surface } \Sigma .\end{cases}
$$

$K_{G_{1} \sqcup G_{2}, \Sigma_{1} \cup S_{2}}=K_{G_{1}, \Sigma_{1}} \cdot K_{G_{G_{2}, \Sigma_{2}}}$, where \sqcup is a disjoint union.

Example.

$K_{G, \Sigma}=3+3 B+X B+A$.

Quasi-trees.

Definition. A quasi-tree is a ribbon graph with one boundary component.

Quasi-tree activities. Chord diagrams.

A round trip along the boundary component of Q passes the boundary arcs of each edge-ribbon twice. A chord diagram $C_{G}(Q)$ consists of a circle corresponding to the boundary of Q and chords connecting the pairs of arcs corresponding to the same edge-ribbon.

Quasi-tree activities.

Let \prec be a total order of edges $E(G)$.
Definition [A.Champanerkar, I.Kofman, N.Stoltzfus].
An edge is called live if the corresponding chord is smaller than any chord intersecting it relative to the order \prec. Otherwise it is called dead.

For plane graphs G a spanning quasi-tree is a tree and the notion of live/dead coincides with the classical Tutte's notion of active/inactive.

In the example above the edge a is live and the edges b and c are dead relative to the order $a \prec b \prec c$ for all four quasi-trees.

Quasi-tree expansion of the Krushkal polynomial.

Theorem [C.Butler].
For a ribbon graph G, the Krushkal polynomial has the following expansion over the set of quasi-trees.

$$
K_{G}(X, Y, A, B)=\sum_{Q \in \mathcal{Q}_{G}} A^{g(F(Q))} T_{Q} \cdot B^{g\left(F\left(Q^{*}\right)\right)} T_{Q^{*}}
$$

where $T_{Q}=T_{\Gamma(Q)}(X+1, A+1)$ and $T_{Q^{*}}=T_{\Gamma\left(Q^{*}\right)}(Y+1, B+1)$ stand for the classical Tutte polynomial of abstract graphs $\Gamma(Q)$ and $\Gamma\left(Q^{*}\right)$.

$F(Q)$ and $\Gamma(Q)$. Orientable case.

Definition.

- $F(Q)$ is a spanning ribbon subgraph of Q obtained by deleting the internally live (orientable) edges of Q;
- $\Gamma(Q)$ is a usual abstract (not embedded) graph whose vertices are the connected components of $F(Q)$ and edges are the internally live (orientable) edges of Q.

Q	$Q_{\{a\}}$	$Q_{\{b\}}$	$Q_{\{c\}}$	$Q_{\{a, b, c\}}$
$F(Q)$	\bigcirc	\bigcirc		0
$\Gamma(Q)$	\bullet	\bullet		

Dual graphs.

Let G^{\star} be the usual Poincaré dual graph ribbon graph to G, regarded as a graph cellularly embedded into the surface $\Sigma=\widetilde{G}$.
A spanning subgraph $F \subseteq G$ determines a spanning subgraph $F^{*} \subseteq G^{\star}$ containing all edges of G^{\star} which do not intersect edges of F.

$$
Q_{\{a\}}^{*}=\frac{(a)}{b}
$$

Dual quasi-trees.

- The spanning subgraphs F and F^{*} have common boundary and their gluing along this common boundary gives the whole surface Σ.
- If Q is a spanning quasi-tree for G, then subgraph Q^{*} is a quasi-tree for G^{\star}.
- These quasi-trees have the same chord diagrams, $C_{G}(Q)=C_{G^{\star}}\left(Q^{*}\right)$.
- The natural bijection of edges of G and G^{\star} leads to the total order \prec^{\star} on edges of G^{\star} induced by \prec.
- The property of an edge of being live/dead relative to Q is preserved by the bijection to the same property relative to Q.
- The property of being internal/external is changed to the opposite.

Definition.

- $F\left(Q^{*}\right)$ is a spanning ribbon subgraph of Q^{*} obtained by deleting the internally live (orientable) edges of Q^{*};
- $\Gamma\left(Q^{*}\right)$ is an abstract graph whose vertices are the connected components of $F\left(Q^{*}\right)$ and edges are the internally live (orientable) edges of Q^{*}.

Q*	$Q_{\{a\}}^{*}$	$Q_{\{b\}}^{*}$	$Q_{\{c\}}^{*}$	$Q_{\{a, b, c\}}^{*}$
$F\left(Q^{*}\right)$		$\underbrace{\infty}$	$\underbrace{9}_{6}$	\bigcirc
$\Gamma\left(Q^{*}\right)$	\bullet	0	\bigcirc	\bullet

Quasi-tree expansion.

Q	$Q_{\{a\}}$	$Q_{\{b\}}$	$Q_{\{c\}}$	$Q_{\{a, b, c\}}$
$F(Q)$	O	Q_{b}		Q_{c}
$\Gamma(Q)$	\bullet	\bullet	\bullet	\bigcirc
$A^{g(F(Q))}$	1	1	1	1
T_{Q}	$X+1$	1	1	$A+1$

$$
K_{G}(X, Y, A, B)=\sum_{Q \in \mathcal{Q}_{G}} A^{g(F(Q))} T_{Q} \cdot B^{g\left(F\left(Q^{*}\right)\right)} T_{Q^{*}}
$$

where $T_{Q}=T_{\Gamma(Q)}(X+1, A+1)$ and $T_{Q^{*}}=T_{\Gamma\left(Q^{*}\right)}(Y+1, B+1)$

Quasi-tree expansion. Dual part.

Q*	$Q_{\{a\}}^{*}$	$Q_{\{b\}}^{*}$	$Q_{\{c\}}^{*}$	$Q_{\{a, b, c\}}^{*}$
$F\left(Q^{*}\right)$		\overbrace{c}	\underbrace{C}_{b}	\bigcirc
$\Gamma\left(Q^{*}\right)$	\bullet	\bigcirc	\bigcirc	\bullet
$B^{g\left(F\left(Q^{*}\right)\right)}$	B	1	1	1
$T_{Q^{*}}$	1	$B+1$	$B+1$	1

$$
K_{G}=(X+1) B+(B+1)+(B+1)+(A+1)=X B+A+3 B+3
$$

References.

- C. Butler, A quasi-tree expansion of the Krushkal polynomial, Preprint arXiv:1205.0298[math.CO].
- A. Champanerkar, I. Kofman, N. Stoltzfus, Quasi-tree expansion for the Bollobás-Riordan-Tutte polynomial, Bull.Lond.Math.Soc., 43(5) (2011) 972-984.

THANK YOU!

