
SOME PROPERTIES OF ANALYTIC FUNCTIONS

0.1. Introduction. The multidimensional analysis we have studied so far allows
us to obtain quite easily a number of basic properties of analytic functions. We’ll
take a short trip to the analytic world, as it also provides us with an opportunity
to review many of the notions and theorems we have developed.

0.2. Complex integrals. Here too, before we introduce properties specific to an-
alytic function theory, the definitions, constructions and theorems are very similar
to those on R2. In particular a smooth curve in C is simply the image of a smooth
function g : [a, b] ⊂ R → C. A path integral of a continuous complex valued
function f(z) = u(x, y) + iv(x, y) of one complex variable z = x+ iy is simply

(1)

∫
C

f(z)dz :=

∫ b

a

f(g(t))g′(t)dt =

∫ b

a

[u(g(t)) + iv(g(t))][g′1(t) + ig′2(t)]dt

=

∫ b

a

u(g(t))g′1(t)− v(g(t))g′2(t)dt+ i

∫ b

a

v(g(t))g′2(t) + u(g(t))g′1(t)dt

=

∫
C

u dx− v dy + i

∫
C

v dx+ u dy =

∫
C

F1dx + i

∫
C

F2dx

F1 = (u,−v); F2 = (v, u)

Proposition 1. Assume u, v are C1 in a regular domain S with piecewise smooth
boundary ∂S in C as in Theorem 5.12. Then,

(2)

∫
∂S

f(z)dz = −
∫∫

S

(
∂v

∂x
+
∂u

∂y

)
+ i

∫∫
S

(
∂u

∂x
− ∂v

∂y

)
dxdy

Proof. This is simply Green’s theorem, Theorem 5.12., applied to (1).

Definition 2. The equations

∂u

∂x
=
∂v

∂y
(3)

∂u

∂y
= −∂v

∂x
(4)

are called the Cauchy-Riemann equations (C-R).

Corollary 3. (a) If f is C1 and satisfies the CR equations in S then

(5)

∫
∂S

f(z)dz = 0

(b) Assume S is a convex domain. Then the integral

(6)

∫
C

f(z)dz

is path-independent (the integral only depends on the endpoints of C) iff the CR
equations are satisfied.
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(c) Assume S is a convex domain and C is a smooth closed curve in S. Then

(7)

∫
C

f(z)dz = 0

Proof. (a) is once more Green’s theorem. (b) and (c) are immediate consequences
of Theorems 5.60 and 5.62.

The following definition is a natural adaptation of the general definition of de-
rivative we used in this course:

Definition 4. A function is differentiable in z at z = z0 = a + ib ∈ C if there is
an A ∈ C s.t.

(8) f(a+ ε)− f(a) = Aε+ o(ε) as |ε| → 0, ε ∈ C

A function which is differentiable in an open set O is called analytic in O.

Proposition 5. Assume f is C1 in an open domain O ∈ C. Then f is differentiable
in O iff it satisfies the CR equations in O.

Proof. Let ε = h+ ik. We have

(9) u(a+ h, b+ k)− u(a, b) + iv(a+ h, b+ k)− iv(a, b)

= uxh+ uyk + i(vxh+ vyk) = A(h+ ik) + o(ε)

Taking first [k = 0, h → 0] and then [h = 0, k → 0] and dividing by h and then k
respectively, we get

(10) ux + ivx = A; uy + ivx = iA = i(ux + ivx)

The last pair of equalities is equivalent to CR.

Proposition 6. Assume f is continuous in a convex domain S, c ∈ S and the
integral of S around any triangle is zero. Then F (z) :=

∫ z
c
f(s)ds is differentiable

in S and F ′(z) = f .

Proof. Same as that of Theorem 5.60.

Exercise 7. Show that if f, g are differentiable in a region S then so are f + g, fg,
f ◦ g (when the composition makes sense) etc. Check that if g : [a, b] → C is C1

and f(z) is continuously differentiable (w.r.t. z) in a region containing the curve
C = g([a, b]), then d

dtf(g(t)) = f ′(g(t))g′(t). Check also that

(11)

∫ z2

z1

f ′(z)dz = f(z2)− f(z1)

where z1 = g(a), z2 = g(b) and the integral is taken along C (in fact, now we know
that the particular curve does not matter).

Proposition 8. Let C be a circle of radius r around z = 0. Then

(12)

∫
C

dz

z
= 2πi



SOME PROPERTIES OF ANALYTIC FUNCTIONS 3

Proof. We parametrize the circle: s = r(cos t+ i sin t), t ∈ [0, 2π]. Then the integral
becomes

(13)

∫ 2π

0

r(− sin t+ i cos t)

r(cos t+ i sin t)
dt =

∫ 2π

0

idt = 2πi

Proposition 9. Let S be a convex domain containing zero let f be C1 satisfying
the CR equations in S, and take C be a closed smooth curve in S containing zero
in its interior. Then,

(14)

∫
C

f(s)

s
ds = 2πif(0)

Proof. Using Corollary 3 (a) the integral in (14) is equal to the integral over any
small circle centered at 0. Take one such circle Cr and note that for t < 1 ∈ R+

close to one f(tz) is also differentiable. Furthermore, by the change of variable
formula

(15)

∫
Cr

f(s)

s
ds =

∫
Cr/t

f(tu)

u
du =

∫
Cr

f(tu)

u
du = · · · =

∫
Cr

f(tnu)

u
du

−→
n→∞

∫
Cr

f(0)

u
du = f(0)

∫
Cr

du

u
= 2πif(0)

for all n. where we used continuity of f and the bounded convergence theorem

Proposition 10 (Cauchy’s integral formula). Let S be a convex domain; assume
f be C1 satisfies the CR equations in S and take C be a closed smooth curve in S
containing z in its interior. Then,

(16) f(z) =
1

2πi

∫
C

f(s)

s− z
ds

Proof. A simple change of variable s = z + u, g(z + u) = h(u) brings (16) to (15).

Proposition 11. In the assumptions of Prop. 10, f is C∞ in S and

(17) f (n)(z) =
n!

2πi

∫
C

f(s)

(s− z)n+1
ds

Proof. By the bounded convergence theorem, we can differentiate inside the inte-
gral; the function 1/(s− z) is C∞ in a neighborhood of C.

Proposition 12 (Morera’s theorem). Assume f is continuous in a convex domain
S and the integral of S around any triangle is zero. Then f is analytic in S, f ∈ C∞
in S and (17) applies.

Proof. By Proposition 6, F (z) =
∫ z
z0
f(s)ds is continuously differentiable in z ∈ S.

Then F ∈ C∞ and since f = F ′, f ∈ C∞ too.
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Proposition 13. Let S be an open convex domain, assume fn are analytic in S
and assume fn converge uniformly to f in any closed disk in S. Then f is analytic

in S, and f
(k)
n converge uniformly to f (k) in any closed disk in S.

Proof. We can pass to the limit in the formula (16). The rest follows as in Propo-
sition 11.

Corollary 14. Assume the series f(z) =
∑∞
k=0 ckz

k converges in Dr, r > 0. Then
f is analytic in Dr and f ′(z) =

∑∞
k=0 ckkz

k−1.

Proof. An immediate consequence of Proposition 13.

Example 15. The functions ez, cos z, sin z defined in the notes to the previous
lecture note are analytic in C that is, they are entire. Differentiating term by term
we see immediately that

(18) (ez)′ = ez, cos′(z) = − sin(z), sin′(z) = cos(z)

Then (eze−z)′ = 0 implying that e−z = 1/ez; more generally (e−xea+x)′ = 0
implying ex+a = exea.

Furthermore, check that [(cos z + i sin z)e−iz]′ = 0 and thus eiz = cos z + i sin z
for all z ∈ C. This identity easily implies that the addition formulas for sin, cos
are valid throughout C. In particular, sin(z + 2π) = sin(z) for all z, and e2πi = 1
implying that the exponential is periodic, with period 2πi.

Exercise 16 (homework). (a) Show that the function

(19) f(z) =


ez − 1

z
if z 6= 0

1 if z = 0

is (continuously) differentiable as a function of the complex variable z for all z ∈ C.
(Hint: read these notes and look at Example 9 in the May 24 class notes.)

(b) With z = x + iy, (x, y) ∈ R write f(z) in the form u(x, y) + iv(x, y). Show
that

(20) u(x, y) =


(x cos y + y sin y)ex − x

x2 + y2
if (x, y) 6= 0

1 if (x, y) = 0

(c) Show that u(x, y) ∈ C∞(R2). Probably the easiest way is to base your proof
on (a), but any correct proof is fine. (In fact, it is interesting to see if an approach
not using (a) can be found.)
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