> Sergei Chmutov

Stanley's chromatic symmetric function.

Weighted chromatic polynomial.

Bases of the symmetric functions.

Symmetric chromatic function in star basis.

Symmetric chromatic function in paths basis

Symmetric chromatic function in star basis

Sergei Chmutov

Ohio State University, Mansfield

with Ishaan Shah

Friday, July 10, 2020

Sergei Chmutov

- Stanley's chromatic symmetric function.
- Weighted chromatic polynomial.
- Bases of the symmetric functions.
- Symmetric chromatic function in star basis.
- Symmetric chromatic function in paths basis

1 Stanley's chromatic symmetric function.

- 2 Weighted chromatic polynomial.
- **3** Bases of the symmetric functions.
- 4 Symmetric chromatic function in star basis.
- **5** Symmetric chromatic function in paths basis.

Overview

> Sergei Chmutov

Stanley's chromatic symmetric function.

Weighted chromatic polynomial

Bases of the symmetric functions.

Symmetric chromatic function in star basis.

Symmetric chromatic function in paths basis.

R. Stanley, *A symmetric function generalization of the chromatic polynomial of a graph*, Advances in Math. **111**(1) 166–194 (1995).

$$egin{aligned} X_G(x_1,x_2,\dots) &:= \sum_{x \in V(G) o \mathbb{N} \atop ext{proper}} \prod_{v \in V(G)} X_{arkappa(v)} \end{aligned}$$

Power function basis. $p_m := \sum_{i=1}^{m} x_i^m$. **Example.** $X_{\bullet \bullet \bullet} = \widehat{x_1 x_1} + x_1 x_2 + x_1 x_3 + \dots$ $x_2 x_1 + \widehat{x_2 x_2} + x_2 x_3 + \dots$ $x_3 x_1 + x_3 x_2 + \widehat{x_3 x_3} + \dots$ \vdots \vdots \ddots $= p_1^2 - p_2$.

Stanley's chromatic symmetric function.

Sergei Chmutov

Stanley's chromatic symmetric function.

Weighted chromatic polynomial.

Bases of the symmetric functions.

Symmetric chromatic function in star basis.

Symmetric chromatic function in paths basis.

Chromatic symmetric function in power basis.

$$X_G = \sum_{S \subseteq E_G} (-1)^{|S|} p_{\lambda_1} p_{\lambda_2} \dots p_{\lambda_k},$$

where $(\lambda_1, \ldots, \lambda_k) =: \lambda(S) \vdash |V(G)|$ is a partition of the number of verticies according to the connected components of the spanning subgraph *S*. With shorter notation $p_{\lambda(S)} := p_{\lambda_1} p_{\lambda_2} \cdots p_{\lambda_k}$, we have $X_G = \sum_{S \subseteq E_G} (-1)^{|S|} p_{\lambda(S)}$. **Examples.** $X_{\bullet \bullet \bullet} = p_1^2 - p_2$, $X_{\bullet \bullet \bullet \bullet} = p_1^3 - 2p_1p_2 + p_3$, $X_{\bullet \bullet \bullet} = p_1^3 - 3p_1p_2 + 2p_3$, $X_{K_n}(x_1, x_2, \ldots) = n! e_n(x_1, x_2, \ldots)$,

$$X_{\bullet} = p_1^4 - 3p_1^2p_2 + p_2^2 + 2p_1p_3 - p_4,$$
$$X_{\bullet} = p_1^4 - 3p_1^2p_2 + 3p_1p_3 - p_4.$$

 $X_{\bullet\bullet\bullet\bullet} = p_1^5 - 4p_1^3p_2 + 4p_1^2p_3 + 2p_1p_2^2 - 3p_1p_4 - p_2p_3 + p_5.$

> Sergei Chmutov

Stanley's chromatic symmetric function.

Weighted chromatic polynomial.

Bases of the symmetric functions.

Symmetric chromatic function in star basis.

Symmetric chromatic function in paths basis.

Chromatic symmetric function. Conjectures.

Tree conjecture. X_G distingushes trees.

A (3 + 1) poset is the disjoint union of a 3-element chain and 1-element chain. A poset *P* is (3 + 1)-free if it contains no induced (3 + 1) posets.

Incomparability graph inc(P) of P: vertices are elements of P; (uv) is an edge if neither $u \leq v$ nor $v \leq u$.

e-positivity conjecture.

The expansion of $X_{inc(P)}$ in terms of elementary symmetric functions has positive coefficients for (3 + 1)-free posets P.

Sergei Chmutov

Stanley's chromatic symmetric function.

Weighted chromatic polynomial.

Bases of the symmetric functions.

Symmetric chromatic function in star basis.

Symmetric chromatic function in paths basis.

Weighted graphs.

S. Chmutov, S. Duzhin, S. Lando, *Vassiliev knot invariants III. Forest algebra and weighted graphs*, Advances in Soviet Mathematics **21** 135–145 (1994).

Definition. A weighted graph is a graph *G* without loops and multiple edges given together with a weight $w : V(G) \to \mathbb{N}$ that assigns a positive integer to each vertex of the graph.

Ordinary simple graphs can be treated as weighted graphs with the weights of all vertices equal to 1.

Let \mathscr{H}_n be a vector space spanned by all weighted graphs of the total weight n modulo the weighted contraction/deletion relation G = (G - e) + (G/e), where the graph $G \setminus e$ is obtained from G by removing the edge e and G/e is obtained from G by a contraction of e such that if a multiple edge arises, it is reduced to a single edge and the weight w(v) of the new vertex v is set up to be equal to the sum of the weights of the two ends of the edge e.

 $\mathcal{H} := \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \dots$

Multiplication: disjoint union of graphs;

Comultiplication: splitting the vertex set into two subsets.

The primitive space $P(\mathcal{H}_n)$ is of dimension 1 and spanned by a single vertex of weight *n*.

The Hopf algebra ${\mathcal H}$ has a one-dimensional primitive space in each grading.

Milnor–Moore Theorem: \mathcal{H}_n is isomorphic to $\mathbb{C}[q_1, q_2, ...]$.

Sergei Chmutov

Stanley's chromatic symmetric function.

Weighted chromatic polynomial.

Bases of the symmetric functions.

Symmetric chromatic function in star basis.

Symmetric chromatic function in paths basis

Weighted chromatic polynomial.

The image of an ordinary graph *G* (considered as a weighted graph with weights of all vertices equal to 1) in \mathcal{H} can be represented by a polynomial $W_G(q_1, q_2, ...)$ in the variables q_n .

S. Noble, D. Welsh, A weighted graph polynomial from chromatic invariants of knots, Annales de l'institut Fourier **49**(3) 1057–1087 (1999):

$$(-1)^{|V(G)|} W_G \Big|_{q_j = -p_j} = X_G(p_1, p_2, \dots).$$

Examples. $W_{\bullet \bullet \bullet} = (\bullet \bullet) + \underbrace{\bullet}_2 = q_1^2 + q_2$
$$W_{\bullet \bullet \bullet} = (\bullet \bullet \bullet) + \underbrace{\bullet}_2 = (\bullet \bullet \bullet \bullet) + 2(\bullet \bullet_2) + (\bullet_3)$$
$$= q_1^3 + 2q_1q_2 + q_3$$

Sergei Chmutov

Stanley's chromatic symmetric function.

Weighted chromatic polynomial.

Bases of the symmetric functions.

Symmetric chromatic function in star basis.

Symmetric chromatic function in paths basis.

Star basis.

S. Cho, S. van Willigenburg, *Chromatic bases for symmetric functions*, The electronic journal of combinatorics **23**(1) (2016) #P1.15. For every $n \in \mathbb{N}$, pick a connected graph G_n with n vertices. **Theorem.** The symmetric chromatic functions $X_{G_n}(x_1, x_2, ...)$ generate (multiplicatively) the whole algebra of symmetric functions in $x_1, x_2, ...$

Proof (Corollary of CDL-III'1994).

Consider G_n as an element of the Hopf algebra \mathscr{H}_n . Because of connectivity its projection to the one-dimensional primitive space $P(\mathscr{H}_n)$ is non-zero.

Remark. Instead of graph G_n with *n*-vertices we can choose any conncted weighted graph \widetilde{G}_n with the total weight *n*.

Examples. 1) If G_n is a single vertex of weight *n* then the corresponding basis is the the power functions basis.

2) If $G_n = K_n$ the complete graph with *n* vertices (of weight 1), then we get the basis of elementary symmetric functions.

3) Let G_n be a star with *n* vertices.

$$G_6 = \checkmark$$

Then the symmetric chromatic functions $s_n := X_{G_n}$ form a basis for the algebra of all symmetric functions. Its expression in terms of power functions is

$$s_n = \sum_{k=0}^{n-1} (-1)^k {\binom{n-1}{k}} p_1^{n-k-1} p_{k+1}.$$

> Sergei Chmutov

Stanley's chromatic symmetric function.

Weighted chromatic polynomial.

Bases of the symmetric functions.

Symmetric chromatic function in star basis.

Symmetric chromatic function in paths basis

Symmetric chromatic function in star basis.

$$\boxed{X_G(s_1, s_2, \dots, s_n) = \sum_{\{\textit{leaves}\}\subseteq E_1 \sqcup E_2 \sqcup E_3 = E(G)} (-s_1)^{|E_2|} s_{\lambda(E_1, E_2)}}$$

where $\lambda(E_1, E_2) := (\lambda_1, \lambda_2, \dots, \lambda_l) \vdash |E_1|$ is a "partition" of $|E_1|$ defined as follows. Let G_1, \dots, G_l be the connected components of the spanning subgraph of G with the set of edges $E_1 \cup E_2$. Then λ_k is the number of E_1 -edges of the connected component G_k ; $s_{\lambda(E_1, E_2)} := s_{\lambda_1+1}s_{\lambda_2+1}\dots s_{\lambda_l+1}$ is a product of star variables.

Example. $D_5 := \bullet \bullet \bullet$

The set E_1 has to contain all the leaves b,

g, *y*. So there only two choices for E_1 , $r \notin E_1$ and $r \in E_1$.

• $E_1 = \{b, g, y\},$ $E_2 = \emptyset \implies s_2 s_3$ $E_2 = \{r\} \implies -s_1 s_4$ • $E_1 = \{b, g, y, r\},$ $E_2 = \emptyset \implies s_5$

So the result is $X_{D_5} = -s_1s_4 + s_2s_3 + s_5$. Compare to $X_{D_5} = p_1^5 - 4p_1^3p_2 + 4p_1^2p_3 + 2p_1p_2^2 - 3p_1p_4 - p_2p_3 + p_5$.

Sergei Chmutov

Stanley's chromatic symmetric function.

Weighted chromatic polynomial.

Bases of the symmetric functions.

Symmetric chromatic function in star basis.

Symmetric chromatic function in paths basis.

Proof.

The idea is to use the weighted contraction/deletion relation, only postpone the actual contraction replacing the edges by *squiggle* edges.

Star basis.

Squiggle calculus. Since all squiggles are going to be contracted we can rearrange squiggles within a connected component as we like.

To prove the theorem we apply the weighted contraction/deletion relation to all edges of our graph *G*. We will get a combination of terms obtained from *G* by deleting some edges, which form the part E_3 of the tripartition, and replacing the remaining $E_1 \sqcup E_2$ edges by squiggles. Such a term comes with the coefficient $(-1)^{|E_1|+|E_2|}$. Let G_1, \ldots, G_l be the connected components of this term with $E_1 \sqcup E_2$ squiggle edges. For every component G_k we rearrange the squiggles to a star.

> Sergei Chmutov

Stanley's chromatic symmetric function.

Weighted chromatic polynomial.

Bases of the symmetric functions.

Symmetric chromatic function in star basis.

Symmetric chromatic function in paths basis

Star basis.

Proof (continuation).

Then using the weighted contraction/deletion relation in a form

we resolve every squiggle in these stars into straight edge and non-edge. The straight edges (i.e. the squiggles resolved into the straight edges) form the set E_1 . The set E_2 is formed by squiggles resolved to non-edge by deletion. When we delete a squiggle of E_2 from a star, an extra factor s_1 pops up. So we will get a term which is the product of star variables with coefficient $(-1)^{|E_1|+|E_2|}(-1)^{|E_1|} = (-1)^{|E_2|}$. It remains to note that if E_1 does not contain a leaf edge, then we have two choices. One include that leaf from the beginning,

that means it will go to E_3 . The another one is to include it in E_2 , that is delete it on the process of converting a squiggle stars to usual stars. Both choices give the same product of star variables, but they differ by sign because of $(-1)^{|E_2|}$. So they will be canceled out from the final result.

Sergei Chmutov

Stanley's chromatic symmetric function.

Weighted chromatic polynomial.

Bases of the symmetric functions.

Symmetric chromatic function in star basis.

Symmetric chromatic function in paths basis.

Symmetric chromatic function in paths basis.

The same proof works for the expression in terms of the basis consisting of of the symmetric chromatic function of paths.

where $a_{\lambda(E_1, E_2)}$ is defined as follows. Let $G_1, \ldots G_l$ be the connected components of the spanning subgraph of G with the set of edges $E_1 \sqcup E_2$. For each connected component G_k we construct a path with $|E_1 \sqcup E_2|$ edges and then remove $|E_2|$ edges from this path for all possible choices of E_2 . The resulting collection of paths constitutes the product of a-variables $a_{\lambda(E_1, E_2)}$.

Sergei Chmutov

Stanley's chromatic symmetric function.

Weighted chromatic polynomial

Bases of the symmetric functions.

Symmetric chromatic function in star basis.

Symmetric chromatic function in paths basis.

Happy birthday Sergei!!!