# Random gluing polygons 

Sergei Chmutov joint work with Boris Pittel

Ohio State University, Mansfield

## Contemporary Mathematics

Tuesday, December 19, 2017
15:30-16:55

## Polygons. Notations.

$n:=$ \# (oriented) polygons
$N:=$ total (even) number of sides
$n_{j}:=\# j$-gons $, \quad \sum n_{j}=n, \quad \sum j n_{j}=N$
$[N]:=\{1,2, \ldots, N\}$
$\alpha \in S_{N}$ is a permutation of [ $N$ ] cyclically permutes edges of polygons according to their orientations.

Example.


$$
\alpha=(1234)(5678)
$$

$n_{j}$ equals the number of cycles of $\alpha$ of length $j$.

## Gluing polygons. Permutations.

$\beta \in S_{N}$ is an involution without fixed points;
$\beta$ has $N / 2$ cycles of length 2.

\# vertices of $\Sigma_{\alpha, \beta}=\#$ cycles of $\gamma$.
\# connected components of $\Sigma_{\alpha, \beta}=$ \# orbits of the subgroup generated by $\alpha$ and $\beta$.

## Gluing polygons. Example.

$$
n=2, N=8, \quad \alpha=(1234)(5678)
$$



## Gluing polygons. Example.

$$
n=2, N=8, \quad \alpha=(1234)(5678)
$$



## Gluing polygons. Example.

$$
n=2, N=8, \quad \alpha=(1234)(5678)
$$



$$
\begin{aligned}
& \beta=(13)(24)(57)(68) \\
& \gamma=(1432)(5876)
\end{aligned}
$$

## Gluing polygons. Example.

$$
n=2, N=8, \quad \alpha=(1234)(5678)
$$



$$
\begin{aligned}
& \beta=(13)(24)(56)(78) \\
& \gamma=(1432)(57)(6)(8)
\end{aligned}
$$

## Gluing polygons. Example.

$$
n=2, N=8, \quad \alpha=(1234)(5678)
$$



## Gluing polygons. Example.

$$
n=2, N=8, \quad \alpha=(1234)(5678)
$$

There are $7!!=105$ possibilities for choosing $\beta$.

| surface $\Sigma_{\alpha, \beta}$ | $S^{2}$ | $T^{2}$ | $2 T^{2}$ | $T^{2}+S^{2}$ | $2 S^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# gluings | 36 | 60 | 1 | 4 | 4 |

$\mathbf{n}:=\left\{n_{j}\right\}$ is a partition of $n=\sum n_{j}$.
Let $\mathcal{C}_{\mathbf{n}}$ be the conjugacy class of $\alpha$, all permutations in $S_{N}$ with the cycle structure $\mathbf{n}$.

Let $\mathcal{C}_{N / 2}$ be the conjugacy class of $\beta$, all permutations in $S_{N}$ with all cycles length 2.

A random surface is the surface $\Sigma_{\alpha, \beta}$ obtained by gluing according to the permutations $\alpha$ and $\beta$ that are independently chosen uniformly at random from the conjugacy classes $\mathcal{C}_{\mathbf{n}}$ and $\mathcal{C}_{N / 2}$ respectively.
$\underline{n=1}, \quad \alpha=(123 \ldots N)$.
Example: $N=6$


Harer-Zagier formula. $n=1, N=6$.
$\underline{n=1, N=6} \quad V_{\mathrm{n}}=\#$ vertices of $\Sigma_{\alpha, \beta} . \quad\left|\mathcal{C}_{N / 2}\right|=5!!=15$.

$$
V_{n}=4
$$



$$
V_{\mathrm{n}}=2
$$



Generating function: $T_{N}(y):=\sum_{\beta} y^{V_{n}} . \quad T_{6}(y)=5 y^{4}+10 y^{2}$.

## Harer-Zagier formula.

J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986) 457-485.
$T_{N}(y):=\sum_{\beta} y^{V_{\mathrm{n}}}$.
Generating function: $T(x, y):=1+2 x y+2 x \sum_{k=1}^{\infty} \frac{T_{2 k}(y)}{(2 k-1)!!} x^{k}$.

$$
T(x, y)=\left(\frac{1+x}{1-x}\right)^{y}
$$

—,B.Pittel, JCTA 120 (2013) 102-110: $g_{N}=$ genus of $\Sigma_{\alpha, \beta}$. Asymptotically as $N \rightarrow \infty, g_{N}$ is normal $\mathcal{N}((N-\log N) / 2,(\log N) / 4)$.

## Main result.

—,B.Pittel, On a surface formed by randomly gluing together polygonal discs, Advances in Applied Mathematics, 73 (2016) 23-42.
$V_{\mathbf{n}}=\#$ vertices of $\Sigma_{\alpha, \beta}$.
Theorem. $V_{\mathrm{n}}$ is asymptotically normal with mean and variance $\log N$ both, $V_{\mathrm{n}} \sim \mathcal{N}(\log N, \log N)$, as $N \rightarrow \infty$, and uniformly on $\mathbf{n}$.

## Previous results.

$\mathrm{E}\left[V_{\mathbf{n}}\right] \sim \log n \quad \operatorname{Var}(\chi) \sim \log n$

- N. Pippenger, K. Schleich, Topological characteristics of random triangulated surfaces, Random Structures Algorithms, 28 (2006) 247-288.
All polygons are triangles.
- A. Gamburd, Poisson-Dirichlet distribution for random Belyi surfaces, Ann. Probability, 34 (2006) 1827-1848.

All polygons have the same number of sides, $k$. $2 \operatorname{lcm}(2, k) \mid k n$
$\gamma$ is asymptotically uniform on the alternating group $A_{k n}$.

Depending on the parities of permutations $\alpha \in \mathcal{C}_{\mathbf{n}}$ and $\beta \in \mathcal{C}_{N / 2}$ the permutation $\gamma=\alpha \beta$ is either even $\gamma \in A_{N}$ or odd
$\gamma \in A_{N}^{C}:=S_{N}-A_{N}$.
The probability distribution of $\gamma$ is asymptotically uniform (for $N \rightarrow \infty$ uniformly in $\mathbf{n}$ ) on $A_{N}$ or on $A_{N}^{C}$.
Let $P_{\gamma}$ be the probability distribution of $\gamma$ and let $U$ be the uniform probability measure on $A_{N}$ or on $A_{N}^{C}$.
Let $\left\|P_{\gamma}-U\right\|:=(1 / 2) \sum_{s \in S_{N}}\left|P_{\gamma}(s)-U(s)\right|$ be the total variation distance between $P_{\gamma}$ and $U$.

Theorem. $\left\|P_{\gamma}-U\right\|=O\left(N^{-1}\right)$.

## Ideas of the proof.

P. Diaconis, M. Shahshahani, Generating a random
permutation with random tranpositions, Z. Wahr. Verw. Gebiete, 57 (1981) 159-179.
Using the Fourier analysis on finite groups and the Plancherel Theorem:

$$
\|P-U\|^{2} \leq \frac{1}{4} \sum_{\rho \in \widehat{G}, \rho \neq \mathrm{id}} \operatorname{dim}(\rho) \operatorname{tr}\left(\hat{P}(\rho) \hat{P}(\rho)^{*}\right)
$$

here $\widehat{G}$ denotes the set of all irreducible representations $\rho$ of $G$, "id" denotes the trivial representation, $\operatorname{dim}(\rho)$ is the dimension of $\rho$, and $\hat{P}(\rho)$ is the matrix value of the Fourier transform of $P$ at $\rho, \hat{P}(\rho):=\sum_{g \in G} \rho(g) P(g)$.

## Ideas of the proof.

For $G=S_{N}$, the irreducible representations $\rho$ are indexed by partitions $\lambda \vdash N, \lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots\right)$ of $N$.
Let $f^{\lambda}:=\operatorname{dim}\left(\rho^{\lambda}\right)$ (given by the hook length formula) and $\chi^{\lambda}$ be the character of $\rho^{\lambda}$.

$$
\left\|P_{\gamma}-U\right\|^{2} \leq \frac{1}{4} \sum_{\lambda \neq(N),\left(1^{N}\right)}\left(\frac{\chi^{\lambda}\left(\mathcal{C}_{\mathbf{n}}\right) \chi^{\lambda}\left(\mathcal{C}_{N / 2}\right)}{f^{\lambda}}\right)^{2} .
$$

Gamburd used estimate from S. V. Fomin, N. Lulov, On the number of rim hook tableaux, J. Math. Sciences, 87 (1997) 4118-4123, for $N=k n$,

$$
\left|\chi^{\lambda}\left(\mathcal{C}_{N / K}\right)\right|=O\left(N^{1 / 2-1 /(2 k)}\right)\left(f^{\lambda}\right)^{1 / k} .
$$

## Ideas of the proof.

M. Larsen, A. Shalev, Characters of symmetric groups: sharp bounds and applications, Invent. Math., 174 (2008) 645-687. Extension of the Fomin-Lulov bound for all permutations $\sigma$ without cycles of length below $m$, and partitions $\lambda$ :

$$
\left|\chi^{\lambda}(\sigma)\right| \leq\left(f^{\lambda}\right)^{1 / m+o(1)}, \quad N \rightarrow \infty
$$

$$
\left\|P_{\gamma}-U\right\|^{2}=O\left(N^{-2}\right)
$$

Thanks.

## THANK YOU!

