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Stanley’s chromatic symmetric function.

R. Stanley, A symmetric function generalization of the
chromatic polynomial of a graph, Advances in Math. 111(1)
166–194 (1995).

XG(x1, x2, . . . ) :=
∑

κ:V (G)→N
proper

∏
v∈V (G)

xκ(v)

Power function basis. pm :=
∞∑

i=1

xm
i .

Example. X = x̂1x1 + x1x2 + x1x3 + . . .
x2x1 + x̂2x2 + x2x3 + . . .
x3x1 + x3x2 + x̂3x3 + . . .

...
...

. . .
= p2

1 − p2.
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Chromatic symmetric function in power basis.

XG =
∑

S⊆EG

(−1)|S|pλ1pλ2 . . . pλk ,

where (λ1, . . . , λk ) =: λ(S) ` |V (G)| is a partition of the number of verticies
according to the connected components of the spanning subgraph S.

With shorter notation pλ(S) := pλ1 pλ2 . . . pλk , we have XG =
∑

S⊆EG

(−1)|S|pλ(S).

Examples. X = p2
1 − p2, X = p3

1 − 2p1p2 + p3,

X = p3
1−3p1p2+2p3, XKn(x1, x2, . . . ) = n!en(x1, x2, . . . ),

X = p4
1 − 3p2

1p2 + p2
2 + 2p1p3 − p4,

X = p4
1 − 3p2

1p2 + 3p1p3 − p4.

X = p5
1 −4p3

1p2 +4p2
1p3 +2p1p2

2 −3p1p4 −p2p3 +p5.
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Chromatic symmetric function. Conjectures.

Tree conjecture.
XG distingushes trees.

A (3 + 1) poset is the disjoint union of a 3-element chain and 1-element chain.
A poset P is (3 + 1)-free if it contains no induced (3 + 1) posets.

Incomparability graph inc(P) of P: vertices are elements of P; (uv) is an edge if

neither u 6 v nor v 6 u.

e-positivity conjecture.
The expansion of Xinc(P) in terms of elementary symmetric
functions has positive coefficients for (3 + 1)-free posets P.
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Weighted graphs.

S. Chmutov, S. Duzhin, S. Lando, Vassiliev knot invariants III. Forest algebra and
weighted graphs, Advances in Soviet Mathematics 21 135–145 (1994).
Definition. A weighted graph is a graph G without loops and multiple edges given
together with a weight w : V (G)→ N that assigns a positive integer to each vertex
of the graph.
Ordinary simple graphs can be treated as weighted graphs with the weights of all
vertices equal to 1.
Let Hn be a vector space spanned by all weighted graphs of the total weight n
modulo the weighted contraction/deletion relation G = (G − e) + (G/e), where
the graph G \ e is obtained from G by removing the edge e and G/e is obtained
from G by a contraction of e such that if a multiple edge arises, it is reduced to a
single edge and the weight w(v) of the new vertex v is set up to be equal to the
sum of the weights of the two ends of the edge e.

H := H0 ⊕H1 ⊕H2 ⊕ . . .

Multiplication: disjoint union of graphs;
Comultiplication: splitting the vertex set into two subsets.
The primitive space P(Hn) is of dimension 1 and spanned by a single vertex of
weight n.
The Hopf algebra H has a one-dimensional primitive space in each grading.

Milnor–Moore Theorem: Hn is isomorphic to C[q1, q2, . . . ].
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Weighted chromatic polynomial.

The image of an ordinary graph G (considered as a weighted graph with weights
of all vertices equal to 1) in H can be represented by a polynomial WG(q1, q2, . . . )
in the variables qn.

S. Noble, D. Welsh, A weighted graph polynomial from chromatic invariants of
knots, Annales de l’institut Fourier 49(3) 1057–1087 (1999):

(−1)|V (G)|WG

∣∣∣
qj=−pj

= XG(p1, p2, . . . ).

Examples. W = (• •) + •
2

= q2
1 + q2

W = ( ) +
2

= ( ) + 2( • •
2

) + ( •
3

)

= q3
1 + 2q1q2 + q3
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Star basis.
S. Cho, S. van Willigenburg, Chromatic bases for symmetric functions, The
electronic journal of combinatorics 23(1) (2016) #P1.15.
For every n ∈ N, pick a connected graph Gn with n vertices.
Theorem. The symmetric chromatic functions XGn (x1, x2, . . . ) generate
(multiplicatively) the whole algebra of symmetric functions in x1, x2, . . . .

Proof (Corollary of CDL-III’1994).
Consider Gn as an element of the Hopf algebra Hn. Because of connectivity its
projection to the one-dimensional primitive space P(Hn) is non-zero.

Remark. Instead of graph Gn with n-vertices we can choose any conncted
weighted graph G̃n with the total weight n.

Examples. 1) If Gn is a single vertex of weight n then the corresponding basis is
the the power functions basis.
2) If Gn = Kn the complete graph with n vertices (of weight 1), then we get the
basis of elementary symmetric functions.
3) Let Gn be a star with n vertices. G6 =

Then the symmetric chromatic functions sn := XGn form a basis for the algebra of
all symmetric functions.Its expression in terms of power functions is

sn =
n−1∑
k=0

(−1)k(n−1
k

)
pn−k−1

1 pk+1.
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Theorem. (I.Shah)

XG(s1, s2, . . . , sn) =
∑

{leaves}⊆E1tE2tE3=E(G)

(−s1)
|E2|sλ(E1,E2)

,

where λ(E1,E2) := (λ1, λ2, . . . , λl ) ` |E1| is a “partition” of |E1| defined as
follows. Let G1, . . . Gl be the connected components of the spanning subgraph of
G with the set of edges E1 ∪ E2. Then λk is the number of E1-edges of the
connected component Gk ; sλ(E1,E2)

:= sλ1+1sλ2+1 . . . sλl+1 is a product of star
variables.

Example. D5 := The set E1 has to contain all the leaves b,

g, y . So there only two choices for E1, r 6∈ E1 and r ∈ E1.

• E1 = {b, g, y}, E2 = ∅ =⇒ s2s3
E2 = {r} =⇒ −s1s4

• E1 = {b, g, y , r}, E2 = ∅ =⇒ s5

So the result is XD5 = −s1s4 + s2s3 + s5. Compare to

XD5 = p5
1 − 4p3

1p2 + 4p2
1p3 + 2p1p2

2 − 3p1p4 − p2p3 + p5.
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Star basis.
Proof.
The idea is to use the weighted contraction/deletion relation, only postpone the
actual contraction replacing the edges by squiggle edges.

G

e =

G − e

−
G/e

Squiggle calculus. Since all squiggles are going to be contracted we can
rearrange squiggles within a connected component as we like.

To prove the theorem we apply the weighted contraction/deletion relation to all

edges of our graph G. We will get a combination of terms obtained from G by

deleting some edges, which form the part E3 of the tripartition, and replacing the

remaining E1 t E2 edges by squiggles. Such a term comes with the coefficient

(−1)|E1|+|E2|. Let G1, . . . Gl be the connected components of this term with

E1 t E2 squiggle edges. For every component Gk we rearrange the squiggles to a

star.



Symmetric
chromatic

function in star
basis

Sergei
Chmutov

Stanley’s
chromatic
symmetric
function.

Weighted
chromatic
polynomial.

Bases of the
symmetric
functions.

Symmetric
chromatic
function in
star basis.

Symmetric
chromatic
function in
paths basis.

Star basis.

Proof (continuation).
Then using the weighted contraction/deletion relation in a form

= −

we resolve every squiggle in these stars into straight edge and non-edge.

The straight edges (i.e. the squiggles resolved into the straight edges) form the set

E1. The set E2 is formed by squiggles resolved to non-edge by deletion. When we

delete a squiggle of E2 from a star, an extra factor s1 pops up. So we will get a

term which is the product of star variables with coefficient

(−1)|E1|+|E2|(−1)|E1| = (−1)|E2|. It remains to note that if E1 does not contain a

leaf edge, then we have two choices. One include that leaf from the beginning,

that means it will go to E3. The another one is to include it in E2, that is delete it on

the process of converting a squiggle stars to usual stars. Both choices give the

same product of star variables, but they differ by sign because of (−1)|E2|. So

they will be canceled out from the final result. �
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Symmetric chromatic function in
paths basis.

The same proof works for the expression in terms of the basis consisting of of the
symmetric chromatic function of paths.

a2 := X , a3 := X , a4 := X , . . .

Theorem. XG(a1, a2, . . . , an) =
∑

E1tE2tE3=E(G)

(−1)|E2|aλ(E1,E2)
,

where aλ(E1,E2)
is defined as follows. Let G1, . . . Gl be the connected components

of the spanning subgraph of G with the set of edges E1 t E2. For each connected
component Gk we construct a path with |E1 t E2| edges and then remove |E2|
edges from this path for all possible choices of E2. The resulting collection of
paths constitutes the product of a-variables aλ(E1,E2)

.

Example. D5 := , XD5 = a1a4 − a2a3 + a5.

Compare to XD5 = −s1s4 + s2s3 + s5 and
XD5 = p5

1 − 4p3
1p2 + 4p2

1p3 + 2p1p2
2 − 3p1p4 − p2p3 + p5.
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Happy birthday Sergei!!!
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