3d plot of

$x^{2}-y^{2}$ with constant level sets depicted. The level set passing through $(0,0)$ is not a curve.
> plot $3 d\left(x^{2}-y^{2}, x=-0.1 . .0 .1, y=-0.1\right.$..0.1, numpoints $=5000$, style
$=$ surfacecontour, shading $=x y z$, axes $=$ boxed, lightmodel $=$ light3, glossiness
$=0.5$, contours $=11$)

3 d plot of $x^{2}+y^{2}$. Every level set containing more than one point is a smooth curve . What is the difference between this case and the one above?
$>\operatorname{plot} 3 d\left(x^{2}+y^{2}, x=-0.1 . .0 .1, y=-0.1\right.$..0.1, numpoints $=5000$, style
$=$ surfacecontour, shading $=x y z$, axes $=$ boxed, lightmodel $=$ light 3 , glossiness
$=0.5$, contours $=10$)

[> plot3d $\left(y^{3}-x^{2}, x=-1 . .1, y=-1 . .1\right.$, numpoints $=5000$, style $=$ surfacecontour,
shading $=x y z$, axes $=$ boxed, lightmodel $=$ light3, glossiness $=.5$, contours $=10$)

[> plot3d $\left(\left(x^{2}+y^{2}-1\right) \cdot\left(x^{2}+y^{2}-2\right), x=-1.3 . .1 .3, y=-1.3 . .1 .3\right.$, numpoints $=5000$, style $=$ surfacecontour, shading $=x y z$, axes $=$ boxed, lightmodel $=$ light 3 , glossiness $=.5$, contours $=10$)

