Symmetric chromatic function in star basis

Sergei Chmutov

Stanley's chromatic symmetric function.

Symmetric chromatic function in star basis

Ohio State University, Mansfield
with

Ishaan Shah

Friday, July 10, 2020

Symmetric chromatic function in star basis

Sergei Chmutov

Overview

(1) Stanley's chromatic symmetric function.
(2) Weighted chromatic polynomial.
(3) Bases of the symmetric functions.
4) Symmetric chromatic function in star basis.
(5) Symmetric chromatic function in paths basis.

Symmetric chromatic function in star basis

Stanley's chromatic symmetric function.

R. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Advances in Math. 111(1) 166-194 (1995).

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right):=\sum_{\substack{\varkappa: V(G) \rightarrow \mathbb{N} \\ \text { proper }}} \prod_{v \in V(G)} x_{\varkappa(v)}
$$

Power function basis. $\quad p_{m}:=\sum_{i=1}^{\infty} x_{i}^{m}$.
Example. $\quad X_{\bullet} \bullet=\widehat{x_{1} x_{1}}+x_{1} x_{2}+x_{1} x_{3}+\ldots$ $x_{2} x_{1}+\widehat{x_{2} x_{2}}+x_{2} x_{3}+\ldots$ $x_{3} x_{1}+x_{3} x_{2}+\widehat{x_{3} x_{3}}+\ldots$

$$
=p_{1}^{2}-p_{2}
$$

Chromatic symmetric function in power basis.

Sergei Chmutov

$$
X_{G}=\sum_{S \subseteq E_{G}}(-1)^{|S|} p_{\lambda_{1}} p_{\lambda_{2}} \ldots p_{\lambda_{k}}
$$

where $\left(\lambda_{1}, \ldots, \lambda_{k}\right)=: \lambda(S) \vdash|V(G)|$ is a partition of the number of verticies according to the connected components of the spanning subgraph S.
With shorter notation $p_{\lambda(S)}:=p_{\lambda_{1}} p_{\lambda_{2}} \ldots p_{\lambda_{k}}$, we have $X_{G}=\sum_{S \subseteq E_{G}}(-1)^{|S|} p_{\lambda(S)}$.
Examples. $X_{\bullet}{ }_{\bullet}=p_{1}^{2}-p_{2}, \quad X_{\bullet}^{\bullet} \quad=p_{1}^{3}-2 p_{1} p_{2}+p_{3}$,

$$
\begin{aligned}
& X_{\boldsymbol{\mu}}=p_{1}^{3}-3 p_{1} p_{2}+2 p_{3}, \quad X_{K_{n}}\left(x_{1}, x_{2}, \ldots\right)=n!e_{n}\left(x_{1}, x_{2}, \ldots\right), \\
& X \longmapsto=p_{1}^{4}-3 p_{1}^{2} p_{2}+p_{2}^{2}+2 p_{1} p_{3}-p_{4}, \\
& X \longrightarrow p_{1}^{4}-3 p_{1}^{2} p_{2}+3 p_{1} p_{3}-p_{4} \text {. } \\
& X \longmapsto<p_{1}^{5}-4 p_{1}^{3} p_{2}+4 p_{1}^{2} p_{3}+2 p_{1} p_{2}^{2}-3 p_{1} p_{4}-p_{2} p_{3}+p 5 .
\end{aligned}
$$

Chromatic symmetric function. Conjectures.

Tree conjecture. X_{G} distingushes trees.

A $(3+1)$ poset is the disjoint union of a 3 -element chain and 1-element chain. A poset P is $(3+1)$-free if it contains no induced $(3+1)$ posets. Incomparability graph inc (P) of P : vertices are elements of P; $(u v)$ is an edge if neither $u \leqslant v$ nor $v \leqslant u$.

e-positivity conjecture.

The expansion of $X_{\text {inc }(P)}$ in terms of elementary symmetric functions has positive coefficients for $(3+1)$-free posets P.

Weighted graphs.

S. Chmutov, S. Duzhin, S. Lando, Vassiliev knot invariants III. Forest algebra and weighted graphs, Advances in Soviet Mathematics 21 135-145 (1994).
Definition. A weighted graph is a graph G without loops and multiple edges given together with a weight $w: V(G) \rightarrow \mathbb{N}$ that assigns a positive integer to each vertex of the graph.
Ordinary simple graphs can be treated as weighted graphs with the weights of all vertices equal to 1 .
Let \mathscr{H}_{n} be a vector space spanned by all weighted graphs of the total weight n modulo the weighted contraction/deletion relation $G=(G-e)+(G / e)$, where the graph $G \backslash e$ is obtained from G by removing the edge e and G / e is obtained from G by a contraction of e such that if a multiple edge arises, it is reduced to a single edge and the weight $w(v)$ of the new vertex v is set up to be equal to the sum of the weights of the two ends of the edge e.

$$
\mathscr{H}:=\mathscr{H}_{0} \oplus \mathscr{H}_{1} \oplus \mathscr{H}_{2} \oplus \ldots
$$

Multiplication: disjoint union of graphs;
Comultiplication: splitting the vertex set into two subsets.
The primitive space $P\left(\mathscr{H}_{n}\right)$ is of dimension 1 and spanned by a single vertex of weight n.
The Hopf algebra \mathscr{H} has a one-dimensional primitive space in each grading.
Milnor-Moore Theorem: \mathscr{H}_{n} is isomorphic to $\mathbb{C}\left[q_{1}, q_{2}, \ldots\right]$.

Weighted chromatic polynomial.

The image of an ordinary graph G (considered as a weighted graph with weights of all vertices equal to 1) in \mathscr{H} can be represented by a polynomial $W_{G}\left(q_{1}, q_{2}, \ldots\right)$ in the variables q_{n}.
S. Noble, D. Welsh, A weighted graph polynomial from chromatic invariants of knots, Annales de l'institut Fourier 49(3) 1057-1087 (1999):

$$
\left.(-1)^{|V(G)|} W_{G}\right|_{q_{j}=-p_{j}}=X_{G}\left(p_{1}, p_{2}, \ldots\right)
$$

Examples. $W \longleftrightarrow=(\bullet \bullet)+\underset{2}{\bullet}=q_{1}^{2}+q_{2}$

$$
\begin{aligned}
& W_{\bullet} \longrightarrow(\bullet)+\underset{2}{\bullet} \quad(\bullet \bullet)+2(\bullet \bullet)+\binom{\bullet}{3} \\
& =q_{1}^{3}+2 q_{1} q_{2}+q_{3}
\end{aligned}
$$

Star basis.

S. Cho, S. van Willigenburg, Chromatic bases for symmetric functions, The electronic journal of combinatorics 23(1) (2016) \#P1.15.
For every $n \in \mathbb{N}$, pick a connected graph G_{n} with n vertices.
Theorem. The symmetric chromatic functions $X_{G_{n}}\left(x_{1}, x_{2}, \ldots\right)$ generate (multiplicatively) the whole algebra of symmetric functions in x_{1}, x_{2}, \ldots.

Proof (Corollary of CDL-III'1994).

Consider G_{n} as an element of the Hopf algebra \mathscr{H}_{n}. Because of connectivity its projection to the one-dimensional primitive space $P\left(\mathscr{H}_{n}\right)$ is non-zero.

Remark. Instead of graph G_{n} with n-vertices we can choose any conncted weighted graph \widetilde{G}_{n} with the total weight n.

Examples. 1) If G_{n} is a single vertex of weight n then the corresponding basis is the the power functions basis.
2) If $G_{n}=K_{n}$ the complete graph with n vertices (of weight 1), then we get the basis of elementary symmetric functions.
3) Let G_{n} be a star with n vertices.

Then the symmetric chromatic functions $s_{n}:=X_{G_{n}}$ form a basis for the algebra of all symmetric functions.Its expression in terms of power functions is
$s_{n}=\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} p_{1}^{n-k-1} p_{k+1}$.

Symmetric chromatic function in star basis.

Theorem. (I.Shah)

$$
X_{G}\left(s_{1}, s_{2}, \ldots, s_{n}\right)=\sum_{\{\text {leaves }\} \subseteq E_{1} \sqcup E_{2} \sqcup E_{3}=E(G)}\left(-s_{1}\right)^{\left|E_{2}\right|} s_{\lambda\left(E_{1}, E_{2}\right)},
$$

where $\lambda\left(E_{1}, E_{2}\right):=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right) \vdash\left|E_{1}\right|$ is a "partition" of $\left|E_{1}\right|$ defined as follows. Let $G_{1}, \ldots G_{l}$ be the connected components of the spanning subgraph of G with the set of edges $E_{1} \cup E_{2}$. Then λ_{k} is the number of E_{1}-edges of the connected component $G_{k} ; s_{\lambda\left(E_{1}, E_{2}\right)}:=s_{\lambda_{1}+1} s_{\lambda_{2}+1} \ldots s_{\lambda_{1}+1}$ is a product of star variables.

Example.

The set E_{1} has to contain all the leaves b,
g, y. So there only two choices for $E_{1}, r \notin E_{1}$ and $r \in E_{1}$.

- $E_{1}=\{b, g, \nu\}, \quad E_{2}=\emptyset \quad \Longrightarrow s_{2} s_{3}$
- $E_{1}=\{b, g, y, r\}, \begin{array}{ll}E_{2}=\{r\} & \Longrightarrow-s_{1} s_{4} \\ E_{2}=\emptyset & \Longrightarrow s_{5}\end{array}$

So the result is $\quad X_{D_{5}}=-s_{1} s_{4}+s_{2} s_{3}+s_{5}$. Compare to
$X_{D_{5}}=p_{1}^{5}-4 p_{1}^{3} p_{2}+4 p_{1}^{2} p_{3}+2 p_{1} p_{2}^{2}-3 p_{1} p_{4}-p_{2} p_{3}+p_{5}$.

Star basis.

Proof.

The idea is to use the weighted contraction/deletion relation, only postpone the actual contraction replacing the edges by squiggle edges.

Squiggle calculus. Since all squiggles are going to be contracted we can rearrange squiggles within a connected component as we like.

To prove the theorem we apply the weighted contraction/deletion relation to all edges of our graph G. We will get a combination of terms obtained from G by deleting some edges, which form the part E_{3} of the tripartition, and replacing the remaining $E_{1} \sqcup E_{2}$ edges by squiggles. Such a term comes with the coefficient $(-1)^{\left|E_{1}\right|+\left|E_{2}\right|}$. Let $G_{1}, \ldots G_{l}$ be the connected components of this term with $E_{1} \sqcup E_{2}$ squiggle edges. For every component G_{k} we rearrange the squiggles to a star.

Star basis.

Proof (continuation).

Then using the weighted contraction/deletion relation in a form

we resolve every squiggle in these stars into straight edge and non-edge.
The straight edges (i.e. the squiggles resolved into the straight edges) form the set E_{1}. The set E_{2} is formed by squiggles resolved to non-edge by deletion. When we delete a squiggle of E_{2} from a star, an extra factor s_{1} pops up. So we will get a term which is the product of star variables with coefficient $(-1)^{\left|E_{1}\right|+\left|E_{2}\right|}(-1)^{\left|E_{1}\right|}=(-1)^{\left|E_{2}\right|}$. It remains to note that if E_{1} does not contain a leaf edge, then we have two choices. One include that leaf from the beginning, that means it will go to E_{3}. The another one is to include it in E_{2}, that is delete it on the process of converting a squiggle stars to usual stars. Both choices give the same product of star variables, but they differ by sign because of $(-1)^{\left|E_{2}\right|}$. So they will be canceled out from the final result.

Symmetric chromatic function in paths basis.

The same proof works for the expression in terms of the basis consisting of of the symmetric chromatic function of paths.

Theorem.

$$
x_{G}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{E_{1} \sqcup E_{2} \sqcup E_{3}=E(G)}(-1)^{\left|E_{2}\right|} a_{\lambda\left(E_{1}, E_{2}\right)},
$$

where $a_{\lambda\left(E_{1}, E_{2}\right)}$ is defined as follows. Let $G_{1}, \ldots G_{1}$ be the connected components of the spanning subgraph of G with the set of edges $E_{1} \sqcup E_{2}$. For each connected component G_{k} we construct a path with $\left|E_{1} \sqcup E_{2}\right|$ edges and then remove $\left|E_{2}\right|$ edges from this path for all possible choices of E_{2}. The resulting collection of paths constitutes the product of a-variables $a_{\lambda\left(E_{1}, E_{2}\right)}$.

Example.

Compare to $X_{D_{5}}=-s_{1} s_{4}+s_{2} s_{3}+s_{5}$ and
$X_{D_{5}}=p_{1}^{5}-4 p_{1}^{3} p_{2}+4 p_{1}^{2} p_{3}+2 p_{1} p_{2}^{2}-3 p_{1} p_{4}-p_{2} p_{3}+p_{5}$.

```
Symmetric
    chromatic
function in star
    basis
    Sergei
    Chmutov
Stanley's
chromatic
symmetric
function.
Weighted
chromatic
polynomial.

\section*{Happy birthday Sergei!!!}```

