Random gluing polygons.

Sergei Chmutov
Ohio Ste University, Mansfield
chmutov@math.ohio-state.edu

We consider an oriented closed surface obtained by randomly glued n polygons along their sides. The total number of sides are supposed to be an even number N and the resulting surface can be encoded by a random permutation γ of $[N]$. We show that γ is distributed asymptotically (as $N \rightarrow \infty$) uniformly among either even or odd permutations depending on parities of N and n. Then we study the distribution of the genus of the surface obtained and show that asymptotically it is normal Gaussian distribution with mean $(N / 2-n-\log N) / 2$ and variance $(\log N) / 4$. This is a joint work with Boris Pittel.

