REVIEW OF SERIES

0.1. Introduction. As vector spaces, C and R? are isomorphic; we can
think of z = z + iy as a notation for (z,y). (What sets aside C is the extra
structure we endow it with, coming from multiplication.) In particular, we
have |z| = y/22 + y? the same as the Euclidian norm. Likewise, from a
topological point of view we can identify the space of complex functions
f(2) with R? valued function u(x,y) + iv(z,y) defined on a domain in R2.
A sequence of complex numbers z,, = x,, + 1y, converges to z = x + iy if, by
definition, the sequence (x,,yn) converges to (z,y).

A sequence of functions f,, = u, + ‘v, defined on a set S C C converges
pointwise to f = u+iv if the sequence of vector functions (uy,, v,) converges
pointwise to (u,v).

It converges uniformly on S if supcg|fn(2z) — f(2)| — 0. Continuity of
f(2) is defined in the same way as continuity of (u(z,y),v(z,y)).

Things become more interesting when we introduce multiplication on R?
this is a vector valued function of two vector variables (z,y) - (s,t) = (zs —
yt, xt+ys). Of course, this is the same operation but certainly less intuitive
than saying that zw is calculated by “usual” multiplication of x + 7y and
s 4 it with the convention i?> = —1. Direct calculation shows that

(1) |zw| = |z||w]

It is clear from that multiplication is a continuous function from C x C
into C. Inductively, the function 2" is shown to be continuous, and so is any
polynomial.

At this stage, we can introduce complex conjugation Z = x + iy = x — iy
and then |z|? = 2Z.

A sequence {z,, }nen is convergent iff it is Cauchy. We know this from the
R? convergence. A finite power series is a polynomial

n

n
(2) S = E ci2®; or, also, g ck(z — Zg)k;
k=0 k=0
and a “true” power series is an expression of the form

m

o
_ k_ 1 k
(3) S = kZ_OCkZ = Tr}gnoo Z CkZ

is the limit exists. If the limit does not exist, or we have not yet been proven

to exist, Y ey cr 2" is viewed as an abstract notation and we most often start

from it and say that y ;- cxz® converges if the limit in exists. By the
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Cauchy criterion,

(4) S is convergent if  lim =0

niy,ma—00

n2
E ckzk
ni

uniformly in nq,no as they go to infinity.

Note 1. if the series of nonnegative numbers

(5) > lenll2]”
k=1

converges, then it is Cauchy,

n2
. k
(6) dim 3 | =0
ni
uniformly in n1, ne as they go to infinity, and then by the triangle inequality,
limy, n, |02 crz¥| = 0 and thus Y32 cxz" converges as well. A series for
which @ holds is called absolutely convergent.

We have thus shown:
Proposition 2. If the series S converges absolutely, then it converges.

We know that, for series of real numbers of the form
(e.)
(7) Z cnt”, cp €R
k=1

The domain of convergence is a symmetric interval around 0. This can be
(—a,a) where (,) can be closed or open parentheses. Here the maximal a €
[0, 00] is the radius of convergence; it can be anything from 0 ([0,0] = {0})
or to 0o, (—o0,00) = R. We know from series over R that if a € (0,00),
then the series converges absolutely and uniformly for |t| < a while for
|t| > a the sequence |cy|[t*| is unbounded, in particular S cannot be Cauchy
nor therefore convergent.

0.2. Uniform convergence. There are several equivalent ways to define
uniform convergence. We’ll use the following: the function sequence { fy, }nen,

fn : S — R™ converges uniformly to f, f, — f if
(®) lim sup | () — /()| = 0

=00 reS

Proposition 3. Assume f, are continuous in S and fn,— f. Then f is
continuous in S.

Proof. Let a be any point in S. To show continuity at a, let € > 0 and
choose n s.t. sup,cgq|fn(z) — f(x)| < /3. Since f,, is continuous, let ¢ be
s.t. |fn(z) — fn(a)| < € for all z with | — a| < 6. Then, for |z —a| < d we
have

) (@) = fla)] < [f(x) = ful@)| + | fu(2) = fula@)] + [fnla) = fla)] <&
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Proposition 4. Assume f, : S — R™ are continuous and the sequence
{fn}nen is uniformly Cauchy in S, that is

(10) lim  sup |fn(x) - fm(x)| =0

=00 m>n.xes
Then there is a (unique) function f s.t. fo— f, and f is continuous.

Proof. The fact that {f,}nen is uniformly Cauchy in S implies in particular
that {fn(2)}neny C R™ is Cauchy for any = € S and thus f,(z) — f(z) for
any x. Choose any € > 0 and let n be large enough s.t. for any m > n we
have sup,cg | fn(z) — fm(z)| < e. Now

(1) £(@) — Fol@)] = ln |fnla) — fulo)] <
and the rest follows from Proposition |

0.3. Convergence of integrals.

Proposition 5. Assume S € R™ is Jordan measurable (in particular, bounded)
and let { fr(z) }ren be a sequence of integrable functions converging uniformly
in S to f, assumed to be integrable. Then

(12) tm [ [aas= [ [
S S

Proof. Choose any ¢ > 0 and let kg be large enough s.t. sup,cg|fj(z) —
f(z)] < e/Vol,(S) for all j > k. Then,
(13)

[ [aas= [ [roas) = [ 1 - s <
S S S

Proposition 6. Assume f, : [a,b] — R™ are C', f, % g and for some
c € [a,b] we have f,(c) — a. Then f, =% f where f € C' and f' = g.

Proof. The proof can be done component by component and thus we can
assume without loss of generality that m = 1. We have, using Proposition

Bl
(14) fn(x) = fu(c) -I—/ fr(s)ds — a+ / g(s)ds as n — oo
and the rest is straightforward. 1

Proposition 7. Assume that the series f = > ;- iz’ with z € C converges
for some zg # 0 € C. Then f, and, for any m, the series of derivatives
fm = > orey cx(29)™) | converge uniformly in any disk of the form Dy :=
{z:|z| <a}ifa < 2.
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Proof. Since Y7, ckz(])“ is a convergent series, the partial sums Sy, := > ;" ckz(])“
converge (by definition) and thus {Sk}xren is a Cauchy sequence. In partic-
ular, S,, — S;m—1 — 0 as m — oo and thus

(15) lim e |25 = 0= sup Jem| |25 = M < oo
Let p = a/|20| < 1; for |z| < a we have

l l 0o M &
(16) S leillsl < D lesllzofp? <MY P = F
i=k part

J=k

—0

and thus Z;‘io |cj||2]? is uniformly Cauchy; the rest of the proof for f is
straightforward. As for f(™ it suffices to prove the result for m = 1 since
the result for general m follows by induction. Since p < 1 there is an
e>0stpr=p(l+e) <1 Clearly j(1+¢)77 — 0 as j — oo and thus
sup; j(1 +¢)™/ = My < oo. Then, for some M3 > 0 and |z| < a we have

l

(17) > lejllillal Tt < M3 > pl =
=k

=k

Mk
I—m

Corollary 8. There are three possibilities for a series f(2) =372, |cjl|2)7 :
(a) f converges for all z € C; (b) f converges only for z = 0; (c) there is
anr € (0,00) s.t. f converges for z in any disk Dy, a < r and it diverges if
|z| > R; furthermore the sequence |c,R¥| is unbounded for any R > r.

Proof. Assume f converges for some zyp > 0. Let r = sup{r’ > 0 : supy, |cx|r’ k<
oo}. As in the proof of Proposition |7} we must have r > |zp|. The same
proof shows that f converges uniformly and absolutely in any disk D, if
a < r'. The rest is immediate. |

Example 9. Check that

. 2.2k 22 2 ) 22 2
(18) e::kZOk!,cosz:l—zl—i—lu—i—---,51112:2—3!—1—5!4—---
are entire, and the function
1 - k 2k
(19) T k:Z:O(l) 2

is analytic in ID; and the series diverges at z = +¢. This example shows
how the function 1/(1 +z?) which is smooth on R fails to have a convergent
power series in R.
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