RANK OF A MATRIX

The row rank of a matrix is the maximum number of rows, thought of as vectors, which are linearly independent. Similarly, the column rank is the maximum number of columns which are linearly independent. It is an important result, not too hard to show that the row and column ranks of a matrix are equal to each other. Thus one simply speaks of the rank of a matrix.

We will show this for 3×2 matrices - essentially without relying on linear algebra. Let

$$
A=\left(\begin{array}{ll}
a_{1} & b_{1} \tag{1}\\
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right)
$$

If the column rank is zero, clearly all entries are zero and the statement is obvious.

If the column rank is one, it means that $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ is a multiple of $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ (or vice-versa), or $a_{1}=\lambda b_{1}, a_{2}=\lambda b_{2}$ and $a_{3}=\lambda b_{3}$ for some nonzero λ and

$$
A=\left(\begin{array}{ll}
\lambda b_{1} & b_{1} \tag{2}\\
\lambda b_{2} & b_{2} \\
\lambda b_{3} & b_{3}
\end{array}\right)
$$

Now, the row vectors are: $b_{1}(\lambda, 1), b_{2}(\lambda, 1)$ and $b_{3}(\lambda, 1)$, all multiple of the same nonzero vector $(\lambda, 1)$, so there is one and only one linearly independent row.

Finally, assume that the column rank is 2 , meaning \mathbf{a} and \mathbf{b} are linearly independent. Then both are nonzero and the angle θ between them is not 0 or π, or equivalently, $\sin \theta \neq 0$ or, equivalently still, $\mathbf{a} \times \mathbf{b} \neq \mathbf{0}$. But by definition

$$
\mathbf{a} \times \mathbf{b}=\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \tag{3}\\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right)=\mathbf{i}\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|
$$

where || denotes as usual the determinant.
For $\mathbf{a} \times \mathbf{b}$ to be nonzero, at least one of the determinants above has to be nonzero. Say the last one is nonzero. But then we cannot have $a_{1}=\lambda a_{2}$ and $b_{1}=\lambda b_{2}$ since otherwise the determinant would be $a_{1} b_{2}-a_{2} b_{1}=\lambda a_{2} b_{2}-\lambda b_{2} a_{2}=0$. Thus (a_{1}, b_{1}) is linearly independent from $\left(a_{2}, b_{2}\right)$. Of course no more than two vecors with 2 components
(that is, two vecors in \mathbb{R}^{2} can be linearly independent, and thus the row rank is also 2 .

