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with nonvanishing derivative at the relevant point, and it now can be shown
by elementary complex analysis means:
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(3.54)

3.5 Oscillatory integrals and the stationary phase method

In this setting, an integral of a function against a rapidly oscillating expo-
nential becomes small as the frequency of oscillation increases. Again we first
look at the case where there is minimal regularity; the following is a version
of the Riemann-Lebesgue lemma.

Proposition 3.55 Assume f ∈ L1[0, 2π]. Then
∫ 2π

0
eixtf(t)dt → 0 as x →

±∞. A similar statement holds in L1(R).

It is enough to show the result on a set which is dense1 in L1. Since trigono-
metric polynomials are dense in the continuous functions on a compact set2,
say in C[0, 2π] in the sup norm, and thus in L1[0, 2π], it suffices to look at
trigonometric polynomials, thus (by linearity), at eikx for fixed k; for the
latter we just calculate explicitly the integral; we have

∫ 2π

0

eixseiksds = O(x−1) for large x.

No rate of decay of the integral in Proposition 3.55 follows without further
knowledge about the regularity of f . With some regularity we have the fol-
lowing characterization.

Proposition 3.56 For η ∈ (0, 1] let the Cη[0, 1] be the Hölder continuous
functions of order η on [0, 1], i.e., the functions with the property that there
is some constant a > 0 such that for all x, x′ ∈ [0, 1] we have |f(x)− f(x′)| ≤
a|x− x′|η.

(i) We have

f ∈ Cη[0, 1] ⇒
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f(s)eixsds

∣
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∣

≤
1

2
aπηx−η +O(x−1) as x → ∞ (3.57)

1A set of functions fn which, collectively, are arbitrarily close to any function in L1. Using
such a set we can write∫

2π

0

eixtf(t)dt =

∫
2π

0

eixt(f(t)− fn(t))dt+

∫
2π

0

eixtfn(t)dt

and the last two integrals can be made arbitrarily small.
2One can associate the density of trigonometric polynomials with approximation of func-
tions by Fourier series.
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(ii) If f ∈ L1(R) and |x|ηf(x) ∈ L1(R) with η ∈ (0, 1], then its Fourier

transform f̂ =
∫∞

−∞
f(s)e−ixsds is in Cη(R).

(iii) Let f ∈ L1(R). If xnf ∈ L1(R) with n − 1 ∈ N then f̂ is n times
differentiable, with the n − 1th derivative Lipschitz continuous. If e|Ax|f ∈
L1(R) then f̂ extends analytically in a strip of width |A| centered on R.

PROOF (i) We have as x → ∞ (⌊ ·⌋ denotes the integer part)
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(ii) We see that
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(3.59)
is bounded. Indeed, by elementary geometry we see that for |φ1 − φ2| < 1 we
have

| exp(iφ1)− exp(iφ2)| ≤ |φ1 − φ2| ≤ |φ1 − φ2|
η (3.60)

while for |φ1 − φ2| ≥ 1 we see that

| exp(iφ1)− exp(iφ2)| ≤ 2 ≤ 2|φ1 − φ2|
η

(iii) Follows in the same way as (ii), using dominated convergence.

Exercise 3.61 Complete the details of this proof. Show that for any η ∈ (0, 1]
and all φ1,2 ∈ R we have | exp(iφ1)− exp(iφ2)| ≤ 2|φ1 − φ2|

η.

Note. In Laplace type integrals Watson’s lemma implies that it suffices for a
function to be continuous to ensure an O(x−1) decay of the integral, whereas
in Fourier-like integrals, the considerably weaker decay (3.57) is optimal as
seen in the exercise below.
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Exercise 3.62 (*) (a) Consider the function f given by the lacunary trigono-
metric series f(z) =

∑

k=2n,n∈N
k−ηeikz, η ∈ (0, 1). Show that f ∈ Cη[0, 2π].

One way is to write φ1,2 as a1,22
−p, use the first inequality in (3.60) to esti-

mate the terms in f(φ1) − f(φ2) with n < p and the simple bound 2/kη for

n ≥ p. Then it is seen that
∫ 2π

0
e−ijsf(s)ds = 2πj−η (if j = 2m and zero

otherwise) and the decay of the Fourier transform is exactly given by (3.57).
(b) Use Proposition 3.56 and the result in Exercise 3.62 to show that the

function f(t) =
∑

k=2n,n∈N
k−ηtk, analytic in the open unit disk, has no

analytic continuation across the unit circle, that is, the unit circle is a barrier

of singularities for f .

Note 3.63 Dense non-differentiability is essentially the only way one can get

poor decay; see also Exercise 3.71.

Note. In part (i), compactness of the interval is crucial. In fact, the Fourier
transform of an L2(R) entire function may not necessarily decrease pointwise.

Indeed, the function f̂(x) = 1 on the interval [n, n+ e−n2

] for n ∈ N and zero

otherwise is in L1(R)∩L2(R) and further has the property that e|Ax|f̂ ∈ L1(R)

for any A ∈ R, and thus F−1f̂ is entire. Thus f̂ is the Fourier transform
of an entire function, it equals F−1f̂ a.e., and nevertheless it does not decay
pointwise as x → ∞. Evidently the issue here is poor behavior of f at infinity,
otherwise integration by parts would be possible, implying decay.

Proposition 3.64 Assume f ∈ Cn[a, b]. Then we have
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∑
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PROOF This follows by integration by parts and the Riemann-Lebesgue
lemma since
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f (n)(t)eixtdt (3.66)


