Partial duality for ribbon graphs

Sergei Chmutov

Ohio State University, Mansfield

MATRIX Workshop on Uniqueness and Discernment in Graph Polynomials
October 16-27, 2023

Partial duality. Example.

Classical Euler-Poincaré duality for graphs on surfaces:

Partial dulality:

For a ribbon graph G and a subset of the edge-ribbons $A \subseteq E(G)$, the partial dual, G^{A} of G relative to A is a ribbon graph constructed as follows.

- The vertex-discs of G^{A} are bounded by connected components of the boundary of the spanning subgraph of G containing all the vertices of G and only the edges from A.
- The edge-ribbons of $E(G) \backslash A$ are attached to these new vertices exactly at the same places as in G. The edge-ribbons from A become parts of the new vertex-discs now. For $e \in A$ we take a copy of e, e^{\prime}, and attach it to the new vertex-discs in the following way. The rectangle representing e intersects with vertex-discs of G by a pair of opposite sides. But it intersects the boundary of the spanning subgraph, that is the new vertex-discs, along the arcs of the other pair of its opposite sides. We attach e^{\prime} to these arcs by this second pair. The copies of the first pair of sides in e^{\prime} become the arcs of the boundary of G^{A}.

Partial duality relative to a set of edges can be done step by step one edge at a time.

Partial duality of ribbon graphs. Definition.

The partial duality relative to one edge:

Here the boxes with dashed arcs mean that there might be other edges attached to these vertices.
The partial duality relative to a non-orientable loop:

Lemma. Let G be a ribbon graph.
(a) Suppose $E(G) \ni e \notin A \subseteq E(G)$. Then $G^{A \cup\{e\}}=\left(G^{A}\right)^{\{e\}}$.
(b) $\left(G^{A}\right)^{A}=G$.
(c) $\left(G^{A}\right)^{B}=G^{\Delta(A, B)}$, where $\Delta(A, B):=(A \cup B) \backslash(A \cap B)$ is the symmetric difference of sets.
(d) The partial preserves orientability of ribbon graphs.
(e) Let \widetilde{G} be a surface without boundary obtained from G by gluing discs to all boundary component of G. Then $\widetilde{G}^{A}=\widetilde{G^{E(G)} \backslash A}$.
(f) The generalized duality preserves the number of connected components of ribbon graphs.

Partial duality for gems.

Definition. A gem (graph-encoded map) is a trivalent graph whose edges colored into three colors 0,1 , and 2 in such a way that that at every vertex the three meeting edges have all different colors.

The vertices of a ribbon graph are the 12-cycles of the corresponding gem; the edges are 02 -cycles (of length 4); and the faces are 01 -cycles.

Partial duality relative to an edge is the the swapping colors 1 and 2 along the edge.

Partial duality for bi-rotation systems.

Definition. A bi-rotation system is a set of three fixed point free involutions, τ_{0}, τ_{1}, and τ_{2}, acting on a set of vertices of the corresponding gem.

Partial duality relative to an edge e. Let τ_{0}^{e} be the product of two transpositions in τ_{1} for \boldsymbol{e}, and τ_{2}^{e} be the product of two transpositions in τ_{2} for \boldsymbol{e}.
Then $\quad \tau_{0}\left(G^{\{e\}}\right)=\tau_{0}(G) \tau_{0}^{e} \tau_{2}^{e}, \quad \tau_{1}\left(G^{\{e\}}\right)=\tau_{1}(G), \quad \tau_{2}\left(G^{\{e\}}\right)=\tau_{2}(G) \tau_{0}^{e} \tau_{2}^{e}$.

$$
\begin{aligned}
& \tau_{0}\left(G^{\{e\}}\right)=\tau_{0}(G) \tau_{0}^{e} \tau_{2}^{e}=(12)(34)(56)(78)(9 c)(a b) \\
& \tau_{1}\left(G^{\{e\}}\right)=(1 b)(4 c)(26)(35)(7 a)(89) \\
& \tau_{2}\left(G^{\{e\}}\right)=\tau_{2}(G) \tau_{0}^{e} \tau_{2}^{e}=(1 c)(23)(58)(67)(9 a)(b c)
\end{aligned}
$$

Partial duality for rotation systems.

Definition. A rotation system is cyclic order of half-edges around every vertex and an involution of two half-edges forming a single edge.

$$
\begin{aligned}
& \sigma_{V}(G)=(16)(23)(45) \\
& \sigma_{E}(G)=(12)(34)(56)
\end{aligned}
$$

Partial duality relative to an edge $e=(a b)$.

$$
\sigma_{V}\left(\mathcal{G}^{\{e\}}\right)=(a b) \cdot \sigma_{V}(G), \quad \sigma_{E}\left(\mathcal{G}^{\{e\}}\right)=\sigma_{E}(G) .
$$

For $e_{3}=(34), \sigma_{V}\left(G^{\left\{e_{3}\right\}}\right)=(34) \cdot(16)(23)(45)=(16)(2453)$.

$\xrightarrow[\sim]{\sim}$

Partial-dual genus polynomial

The partial-dual genus polynomial: J. L. Gross, T. Mansour, T. W. Tucker, Partial duality for ribbon graphs, I: Distributions, European Journal of Combinatorics 86 (2020) 103084, 1-20.

$$
{ }^{\partial} \Gamma_{G}(z):=\sum_{A \subseteq E(G)} z^{g\left(G^{A}\right)}
$$

Open problem. Are there any relations of the partial-dual genus polynomial with other ribbon graph polynomials?

THANK YOU!!!

