
REVIEW OF SERIES

0.1. Introduction. As vector spaces, C and R2 are isomorphic; we can
think of z = x+ iy as a notation for (x, y). (What sets aside C is the extra
structure we endow it with, coming from multiplication.) In particular, we

have |z| =
√
x2 + y2 the same as the Euclidian norm. Likewise, from a

topological point of view we can identify the space of complex functions
f(z) with R2 valued function u(x, y) + iv(x, y) defined on a domain in R2.
A sequence of complex numbers zn = xn + iyn converges to z = x+ iy if, by
definition, the sequence (xn, yn) converges to (x, y).

A sequence of functions fn = un + ivn defined on a set S ⊂ C converges
pointwise to f = u+ iv if the sequence of vector functions (un, vn) converges
pointwise to (u, v).

It converges uniformly on S if sup∈S |fn(z) − f(z)| → 0. Continuity of
f(z) is defined in the same way as continuity of (u(x, y), v(x, y)).

Things become more interesting when we introduce multiplication on R2

this is a vector valued function of two vector variables (x, y) · (s, t) = (xs−
yt, xt+ys). Of course, this is the same operation but certainly less intuitive
than saying that zw is calculated by “usual” multiplication of x + iy and
s+ it with the convention i2 = −1. Direct calculation shows that

(1) |zw| = |z||w|

It is clear from (1) that multiplication is a continuous function from C× C
into C. Inductively, the function zn is shown to be continuous, and so is any
polynomial.

At this stage, we can introduce complex conjugation z = x+ iy = x− iy
and then |z|2 = zz.

A sequence {zn}n∈N is convergent iff it is Cauchy. We know this from the
R2 convergence. A finite power series is a polynomial

(2) S =
n∑

k=0

ckz
k; or, also,

n∑
k=0

ck(z − z0)k;

and a “true” power series is an expression of the form

(3) S =

∞∑
k=0

ckz
k = lim

m→∞

m∑
k=0

ckz
k

is the limit exists. If the limit does not exist, or we have not yet been proven
to exist,

∑∞
k=0 ckz

k is viewed as an abstract notation and we most often start

from it and say that
∑∞

k=0 ckz
k converges if the limit in (3) exists. By the
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Cauchy criterion,

(4) S is convergent if lim
n1,n2→∞

∣∣∣∣∣
n2∑
n1

ckz
k

∣∣∣∣∣ = 0

uniformly in n1, n2 as they go to infinity.

Note 1. if the series of nonnegative numbers

(5)

∞∑
k=1

|cn||z|n

converges, then it is Cauchy,

(6) lim
n1,n2→∞

n2∑
n1

|ck||z|k = 0

uniformly in n1, n2 as they go to infinity, and then by the triangle inequality,
limn1,n2

∣∣∑n2
n1
ckz

k
∣∣ = 0 and thus

∑∞
k=0 ckz

k converges as well. A series for
which (6) holds is called absolutely convergent.

We have thus shown:

Proposition 2. If the series S converges absolutely, then it converges.

We know that, for series of real numbers of the form

(7)

∞∑
k=1

cnt
n, cn ∈ R

The domain of convergence is a symmetric interval around 0. This can be
〈−a, a〉 where 〈, 〉 can be closed or open parentheses. Here the maximal a ∈
[0,∞] is the radius of convergence; it can be anything from 0 ([0, 0] = {0})
or to ∞, (−∞,∞) = R. We know from series over R that if a ∈ (0,∞),
then the series (7) converges absolutely and uniformly for |t| < a while for
|t| > a the sequence |ck||tk| is unbounded, in particular S cannot be Cauchy
nor therefore convergent.

0.2. Uniform convergence. There are several equivalent ways to define
uniform convergence. We’ll use the following: the function sequence {fn}n∈N,

fn : S → Rn converges uniformly to f , fn
u→ f if

(8) lim
n→∞

sup
x∈S
|fn(x)− f(x)| = 0

Proposition 3. Assume fn are continuous in S and fn
u→ f . Then f is

continuous in S.

Proof. Let a be any point in S. To show continuity at a, let ε > 0 and
choose n s.t. supx∈S |fn(x) − f(x)| < ε/3. Since fn is continuous, let δ be
s.t. |fn(x)− fn(a)| < ε for all x with |x− a| < δ. Then, for |x− a| < δ we
have

(9) |f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)| < ε
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Proposition 4. Assume fn : S → Rm are continuous and the sequence
{fn}n∈N is uniformly Cauchy in S, that is

(10) lim
n→∞

sup
m≥n,x∈S

|fn(x)− fm(x)| = 0

Then there is a (unique) function f s.t. fn
u→ f , and f is continuous.

Proof. The fact that {fn}n∈N is uniformly Cauchy in S implies in particular
that {fn(x)}n∈N ⊂ Rm is Cauchy for any x ∈ S and thus fn(x) → f(x) for
any x. Choose any ε > 0 and let n be large enough s.t. for any m > n we
have supx∈S |fn(x)− fm(x)| < ε. Now

(11) |f(x)− fn(x)| = lim
m→∞

|fm(x)− fn(x)| < ε

and the rest follows from Proposition 3.

0.3. Convergence of integrals.

Proposition 5. Assume S ∈ Rn is Jordan measurable (in particular, bounded)
and let {fk(x)}k∈N be a sequence of integrable functions converging uniformly
in S to f , assumed to be integrable. Then

(12) lim
k→∞

∫
· · ·
∫

S

fk(s)dns =

∫
· · ·
∫

S

f(s)dns

Proof. Choose any ε > 0 and let k0 be large enough s.t. supx∈S |fj(x) −
f(x)| < ε/Voln(S) for all j > k. Then,
(13)∣∣∣∣∣∣

∫
· · ·
∫

S

fk(s)dns−
∫
· · ·
∫

S

f(s)dns

∣∣∣∣∣∣ =

∫
· · ·
∫

S

|fk(s)− f(s)|dns ≤ ε

Proposition 6. Assume fn : [a, b] → Rm are C1, f ′n
u→ g and for some

c ∈ [a, b] we have fn(c)→ a. Then fn→u f where f ∈ C1 and f ′ = g.

Proof. The proof can be done component by component and thus we can
assume without loss of generality that m = 1. We have, using Proposition
5,

(14) fn(x) = fn(c) +

∫ x

c
f ′n(s)ds→ a+

∫ x

c
g(s)ds as n→∞

and the rest is straightforward.

Proposition 7. Assume that the series f =
∑∞

k=1 ckz
k with z ∈ C converges

for some z0 6= 0 ∈ C. Then f , and, for any m, the series of derivatives
f (m) =

∑∞
k=1 ck(zk)(m), converge uniformly in any disk of the form Da :=

{z : |z| < a} if a < z0.
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Proof. Since
∑∞

k=1 ckz
k
0 is a convergent series, the partial sums Sm :=

∑m
k=1 ckz

k
0

converge (by definition) and thus {Sk}k∈N is a Cauchy sequence. In partic-
ular, Sm − Sm−1 → 0 as m→∞ and thus

(15) lim
m→∞

|cm||zm0 | = 0⇒ sup
m≥1
|cm||zm0 | = M <∞

Let ρ = a/|z0| < 1; for |z| < a we have

(16)
l∑

j=k

|cj ||z|j <
l∑

j=k

|cj ||z0|jρj ≤M
∞∑
j=k

ρj =
Mρk

1− ρ
→ 0

and thus
∑∞

j=0 |cj ||z|j is uniformly Cauchy; the rest of the proof for f is

straightforward. As for f (m), it suffices to prove the result for m = 1 since
the result for general m follows by induction. Since ρ < 1 there is an
ε > 0 s.t ρ1 = ρ(1 + ε) < 1. Clearly j(1 + ε)−j → 0 as j → ∞ and thus
supj j(1 + ε)−j = M1 <∞. Then, for some M3 > 0 and |z| < a we have

(17)

l∑
j=k

|cj ||j||z|j−1 ≤M3

∞∑
j=k

ρj1 =
M3ρ

k
1

1− ρ1
→ 0

Corollary 8. There are three possibilities for a series f(z) =
∑∞

j=0 |cj ||z|j:
(a) f converges for all z ∈ C; (b) f converges only for z = 0; (c) there is
an r ∈ (0,∞) s.t. f converges for z in any disk Da, a < r and it diverges if
|z| > R; furthermore the sequence |ckRk| is unbounded for any R > r.

Proof. Assume f converges for some z0 > 0. Let r = sup{r′ > 0 : supk |ck|r′
k <

∞}. As in the proof of Proposition 7, we must have r ≥ |z0|. The same
proof shows that f converges uniformly and absolutely in any disk Da if
a < r′. The rest is immediate.

Example 9. Check that

(18) ez :=
∞∑
k=0

zk

k!
, cos z = 1− z2

2!
+
z4

4!
+ · · · , sin z = z − z3

3!
+
z5

5!
+ · · ·

are entire, and the function

(19)
1

1 + z2
=

∞∑
k=0

(−1)kz2k

is analytic in D1 and the series diverges at z = ±i. This example shows
how the function 1/(1 +x2) which is smooth on R fails to have a convergent
power series in R.
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