Random gluing polygons

Sergei Chmutov joint work with Boris Pittel

Ohio State University, Mansfield

Contemporary Mathematics

Tuesday, December 19, 2017 15:30 — 16:55

Polygons. Notations.

n := # (oriented) polygons

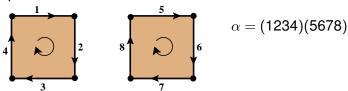
N := total (even) number of sides

$$n_j := \# j$$
-gons, $\sum n_j = n$, $\sum j n_j = N$

 $[N] := \{1, 2, \dots, N\}$

 $\alpha \in S_N$ is a permutation of [N] cyclically permutes edges of polygons according to their orientations.

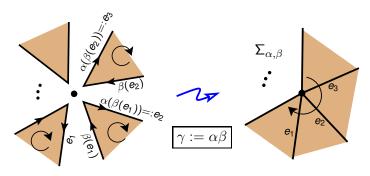
Example.



 n_j equals the number of cycles of α of length j.

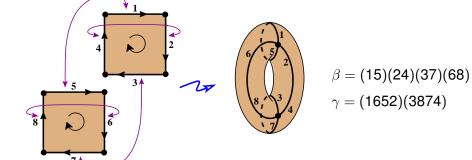
Gluing polygons. Permutations.

 $\beta \in S_N$ is an involution without fixed points; β has N/2 cycles of length 2.

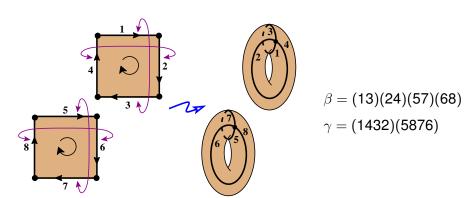


vertices of $\Sigma_{\alpha,\beta}$ = # cycles of γ . # connected components of $\Sigma_{\alpha,\beta}$ = # orbits of the subgroup generated by α and β .

$$n = 2, N = 8, \qquad \alpha = (1234)(5678)$$



$$n = 2, N = 8, \qquad \alpha = (1234)(5678)$$

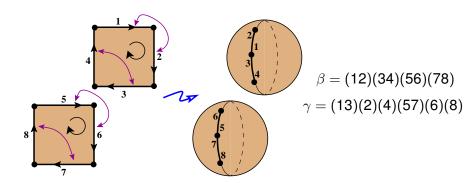


$$n = 2, N = 8,$$
 $\alpha = (1234)(5678)$

$$\beta = (13)(24)(56)(78)$$

 $\gamma = (1432)(57)(6)(8)$

$$n = 2, N = 8, \qquad \alpha = (1234)(5678)$$



$$n=2, N=8,$$
 $\alpha=(1234)(5678)$
There are $7!!=105$ possibilities for choosing β .

surface $\Sigma_{lpha,eta}$	S ²	<i>T</i> ²	2 <i>T</i> ²	$T^2 + S^2$	2 <i>S</i> ²
# gluings	36	60	1	4	4

Random gluing.

 $\mathbf{n} := \{n_j\}$ is a partition of $n = \sum n_j$.

Let C_n be the conjugacy class of α , all permutations in S_N with the cycle structure \mathbf{n} .

Let $C_{N/2}$ be the conjugacy class of β , all permutations in S_N with all cycles length 2.

A <u>random surface</u> is the surface $\Sigma_{\alpha,\beta}$ obtained by gluing according to the permutations α and β that are independently chosen uniformly at random from the conjugacy classes $\mathcal{C}_{\mathbf{n}}$ and $\mathcal{C}_{N/2}$ respectively.

Harer-Zagier formula. n = 1.

Harer-Zagier formula. n = 1, N = 6.

$$n=1,\,N=6$$
 $V_n=\#$ vertices of $\Sigma_{\alpha,\beta}$. $|\mathcal{C}_{N/2}|=5!!=15.$ $V_n=4$

Generating function:
$$T_N(y) := \sum_{\beta} y^{V_n}$$
. $T_6(y) = 5y^4 + 10y^2$.

Harer-Zagier formula.

J. Harer and D. Zagier, *The Euler characteristic of the moduli space of curves*, Invent. Math. **85** (1986) 457–485.

$$T_N(y) := \sum_{\beta} y^{V_n}.$$

Generating function: $T(x, y) := 1 + 2xy + 2x \sum_{k=1}^{\infty} \frac{T_{2k}(y)}{(2k-1)!!} x^k$.

$$T(x,y) = \left(\frac{1+x}{1-x}\right)^y$$

—,B.Pittel, JCTA **120** (2013) 102–110: g_N = genus of $\Sigma_{\alpha,\beta}$. Asymptotically as $N \to \infty$, g_N is normal $\mathcal{N}((N - \log N)/2, (\log N)/4)$.

Main result.

—,B.Pittel, On a surface formed by randomly gluing together polygonal discs, Advances in Applied Mathematics, **73** (2016) 23–42.

 $V_{\mathbf{n}}$ =# vertices of $\Sigma_{\alpha,\beta}$.

Theorem. V_n is asymptotically normal with mean and variance $\log N$ both, $V_n \sim \mathcal{N}(\log N, \log N)$, as $N \to \infty$, and uniformly on \mathbf{n} .

Previous results.

$$\mathsf{E}[V_{\mathbf{n}}] \sim \log n \qquad \mathsf{Var}(\chi) \sim \log n$$

 N. Pippenger, K. Schleich, Topological characteristics of random triangulated surfaces, Random Structures Algorithms, 28 (2006) 247–288.

All polygons are triangles.

 A. Gamburd, Poisson-Dirichlet distribution for random Belyi surfaces, Ann. Probability, 34 (2006) 1827–1848.

All polygons have the same number of sides, k. $2 \text{ lcm}(2, k) \mid kn$

 γ is asymptotically uniform on the alternating group A_{kn} .

Key Theorem.

Depending on the parities of permutations $\alpha \in \mathcal{C}_n$ and $\beta \in \mathcal{C}_{N/2}$ the permutation $\gamma = \alpha\beta$ is either even $\gamma \in A_N$ or odd $\gamma \in A_N^c := S_N - A_N$.

The probability distribution of γ is asymptotically uniform (for $N \to \infty$ uniformly in **n**) on A_N or on A_N^c .

Let P_{γ} be the probability distribution of γ and let U be the uniform probability measure on A_N or on A_N^c .

Let $||P_{\gamma} - U|| := (1/2) \sum_{s \in S_N} |P_{\gamma}(s) - U(s)|$ be the total variation distance between P_{γ} and U.

Theorem. $||P_{\gamma} - U|| = O(N^{-1})$.

Ideas of the proof.

P. Diaconis, M. Shahshahani, *Generating a random permutation with random tranpositions*, Z. Wahr. Verw. Gebiete, **57** (1981) 159–179.

Using the Fourier analysis on finite groups and the Plancherel Theorem:

$$\|P-U\|^2 \leq \frac{1}{4} \sum_{\rho \in \widehat{G}, \, \rho \neq \mathrm{id}} \dim(\rho) \operatorname{tr} \big(\hat{P}(\rho) \hat{P}(\rho)^* \big);$$

here \widehat{G} denotes the set of all irreducible representations ρ of G, "id" denotes the trivial representation, $\dim(\rho)$ is the dimension of ρ , and $\widehat{P}(\rho)$ is the matrix value of the Fourier transform of P at ρ , $\widehat{P}(\rho) := \sum_{g \in G} \rho(g) P(g)$.

Ideas of the proof.

For $G=S_N$, the irreducible representations ρ are indexed by partitions $\lambda \vdash N$, $\lambda = (\lambda_1 \geq \lambda_2 \geq \dots)$ of N. Let $f^{\lambda} := \dim(\rho^{\lambda})$ (given by the hook length formula) and χ^{λ} be the character of ρ^{λ} .

$$\|P_{\gamma} - U\|^2 \leq \frac{1}{4} \sum_{\lambda \neq (N), \, (1^N)} \left(\frac{\chi^{\lambda}(\mathcal{C}_{\mathbf{n}}) \chi^{\lambda}(\mathcal{C}_{N/2})}{f^{\lambda}} \right)^2.$$

Gamburd used estimate from S. V. Fomin, N. Lulov, *On the number of rim hook tableaux*, J. Math. Sciences, **87** (1997) 4118–4123, for N = kn,

$$|\chi^{\lambda}(C_{N/k})| = O(N^{1/2-1/(2k)})(f^{\lambda})^{1/k}.$$

Ideas of the proof.

M. Larsen, A. Shalev, *Characters of symmetric groups: sharp bounds and applications*, Invent. Math., **174** (2008) 645–687. Extension of the Fomin-Lulov bound for all permutations σ without cycles of length below m, and partitions λ :

$$|\chi^{\lambda}(\sigma)| \le (f^{\lambda})^{1/m+o(1)}, \quad N \to \infty.$$

$$||P_{\gamma} - U||^2 = O(N^{-2}).$$

Thanks.

THANK YOU!