
Chapter 10: Partial differential
equations.

§10.1: Two-point boundary value problems
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A second order linear homogeneous differential equation

y ′′ + p(x)y ′ + q(x)y = 0

has two linearly independent solutions , y1 and y2, and the
general solution is then c1y1 + c2y2, with c1, c2 arbitrary. To
determine c1 and c2 we imposed initial conditions, such as
y(0) = a, y ′(0) = b.

Alternatively, any two conditions could, we may think,
determine the solution. For instance we can give y(0) and y(1)
or y(0) and y ′(1) etc. Such conditions are called two-point
boundary conditions.
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We need to analyze two-point boundary problems since they are
needed in solving partial differential equations. Partial
differential equations can sometimes be reduced to infinitely
many two-point boundary problems for ODEs. ODEs are
vastly simpler than PDEs.

A general two-point boundary problem is of the form

y ′′ + p(x)y ′ + q(x)y = g(x)

together with values of the function or its derivative at two
different points.

If g is zero and the boundary values are zero, then the problem
is called homogeneous, otherwise it is called nonhomogeneous.
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There is an analogy with linear algebra: The nonhomogeneous
equation Ax = b where x,b are vectors and A is a matrix, has
always a solution, if the detA 6= 0 which also means that Ax = 0
only has x = 0 for solution.
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Take now the same problem, but nonhomogeneous.

y ′′ + 2y = 0, y(0) = 0; y(1) = 1
Then, as before, , y(x) = A sin

√
2x + B cos

√
2x.

y(0) = 0 again gives A sin 0 + B cos 0 = 0 thus B = 0.

y(1) = 1 gives A sin
√

2 = 1 or A = 1/ sin
√

2.

Thus, y = sin
√

2x
sin
√

2
.
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Let now
y ′′ + y = 0; y(0) = y(π) = 0

Then y = A sinx + B cos x. Thus since y(0) = 0 we have
0 + B = 0, B = 0. y = A sinx. A sinπ = 0, so any A is OK.

The homogeneous equation has infinitely many solutions.

How about the nonhomogeneous equation

y ′′ + y = 0; y(0) = 0, y(π) = 1?

By the same calculation, B = 0. But then, y(π) = 1 means
A sinπ = 1 which is impossible since sinπ = 0. The
inhomogeneous equation has no solution.
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How about the different type of nonhomogeneous equation

y ′′ + y = 1; y(0) = y(π) = 0

A particular solution is y = 1. The general solution is then
A sinx + B cos x + 1.

Since y(0) = 0 we have 0 + B + 1 = 0, B = −1. The solution is
then A sinx + 1− cos x. Now we need y(π) = 0. Then,
A sinπ − cosπ + 1 = 0 or 2 = 0, impossible.

This equation has no solution either.
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y ′′ + λy = 0, y(0) = y(π) = 0

Therefore, y = A sinµx + B cos µx.

Since we have y(0) = 0, we have 0 + B = 0, B = 0.

Then, y = A sinµx.But we also need to have y(π) = 0. This
means A sinπµ = 0, and therefore µ = k, for any k ∈ Z.The
eigenvalue problem has infinitely many positive solutions,
λ = k2: λ = 1, 4, 9, 16, ...
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All eigenvalues are: λ = 1, 4, 9, 16, ..., n2, ...


