
LEBESGUE MEASURE, INTEGRAL, MEASURE THEORY:

A QUICK INTRO

This note is meant to give an overview of some general constructions
and results, certainly not meant to be complete, but with your knowledge
of Riemann integration you should be able to get the general idea. For a
more detailed survey with no proofs but with good references see [1]. A
self-contained manageably short intro can be found in [2]. Please read Sec.
4.8 in the book too.

1.

A natural starting point is to first clarify what we understand by length,
area, volume, or, more generally by a positive measure of sets µ (there are
negative, complex-valued or even more general measures, but we are not
going that far). What properties should a positive measure have? What
should we allow for as a measurable set?

Clearly, if A and B are measurable and disjoint, it is natural to try to
arrange that A ∪B =: A⊕B is measurable. Furthermore, we should have

(1) µ(A⊕B) = µ(A)+µ(B); more generally, µ(A1⊕· · ·⊕An) =
n∑
j=1

µ(Aj)

Why stop with finitely many sets? Assume {Aj}j∈N is a family of measurable
sets which are disjoint. Then we define

(2) µ(⊕∞j=1Aj) =

∞∑
j=1

µ(Aj)

The infinite sum on the right always makes sense in [0,∞] : a sum of positive
numbers converges by the monotone convergence theorem to a number or to
+∞. Thus, µ(A) ∈ [0,∞]. Allowing for countable unions is a fundamental
improvement over the Jordan measure, making it possible to measure limits
of sets. We can define limits of sets precisely by saying that

(3) Aj → A if by definition χ(Aj)→ χ(A)

where as usual χ is the characteristic function.
Our experience with Jordan measures indicates that sets are measurable

if their boundary is reasonable. Since ∂A = ∂Ac we should allow for Ac to
be measurable if A is.

We now proceed with a precise definition of the family of measurable sets:
A σ−algebra of sets, subsets of a bigger space, say X = Rn is a family of
sets F ⊂ 2X (2X is the set of all subsets of X) with the properties:

(1) X ∈ F (more generally, F is non-empty).
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(2) A ∈ F ⇒ Ac ∈ F .
(3) ∀j ∈ N Aj ∈ F ⇒ ∪∞j=1Aj ∈ F

(of course, the union can also be finite, just take Aj+1 = Aj for all j ≥ j0).

Exercise 1. Show that the definition of a σ− algebra implies that

(4) ∩∞j=1 Aj ∈ F ; Ai \Aj ∈ F ; ∅ ∈ F

1.1. Borel sigma algebras B (in Rn). It would be nice to be able to
provide a good measure for every set. This is not possible in the standard
axiomatization of math (ZFC). See however Note 4. Open and closed sets,
and many more however can be arranged to be measurable; again, see Note
4.

The Borel sigma algebra B in Rn is defined as the smallest F ⊂ 2R
n

such
that every open ball in Rn is in B.

It is quite easy to see that B indeed exists. We leave it as a guided
exercise:

Exercise 2. Check that 2R
n

is a σ−algebra that contains every open ball
in Rn. Show that if Fα are σ−algebras then their intersection F = ∩αFα
is a σ−algebra. Here the intersection ∩αFα can be finite or infinite, even
uncountably infinite. Hint: if A,B ∈ F then A,B ∈ F for every α and thus
A ∪B ∈ F as well, for every α implying A ∪B ∈ F .

According to Exercise 2, you can convince yourself that

(5) B = ∩{F ∈ 2R
n

: every open ball in Rn is in F}

Exercise 3. Show that if O ⊂ Rn is open then O ∈ B. Hint: Q is countable
and so is Qn. Every open set contains any x together with an open ball.
Any such open ball contains a smaller ball centered on a a ∈ Qn...

Now show that every closed set is in B, every countable intersection of
open sets is also in B as is every countable union of closed sets. In particular
Qn is measurable.

Note 4. In fact every set S that you can in one way or another describe
concretely, construct algorithmically or for which you can decide logically
(and not by a “random choice”) whether a given x is an element of S or not
is automatically measurable. The existence of non-measurable sets relies
on the Axiom of choice, which in some vague sense states that completely
arbitrary choices exist, or slightly more precisely that for any family of
unordered sets of objects there is a choice function which associates to set
of objects exactly one of its elements. In simple cases, a definite choice can
be made. For instance if we have to choose between a pair of real numbers,
we choose the largest. It is easy to choose between two polynomials. We
can even come up with a definite choice between two continuous functions,
but it is trickier. Any idea? But to choose an element from a completely
arbitrary set, we need the axiom of choice.
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The measure generated by balls is the Lebesgue measure. For instance
in R2 we define λ(Br) = area(Br) = πr2 for every ball Br ∈ R2 of radius
r. Let’s go into more detail for R; here, the balls are the intervals and we
define λ([a, b]) = b − a. A point has measure λ({a}) = λ([a, a]) = 0; thus
λ((a, b)) = λ([a, b)) etc. (We can take this as a definition at this point.) Now,
for an open set O we take a countable set of intervals Bj s.t. O = ∪j∈NBj .
We can arrange every finite union ∪j≤NBj to be disjoint, by breaking the
intervals further into B′j , j = 1...N1 if needed. Then, we have ∪j≤NBj → O
by construction, in the sense (3) and we define

(6) λ(O) = lim
N→∞

λ(∪j≤NBj) =: lim
N ′→∞

λ(⊕j≤N ′B′j) = lim
N ′→∞

N ′∑
j=1

λ(B′j)

It can be shown that this is well defined and does not depend on the way we
write O as union of Bj . Similarly we can define the measure of a compact
set C. Now on B we define λ by

(7) A ∈ B ⇒ λ(A) = inf{λ(O) : O ⊃ A} = sup{λ(C) : C compact, C ⊂ A}

The fact that we have equality here requires a proof, of course. It it not
sufficiently simple to be left as an exercise, so you have to look say at [2] for
how to show this.

Next, one allows for any subset E of a zero measure set to be measurable,
and assigns zero measure E. One defines L, the sigma-algebra of Lebesgue
measurable sets to be the sigma-algebra generated by B together with all
these zero measure sets. Every set A∗ in L differs from a set B by a set of
zero measure; we assign a measure on L by defining λ(A∗) = λ(A). These
are the Lebesgue measurable sets, and λ is the Lebesgue measure. It has the
property

(8) λ(⊕∞j=1Aj) =

∞∑
j=1

λ(Aj)

Exercise: show that λ(Q) = λ(Qn) = 0.

1.2. Measurable functions and the Lebesgue integral. A function is
measurable if f−1(O) ∈ L for every open O. Equivalently, f−1(A) ∈ L for
every A ∈ B. All continuous functions and many more are measurable:

Note 5. Essentially equivalently to Note 4: every function that you can
concretely define, or calculate, or even approximate with arbitrary precision
is measurable.

Given a measurable f ≥ 0 : S → R, with S measurable in Rn and f ≥ 0,
one can show without much difficulty that the set

(9) Gf ;S := {(x, y) ∈ Rn ×R : x ∈ S, 0 ≤ y ≤ f(x)}
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is measurable. Though this is not the most common definition, nor is it
suitable for abstract generalization it is perfect for a short presentation: we
define

(10)

∫
S
f(x)dλ(x) = λ(Gf ;S)

where the λ in the integral is the measure on Rn while the one on the right
side, naturally, is the measure on Rn × R.

Note 6. It can be checked without much difficulty that if f, g are measur-
able, then so are |f |, af + bg f · g etc., and

(11)

∫
S

[af(x) + bg(x)dλ(x)] = a

∫
S
f(x)dλ(x) + b

∫
S
g(x)dλ(x)

Also, if λ(S ∩ T ) = 0 then

(12)

∫
S∪T

f(x)dλ(x) =

∫
S
f(x)dλ(x) +

∫
T
f(x)dλ(x)

(13) 0 ≤ f ≤ g ⇒
∫
S
f(x)dλ(x) ≤

∫
S
g(x)dλ(x)

Also, if
∫
S |f(x)|dλ(x) <∞ we define

(14)

∫
S
f(x)dλ(x) =

∫
S
|f(x)|dλ(x)−

∫
S

(
|f(x)| − f(x)

)
dλ(x)

a difference of two integrals of measurable nonnegative functions.

Note 7. The set of functions for which
∫
S |f |dλ <∞ is denoted by L1(S).

All properties that we have seen for the Riemann integral hold for
∫
dλ,

but
∫
dλ requires far fewer restrictions. Also, the Lebesgue integral equals

the Riemann integral when the latter exists.

1.3. Some useful theorems.

1.3.1. Fubini’s theorem–the analog of the iterated integration theorem. It can
be relatively easily shown that if f(x, y) is A×B measurable then for each
x, g(y) = f(x, y) (with fixed x) is B measurable, h(x) = f(x, y) (fixed y) is
A measurable,

∫
A |f(x, y)|dλ(x) is B measurable and

∫
B |f(x, y)|dλ(y) is A

measurable.

Theorem 8 (Fubini). Suppose f(x, y) is A×B measurable. If

(15)

∫
A×B

|f(x, y)| dλ(x, y) <∞,

then
(16)∫
A

(∫
B
f(x, y) dλ(y)

)
dx =

∫
B

(∫
A
f(x, y) dλ(x)

)
=

∫
A×B

f(x, y) dλ(x, y)
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Theorem 9 (Dominated convergence theorem). Let {fn}n∈N be a sequence
of real-valued measurable functions. Suppose that fn(x) → f(x) for every
x in some measurable set S and that the sequence {fn}n∈N is dominated by
some integrable function g ≥ 0 in the sense that

(17) ∀x ∈ S and n ∈ N we have |fn(x)| ≤ g(x) with

∫
S
gdλ <∞

Then, f is integrable and

(18) lim
n→∞

∫
S
fn dλ =

∫
S
f dλ

Theorem 10 (Monotone convergence theorem). Let {fn}n∈N be a pointwise
non-decreasing sequence of non-negative functions defined on a measurable
set S, that is

(19) ∀k ∈ N, x ∈ S we have 0 ≤ fk(x) ≤ fk+1(x)

Let

(20) f(x) := lim
k→∞

fk(x)

Then f is measurable and

(21) lim
k→∞

∫
S
fk dλ =

∫
f dλ
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