Sec. 2.7, further examples and exercises

April 14, 2012

Most of the formulas below are generated by Maple 15, but I edited them a bit to make them more understandable by humans. There is a small chance of typos. If you think you found one, please let me know!
Multinomial formula (fifth power, three variables):

$$
\begin{array}{r}
\left(z_{1}+z_{2}+z_{3}\right)^{5}=z_{1}^{5}+5 z_{1}^{4} z_{2}+5 z_{1}^{4} z_{3}+10 z_{1}^{3} z_{2}^{2}+20 z_{1}^{3} z_{2} z_{3}+10 z_{1}^{3} z_{3}^{2}+10 z_{1}^{2} z_{2}^{3} \\
+30 z_{1}^{2} z_{2}^{2} z_{3}+30 z_{1}^{2} z_{2} z_{3}^{2}+10 z_{1}^{2} z_{3}^{3}+5 z_{1} z_{2}^{4}+20 z_{1} z_{2}^{3} z_{3}+30 z_{1} z_{2}^{2} z_{3}^{2}+20 z_{1} z_{2} z_{3}^{3}+5 z_{1} z_{3}^{4} \\
+z_{2}^{5}+5 z_{2}^{4} z_{3}+10 z_{2}^{3} z_{3}^{2}+10 z_{2}^{2} z_{3}^{3}+5 z_{2} z_{3}^{4}+z_{3}^{5} \tag{1}
\end{array}
$$

Exercise. Calculate by hand a few coefficients, say those of $z_{1}^{3} z_{2}^{2}, z_{1}^{2} z_{2}^{2} z_{3}$ and $z_{2}^{2} z_{3}^{3}$, and compare with (1).

The multi-index notation. Third order Taylor's formula in two variables using the (expanded out) multi-index notation (I omitted (x_{1}, x_{2}) in the partial derivatives, to save space):

$$
\begin{align*}
& f\left(x_{1}+h_{1}, x_{2}+h_{2}\right)=f\left(x_{1}, x_{2}\right)+h_{1} \partial^{1,0} f+h_{2} \partial^{0,1} f \\
&+\frac{1}{2} h_{1}^{2} \partial^{2,0} f+h_{1} h_{2} \partial^{1,1} f+\frac{1}{2} h_{2}^{2} \partial^{0,2} f \\
&+\frac{1}{6} h_{1}^{3} \partial^{3,0} f+\frac{1}{2} h_{1}^{2} h_{2} \partial^{2,1} f+\frac{1}{2} h_{1} h_{2}^{2} \partial^{1,2} f+\frac{1}{6} h_{2}^{3} \partial^{0,3} f+R_{\mathbf{x}, 3}(\mathbf{h}) \tag{2}
\end{align*}
$$

Taylor's formula, partial derivative notation. Here is the third order Taylor formula in the standard partial derivatives notation:

$$
\begin{align*}
& f(x+h, y+k)=f(x, y)+\frac{\partial f}{\partial x} h+\frac{\partial f}{\partial y} k \\
&+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} h^{2}+\frac{\partial^{2} f}{\partial y \partial x} h k+\frac{1}{2} \frac{\partial^{2} f}{\partial y^{2}} k^{2} \\
&+\frac{1}{6} \frac{\partial^{3} f}{\partial x^{3}} h^{3}+ \frac{1}{2} \frac{\partial^{3} f}{\partial y \partial x^{2}} h^{2} k+\frac{1}{2} \frac{\partial^{3} f}{\partial y^{2} \partial x} h k^{2}+\frac{1}{6} \frac{\partial^{3} f}{\partial y^{3}} k^{3}+R_{\mathbf{x}, 3}(\mathbf{h}) \tag{3}
\end{align*}
$$

Exercise. Compare these expressions with (2.69) in the book; calculate (2) yourselves.

Examples. For those of you who have access to Maple and know how to use it, the command:

$$
\text { mtaylor }\left(\sqrt{1+x^{2}+y^{2}},[x, y], 8\right)
$$

instructs Maple to output all the terms of total degree strictly less than 8 in the Taylor polynomial ; the result is:

$$
\begin{equation*}
1+\frac{1}{2} x^{2}+\frac{1}{2} y^{2}-\frac{1}{8} x^{4}-\frac{1}{4} y^{2} x^{2}-\frac{1}{8} y^{4}+\frac{1}{16} x^{6}+\frac{3}{16} y^{2} x^{4}+\frac{3}{16} y^{4} x^{2}+\frac{1}{16} y^{6} \tag{4}
\end{equation*}
$$

Likewise, the command

$$
\text { mtaylor }\left(\mathrm{e}^{x} \sin (x+y),[x, y], 5\right)
$$

produces the output

$$
\begin{equation*}
x+y+x^{2}+y x+\frac{1}{3} x^{3}-\frac{1}{2} y^{2} x-\frac{1}{6} y^{3}-\frac{1}{3} y x^{3}-\frac{1}{2} y^{2} x^{2}-\frac{1}{6} y^{3} x \tag{5}
\end{equation*}
$$

Remark. On Monday we will see that, for a given function, the Taylor polynomial is unique. This is also shown in the textbook. As a consequence, if you obtain by other means a polynomial for $\mathrm{e}^{x} \sin (x+y)$ that differs from $\mathrm{e}^{x} \sin (x+y)$ by $o\left(|(x, y)|^{4}\right)$ then it coincides with the one obtained using the several variables Taylor formula (here, as usual, $|(x, y)|=\sqrt{x^{2}+y^{2}}$).

Exercise. In the two concrete examples above, try to use combinations of Taylor formulas in one variable to obtain (4) and (5).

