with nonvanishing derivative at the relevant point, and it now can be shown by elementary complex analysis means:

$$
\begin{equation*}
f^{-1}(z)=f^{-1}\left(z_{0}\right)+\left.\sum_{n=1}^{\infty} \frac{d^{n-1}}{d w^{n-1}}\left(\frac{w-f^{-1}\left(z_{0}\right)}{f(w)-z_{0}}\right)^{n}\right|_{w=f^{-1}\left(z_{0}\right)} \frac{\left(z-z_{0}\right)^{n}}{n!} \tag{3.54}
\end{equation*}
$$

3.5 Oscillatory integrals and the stationary phase method

In this setting, an integral of a function against a rapidly oscillating exponential becomes small as the frequency of oscillation increases. Again we first look at the case where there is minimal regularity; the following is a version of the Riemann-Lebesgue lemma.
Proposition 3.55 Assume $f \in L^{1}[0,2 \pi]$. Then $\int_{0}^{2 \pi} e^{i x t} f(t) d t \rightarrow 0$ as $x \rightarrow$ $\pm \infty$. A similar statement holds in $L^{1}(\mathbb{R})$.
It is enough to show the result on a set which is dense ${ }^{1}$ in L^{1}. Since trigonometric polynomials are dense in the continuous functions on a compact set ${ }^{2}$, say in $C[0,2 \pi]$ in the sup norm, and thus in $L^{1}[0,2 \pi]$, it suffices to look at trigonometric polynomials, thus (by linearity), at $e^{i k x}$ for fixed k; for the latter we just calculate explicitly the integral; we have

$$
\int_{0}^{2 \pi} e^{i x s} e^{i k s} d s=O\left(x^{-1}\right) \text { for large } x
$$

No rate of decay of the integral in Proposition 3.55 follows without further knowledge about the regularity of f. With some regularity we have the following characterization.

Proposition 3.56 For $\eta \in(0,1]$ let the $C^{\eta}[0,1]$ be the Hölder continuous functions of order η on $[0,1]$, i.e., the functions with the property that there is some constant $a>0$ such that for all $x, x^{\prime} \in[0,1]$ we have $\left|f(x)-f\left(x^{\prime}\right)\right| \leq$ $a\left|x-x^{\prime}\right|^{\eta}$.
(i) We have

$$
\begin{equation*}
f \in C^{\eta}[0,1] \Rightarrow\left|\int_{0}^{1} f(s) e^{i x s} d s\right| \leq \frac{1}{2} a \pi^{\eta} x^{-\eta}+O\left(x^{-1}\right) \quad \text { as } \quad x \rightarrow \infty \tag{3.57}
\end{equation*}
$$

[^0](ii) If $f \in L^{1}(\mathbb{R})$ and $|x|^{\eta} f(x) \in L^{1}(\mathbb{R})$ with $\eta \in(0,1]$, then its Fourier transform $\hat{f}=\int_{-\infty}^{\infty} f(s) e^{-i x s} d s$ is in $C^{\eta}(\mathbb{R})$.
(iii) Let $f \in L^{1}(\mathbb{R})$. If $x^{n} f \in L^{1}(\mathbb{R})$ with $n-1 \in \mathbb{N}$ then \hat{f} is n times differentiable, with the $n-1$ th derivative Lipschitz continuous. If $e^{|A x|} f \in$ $L^{1}(\mathbb{R})$ then \hat{f} extends analytically in a strip of width $|A|$ centered on \mathbb{R}.

PROOF (i) We have as $x \rightarrow \infty(\lfloor\cdot\rfloor$ denotes the integer part $)$

$$
\begin{align*}
& \left|\int_{0}^{1} f(s) e^{i x s} d s\right|= \\
& \left|\sum_{j=0}^{\left\lfloor\frac{x}{2 \pi}-1\right\rfloor}\left(\int_{2 j \pi x^{-1}}^{(2 j+1) \pi x^{-1}} f(s) e^{i x s} d s+\int_{(2 j+1) \pi x^{-1}}^{(2 j+2) \pi x^{-1}} f(s) e^{i x s} d s\right)\right|+O\left(x^{-1}\right) \\
& \quad=\left|\sum_{j=0}^{\left\lfloor\frac{x}{2 \pi}-1\right\rfloor} \int_{2 j \pi x^{-1}}^{(2 j+1) \pi x^{-1}}(f(s)-f(s+\pi / x)) e^{i x s} d s\right|+O\left(x^{-1}\right) \\
& \quad \leq \sum_{j=0}^{\left\lfloor\frac{x}{2 \pi}-1\right\rfloor} a\left(\frac{\pi}{x}\right)^{\eta} \frac{\pi}{x} \leq \frac{1}{2} a \pi^{\eta} x^{-\eta}+O\left(x^{-1}\right) \tag{3.58}
\end{align*}
$$

(ii) We see that
$\left|\frac{\hat{f}(s)-\hat{f}\left(s^{\prime}\right)}{\left(s-s^{\prime}\right)^{\eta}}\right|=\left|\int_{-\infty}^{\infty} \frac{e^{-i x s}-e^{-i x s^{\prime}}}{x^{\eta}\left(s-s^{\prime}\right)^{\eta}} x^{\eta} f(x) d x\right| \leq \int_{-\infty}^{\infty}\left|\frac{e^{-i x s}-e^{-i x s^{\prime}}}{\left(x s-x s^{\prime}\right)^{\eta}}\right|\left|x^{\eta} f(x)\right| d x$
is bounded. Indeed, by elementary geometry we see that for $\left|\phi_{1}-\phi_{2}\right|<1$ we have

$$
\begin{equation*}
\left|\exp \left(i \phi_{1}\right)-\exp \left(i \phi_{2}\right)\right| \leq\left|\phi_{1}-\phi_{2}\right| \leq\left|\phi_{1}-\phi_{2}\right|^{\eta} \tag{3.60}
\end{equation*}
$$

while for $\left|\phi_{1}-\phi_{2}\right| \geq 1$ we see that

$$
\left|\exp \left(i \phi_{1}\right)-\exp \left(i \phi_{2}\right)\right| \leq 2 \leq 2\left|\phi_{1}-\phi_{2}\right|^{\eta}
$$

(iii) Follows in the same way as (ii), using dominated convergence.

Exercise 3.61 Complete the details of this proof. Show that for any $\eta \in(0,1]$ and all $\phi_{1,2} \in \mathbb{R}$ we have $\left|\exp \left(i \phi_{1}\right)-\exp \left(i \phi_{2}\right)\right| \leq 2\left|\phi_{1}-\phi_{2}\right|^{\eta}$.

Note. In Laplace type integrals Watson's lemma implies that it suffices for a function to be continuous to ensure an $O\left(x^{-1}\right)$ decay of the integral, whereas in Fourier-like integrals, the considerably weaker decay (3.57) is optimal as seen in the exercise below.
 metric series $f(z)=\sum_{k=2^{n}, n \in \mathbb{N}} k^{-\eta} e^{i k z}, \eta \in(0,1)$. Show that $f \in C^{\eta}[0,2 \pi]$. One way is to write $\phi_{1,2}$ as $a_{1,2} 2^{-p}$, use the first inequality in (3.60) to estimate the terms in $f\left(\phi_{1}\right)-f\left(\phi_{2}\right)$ with $n<p$ and the simple bound $2 / k^{\eta}$ for $n \geq p$. Then it is seen that $\int_{0}^{2 \pi} e^{-i j s} f(s) d s=2 \pi j^{-\eta}$ (if $j=2^{m}$ and zero otherwise) and the decay of the Fourier transform is exactly given by (3.57).
(b) Use Proposition 3.56 and the result in Exercise 3.62 to show that the function $f(t)=\sum_{k=2^{n}, n \in \mathbb{N}} k^{-\eta} t^{k}$, analytic in the open unit disk, has no analytic continuation across the unit circle, that is, the unit circle is a barrier of singularities for f.

Note 3.63 Dense non-differentiability is essentially the only way one can get poor decay; see also Exercise 3.71.

Note. In part (i), compactness of the interval is crucial. In fact, the Fourier transform of an $L^{2}(\mathbb{R})$ entire function may not necessarily decrease pointwise. Indeed, the function $\hat{f}(x)=1$ on the interval $\left[n, n+e^{-n^{2}}\right]$ for $n \in \mathbb{N}$ and zero otherwise is in $L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ and further has the property that $e^{|A x|} \hat{f} \in L^{1}(\mathbb{R})$ for any $A \in \mathbb{R}$, and thus $\mathcal{F}^{-1} \hat{f}$ is entire. Thus \hat{f} is the Fourier transform of an entire function, it equals $\mathcal{F}^{-1} \hat{f}$ a.e., and nevertheless it does not decay pointwise as $x \rightarrow \infty$. Evidently the issue here is poor behavior of f at infinity, otherwise integration by parts would be possible, implying decay.

Proposition 3.64 Assume $f \in C^{n}[a, b]$. Then we have

$$
\begin{align*}
& \int_{a}^{b} e^{i x t} f(t) d t=e^{i x a} \sum_{k=1}^{n} c_{k} x^{-k}+e^{i x b} \sum_{k=1}^{n} d_{k} x^{-k}+o\left(x^{-n}\right) \\
& \quad=\left.e^{i x t}\left(\frac{f(t)}{i x}-\frac{f^{\prime}(t)}{(i x)^{2}}+\ldots+(-1)^{n-1} \frac{f^{(n-1)}(t)}{(i x)^{n}}\right)\right|_{a} ^{b}+o\left(x^{-n}\right) \tag{3.65}
\end{align*}
$$

PROOF This follows by integration by parts and the Riemann-Lebesgue lemma since

$$
\begin{align*}
\int_{a}^{b} e^{i x t} f(t) d t=e^{i x t}\left(\frac{f(t)}{i x}-\frac{f^{\prime}(t)}{(i x)^{2}}+\ldots\right. & \left.+(-1)^{n-1} \frac{f^{(n-1)}(t)}{(i x)^{n}}\right)\left.\right|_{a} ^{b} \\
& +\frac{(-1)^{n}}{(i x)^{n}} \int_{a}^{b} f^{(n)}(t) e^{i x t} d t \tag{3.66}
\end{align*}
$$

[^0]: $\overline{{ }^{1} \text { A set of functions }} f_{n}$ which, collectively, are arbitrarily close to any function in L^{1}. Using such a set we can write

 $$
 \int_{0}^{2 \pi} e^{i x t} f(t) d t=\int_{0}^{2 \pi} e^{i x t}\left(f(t)-f_{n}(t)\right) d t+\int_{0}^{2 \pi} e^{i x t} f_{n}(t) d t
 $$

 and the last two integrals can be made arbitrarily small.
 ${ }^{2}$ One can associate the density of trigonometric polynomials with approximation of functions by Fourier series.

