Krushkal polynomial of graphs on surfaces

Sergei Chmutov

Ohio State University, Mansfield

Workshop on the Tutte Polynomial Royal Holloway University

Sunday, July 12, 2015 10:00–10:30am

Polynomials of graphs on surfaces.

Definition. Let *G* be a graph embedded into a surface Σ .

$$\mathcal{K}_{G,\Sigma}(X, Y, A, B) := \sum_{F \subseteq G} X^{k(F)-k(G)} Y^{k(\Sigma \setminus F)-k(\Sigma)} A^{g(F)} B^{g^{\perp}(F)},$$

where the sum runs over all spanning subgraphs considered as ribbon graphs;

k(F) stands for the number of connected components of the surface F;

the parameters g(F) and $g^{\perp}(F)$ stand for the genera of surfaces F and $\Sigma \setminus F$.

For non-orientable surfaces they are equal to one half of the number of Möbius bands glued into spheres to represent the surfaces.

$$\begin{split} k(\Sigma \setminus F) - k(\Sigma) &= \dim(\ker(H_1(F; \mathbb{Z}_2) \to H_1(\Sigma; \mathbb{Z}_2))), \\ s(F) &= \dim H_1(\widetilde{F}; \mathbb{Z}_2), \\ s^{\perp}(F) &= \dim H_1(\widetilde{\Sigma \setminus F}; \mathbb{Z}_2), \end{split}$$

where \widetilde{F} and $\Sigma \setminus \overline{F}$ are the surfaces obtained by gluing a disc to each boundary component of surfaces F and $\Sigma \setminus F$.

$$\mathcal{K}_{G,\Sigma} = \left\{ egin{array}{l} \mathcal{K}_{G/e,\Sigma} + \mathcal{K}_{G-e,\Sigma} \ (1+X) \cdot \mathcal{K}_{G/e,\Sigma} \ (1+Y) \cdot \mathcal{BR}_{G-e,\Sigma} \end{array}
ight.$$

if *e* is ordinary, that is neither a bridge nor a loop, if *e* is a bridge.

if e is a separable loop, the one whose removal together with its vertex separates the surface Σ .

 $\textit{K}_{\textit{G}_1 \sqcup \textit{G}_2, \Sigma_1 \sqcup \textit{S}_2} = \textit{K}_{\textit{G}_1, \Sigma_1} \cdot \textit{K}_{\textit{G}_2, \Sigma_2}, \textit{where} \sqcup \textit{is a disjoint union.}$

$$\varkappa = k(\Sigma \setminus F) - k(\Sigma)$$

F	Ø	{ a }	{ b }	{ a , b }	{ C }	$\{a, c\}$	$\{b, c\}$	{ <i>a</i> , <i>b</i> , <i>c</i> }
k(F)	2	1	1	1	1	1	1	1
<i>ж</i> (<i>F</i>)	0	0	0	0	0	0	0	0
g(F)	0	0	0	0	0	0	0	1
$g^{\perp}(F)$	1	1	1	0	1	0	0	0
K _{G,Σ}	XB	В	В	1	В	1	1	A

$$K_{G,\Sigma} = 3 + 3B + XB + A.$$

Definition. A *quasi-tree* is a ribbon graph with one boundary component.

A round trip along the boundary component of Q passes the boundary arcs of each edge-ribbon twice. A *chord diagram* $C_G(Q)$ consists of a circle corresponding to the boundary of Q and chords connecting the pairs of arcs corresponding to the same edge-ribbon.

Let \prec be a total order of edges E(G). **Definition** [A.Champanerkar, I.Kofman, N.Stoltzfus]. An edge is called *live* if the corresponding chord is smaller than any chord intersecting it relative to the order \prec . Otherwise it is called *dead*.

For plane graphs *G* a spanning quasi-tree is a tree and the notion of *live/dead* coincides with the classical Tutte's notion of *active/inactive*.

In the example above the edge *a* is live and the edges *b* and *c* are dead relative to the order $a \prec b \prec c$ for all four quasi-trees.

Theorem [C.Butler].

For a ribbon graph G, the Krushkal polynomial has the following expansion over the set of quasi-trees.

$$\mathcal{K}_{G}(X, Y, A, B) = \sum_{Q \in \mathcal{Q}_{G}} A^{g(F(Q))} T_{Q} \cdot B^{g(F(Q^{*}))} T_{Q^{*}} ,$$

where $T_Q = T_{\Gamma(Q)}(X + 1, A + 1)$ and $T_{Q^*} = T_{\Gamma(Q^*)}(Y + 1, B + 1)$ stand for the classical Tutte polynomial of abstract graphs $\Gamma(Q)$ and $\Gamma(Q^*)$.

F(Q) and $\Gamma(Q)$. Orientable case.

Definition.

- *F*(*Q*) is a spanning ribbon subgraph of *Q* obtained by deleting the internally live (orientable) edges of *Q*;
- Γ(Q) is a usual abstract (not embedded) graph whose vertices are the connected components of F(Q) and edges are the internally live (orientable) edges of Q.

Q	$Q_{\{a\}}$	Q _{b}	Q _{c}	$Q_{\{a,b,c\}}$	
F(Q)	• •				
Γ(Q)	••	•	•	\bigcirc	

Dual graphs.

Let G^* be the usual Poincaré dual graph ribbon graph to G, regarded as a graph cellularly embedded into the surface $\Sigma = \widetilde{G}$.

A spanning subgraph $F \subseteq G$ determines a spanning subgraph $F^* \subseteq G^*$ containing all edges of G^* which do not intersect edges of F.

Dual quasi-trees.

- The spanning subgraphs *F* and *F** have common boundary and their gluing along this common boundary gives the whole surface Σ.
- If Q is a spanning quasi-tree for G, then subgraph Q* is a quasi-tree for G*.
- These quasi-trees have the same chord diagrams,
 C_G(Q) = C_{G^{*}}(Q^{*}).
- The natural bijection of edges of G and G^{*} leads to the total order ≺* on edges of G* induced by ≺.
- The property of an edge of being live/dead relative to Q is preserved by the bijection to the same property relative to Q*.
- The property of being internal/external is changed to the opposite.

$F(Q^*)$ and $\Gamma(Q^*)$.

Definition.

- *F*(Q*) is a spanning ribbon subgraph of Q* obtained by deleting the internally live (orientable) edges of Q*;
- Γ(Q*) is an abstract graph whose vertices are the connected components of F(Q*) and edges are the internally live (orientable) edges of Q*.

Quasi-tree expansion.

$$\mathcal{K}_{G}(X, Y, \mathcal{A}, \mathcal{B}) = \sum_{Q \in \mathcal{Q}_{G}} \mathcal{A}^{g(F(Q))} \mathcal{T}_{Q} \cdot \mathcal{B}^{g(F(Q^{*}))} \mathcal{T}_{Q^{*}} ,$$

where $T_Q = T_{\Gamma(Q)}(X+1, A+1)$ and $T_{Q^*} = T_{\Gamma(Q^*)}(Y+1, B+1)$

Quasi-tree expansion. Dual part.

Q*	Q* {a}	$Q^*_{\{b\}}$	$Q^*_{\{c\}}$	$Q^*_{\{a,b,c\}}$
<i>F</i> (Q*)		Ç		
Г(Q*)	•	\bigcirc	\bigcirc	٠
$B^{g(F(Q^*))}$	В	1	1	1
T _{Q*}	1	<i>B</i> +1	<i>B</i> +1	1

 $K_{G} = (X+1)B + (B+1) + (B+1) + (A+1) = XB + A + 3B + 3,$

- C. Butler, A quasi-tree expansion of the Krushkal polynomial, Preprint arXiv:1205.0298[math.CO].
- A. Champanerkar, I. Kofman, N. Stoltzfus, Quasi-tree expansion for the Bollobás-Riordan-Tutte polynomial, Bull.Lond.Math.Soc., 43(5) (2011) 972–984.

THANK YOU!

Sergei Chmutov Krushkal polynomial of graphs on surfaces