REVIEW OF SERIES

0.1. Introduction. As vector spaces, \mathbb{C} and \mathbb{R}^2 are isomorphic; we can think of z = x + iy as a notation for (x, y). (What sets aside \mathbb{C} is the extra structure we endow it with, coming from multiplication.) In particular, we have $|z| = \sqrt{x^2 + y^2}$ the same as the Euclidian norm. Likewise, from a topological point of view we can identify the space of complex functions f(z) with \mathbb{R}^2 valued function u(x, y) + iv(x, y) defined on a domain in \mathbb{R}^2 . A sequence of complex numbers $z_n = x_n + iy_n$ converges to z = x + iy if, by definition, the sequence (x_n, y_n) converges to (x, y).

A sequence of functions $f_n = u_n + iv_n$ defined on a set $S \subset \mathbb{C}$ converges pointwise to f = u + iv if the sequence of vector functions (u_n, v_n) converges pointwise to (u, v).

It converges uniformly on S if $\sup_{\in S} |f_n(z) - f(z)| \to 0$. Continuity of f(z) is defined in the same way as continuity of (u(x, y), v(x, y)).

Things become more interesting when we introduce multiplication on \mathbb{R}^2 this is a vector valued function of two vector variables $(x, y) \cdot (s, t) = (xs - yt, xt + ys)$. Of course, this is the same operation but certainly less intuitive than saying that zw is calculated by "usual" multiplication of x + iy and s + it with the convention $i^2 = -1$. Direct calculation shows that

$$|zw| = |z||w|$$

It is clear from (1) that multiplication is a continuous function from $\mathbb{C} \times \mathbb{C}$ into \mathbb{C} . Inductively, the function z^n is shown to be continuous, and so is any polynomial.

At this stage, we can introduce complex conjugation $\overline{z} = \overline{x + iy} = x - iy$ and then $|z|^2 = z\overline{z}$.

A sequence $\{z_n\}_{n\in\mathbb{N}}$ is convergent **iff** it is Cauchy. We know this from the \mathbb{R}^2 convergence. A finite power series is a polynomial

(2)
$$S = \sum_{k=0}^{n} c_k z^k; \text{ or, also, } \sum_{k=0}^{n} c_k (z - z_0)^k;$$

and a "true" power series is an expression of the form

(3)
$$S = \sum_{k=0}^{\infty} c_k z^k = \lim_{m \to \infty} \sum_{k=0}^m c_k z^k$$

is the limit exists. If the limit does not exist, or we have not yet been proven to exist, $\sum_{k=0}^{\infty} c_k z^k$ is viewed as an abstract notation and we most often start from it and say that $\sum_{k=0}^{\infty} c_k z^k$ converges if the limit in (3) exists. By the Cauchy criterion,

(4)
$$S \text{ is convergent if } \lim_{n_1, n_2 \to \infty} \left| \sum_{n_1}^{n_2} c_k z^k \right| = 0$$

uniformly in n_1, n_2 as they go to infinity.

Note 1. *if* the series of nonnegative numbers

(5)
$$\sum_{k=1}^{\infty} |c_n| |z|^n$$

converges, then it is Cauchy,

(6)
$$\lim_{n_1, n_2 \to \infty} \sum_{n_1}^{n_2} |c_k| |z|^k = 0$$

uniformly in n_1, n_2 as they go to infinity, and then by the triangle inequality, $\lim_{n_1,n_2} \left| \sum_{n_1}^{n_2} c_k z^k \right| = 0$ and thus $\sum_{k=0}^{\infty} c_k z^k$ converges as well. A series for which (6) holds is called *absolutely convergent*.

We have thus shown:

Proposition 2. If the series S converges absolutely, then it converges.

We know that, for series of real numbers of the form

(7)
$$\sum_{k=1}^{\infty} c_n t^n, \ c_n \in \mathbb{R}$$

The domain of convergence is a symmetric interval around 0. This can be $\langle -a, a \rangle$ where \langle , \rangle can be closed or open parentheses. Here the maximal $a \in [0, \infty]$ is the radius of convergence; it can be anything from 0 ($[0, 0] = \{0\}$) or to ∞ , $(-\infty, \infty) = \mathbb{R}$. We know from series over \mathbb{R} that if $a \in (0, \infty)$, then the series (7) converges absolutely and uniformly for |t| < a while for |t| > a the sequence $|c_k||t^k|$ is unbounded, in particular S cannot be Cauchy nor therefore convergent.

0.2. Uniform convergence. There are several equivalent ways to define uniform convergence. We'll use the following: the function sequence $\{f_n\}_{n \in \mathbb{N}}$, $f_n : S \to \mathbb{R}^n$ converges uniformly to $f, f_n \xrightarrow{u} f$ if

(8)
$$\lim_{n \to \infty} \sup_{x \in S} |f_n(x) - f(x)| = 0$$

Proposition 3. Assume f_n are continuous in S and $f_n \xrightarrow{u} f$. Then f is continuous in S.

Proof. Let a be any point in S. To show continuity at a, let $\varepsilon > 0$ and choose n s.t. $\sup_{x \in S} |f_n(x) - f(x)| < \varepsilon/3$. Since f_n is continuous, let δ be s.t. $|f_n(x) - f_n(a)| < \varepsilon$ for all x with $|x - a| < \delta$. Then, for $|x - a| < \delta$ we have

(9) $|f(x) - f(a)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)| < \varepsilon$

 $\mathbf{2}$

Proposition 4. Assume $f_n : S \to \mathbb{R}^m$ are continuous and the sequence $\{f_n\}_{n \in \mathbb{N}}$ is uniformly Cauchy in S, that is

(10)
$$\lim_{n \to \infty} \sup_{m \ge n, x \in S} |f_n(x) - f_m(x)| = 0$$

Then there is a (unique) function f s.t. $f_n \xrightarrow{u} f$, and f is continuous.

Proof. The fact that $\{f_n\}_{n\in\mathbb{N}}$ is uniformly Cauchy in S implies in particular that $\{f_n(x)\}_{n\in\mathbb{N}}\subset\mathbb{R}^m$ is Cauchy for any $x\in S$ and thus $f_n(x)\to f(x)$ for any x. Choose any $\varepsilon > 0$ and let n be large enough s.t. for any m > n we have $\sup_{x\in S} |f_n(x) - f_m(x)| < \varepsilon$. Now

(11)
$$|f(x) - f_n(x)| = \lim_{m \to \infty} |f_m(x) - f_n(x)| < \varepsilon$$

and the rest follows from Proposition 3.

0.3. Convergence of integrals.

Proposition 5. Assume $S \in \mathbb{R}^n$ is Jordan measurable (in particular, bounded) and let $\{f_k(x)\}_{k\in\mathbb{N}}$ be a sequence of integrable functions converging uniformly in S to f, assumed to be integrable. Then

(12)
$$\lim_{k \to \infty} \int \cdots \int f_k(s) d^n s = \int \cdots \int f(s) d^n s$$

Proof. Choose any $\varepsilon > 0$ and let k_0 be large enough s.t. $\sup_{x \in S} |f_j(x) - f(x)| < \varepsilon/\operatorname{Vol}_n(S)$ for all j > k. Then, (13)

$$\left| \int \cdots \int f_k(s) d^n s - \int \cdots \int f(s) d^n s \right| = \int \cdots \int |f_k(s) - f(s)| d^n s \le \varepsilon$$

Proposition 6. Assume $f_n : [a,b] \to \mathbb{R}^m$ are C^1 , $f'_n \xrightarrow{u} g$ and for some $c \in [a,b]$ we have $f_n(c) \to a$. Then $f_n \to^u f$ where $f \in C^1$ and f' = g.

Proof. The proof can be done component by component and thus we can assume without loss of generality that m = 1. We have, using Proposition 5,

(14)
$$f_n(x) = f_n(c) + \int_c^x f'_n(s)ds \to a + \int_c^x g(s)ds \text{ as } n \to \infty$$

and the rest is straightforward.

Proposition 7. Assume that the series $f = \sum_{k=1}^{\infty} c_k z^k$ with $z \in \mathbb{C}$ converges for some $z_0 \neq 0 \in \mathbb{C}$. Then f, and, for any m, the series of derivatives $f^{(m)} = \sum_{k=1}^{\infty} c_k(z^k)^{(m)}$, converge uniformly in any disk of the form $\mathbb{D}_a := \{z : |z| < a\}$ if $a < z_0$.

Proof. Since $\sum_{k=1}^{\infty} c_k z_0^k$ is a convergent series, the partial sums $S_m := \sum_{k=1}^m c_k z_0^k$ converge (by definition) and thus $\{S_k\}_{k\in\mathbb{N}}$ is a Cauchy sequence. In particular, $S_m - S_{m-1} \to 0$ as $m \to \infty$ and thus

(15)
$$\lim_{m \to \infty} |c_m| |z_0^m| = 0 \Rightarrow \sup_{m \ge 1} |c_m| |z_0^m| = M < \infty$$

Let $\rho = a/|z_0| < 1$; for |z| < a we have

(16)
$$\sum_{j=k}^{l} |c_j| |z|^j < \sum_{j=k}^{l} |c_j| |z_0|^j \rho^j \le M \sum_{j=k}^{\infty} \rho^j = \frac{M \rho^k}{1-\rho} \to 0$$

and thus $\sum_{j=0}^{\infty} |c_j| |z|^j$ is uniformly Cauchy; the rest of the proof for f is straightforward. As for $f^{(m)}$, it suffices to prove the result for m = 1 since the result for general m follows by induction. Since $\rho < 1$ there is an $\varepsilon > 0$ s.t $\rho_1 = \rho(1 + \varepsilon) < 1$. Clearly $j(1 + \varepsilon)^{-j} \to 0$ as $j \to \infty$ and thus $\sup_j j(1 + \varepsilon)^{-j} = M_1 < \infty$. Then, for some $M_3 > 0$ and |z| < a we have

(17)
$$\sum_{j=k}^{l} |c_j| |j| |z|^{j-1} \le M_3 \sum_{j=k}^{\infty} \rho_1^j = \frac{M_3 \rho_1^k}{1 - \rho_1} \to 0$$

11	

Corollary 8. There are three possibilities for a series $f(z) = \sum_{j=0}^{\infty} |c_j| |z|^j$: (a) f converges for all $z \in \mathbb{C}$; (b) f converges only for z = 0; (c) there is an $r \in (0, \infty)$ s.t. f converges for z in any disk $\mathbb{D}_a, a < r$ and it diverges if |z| > R; furthermore the sequence $|c_k R^k|$ is unbounded for any R > r.

Proof. Assume f converges for some $z_0 > 0$. Let $r = \sup\{r' > 0 : \sup_k |c_k|r'^k < \infty\}$. As in the proof of Proposition 7, we must have $r \ge |z_0|$. The same proof shows that f converges uniformly and absolutely in any disk \mathbb{D}_a if a < r'. The rest is immediate.

Example 9. Check that

(18)
$$e^z := \sum_{k=0}^{\infty} \frac{z^k}{k!}, \ \cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} + \cdots, \ \sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \cdots$$

are entire, and the function

(19)
$$\frac{1}{1+z^2} = \sum_{k=0}^{\infty} (-1)^k z^{2k}$$

is analytic in \mathbb{D}_1 and the series diverges at $z = \pm i$. This example shows how the function $1/(1+x^2)$ which is smooth on \mathbb{R} fails to have a convergent power series in \mathbb{R} .