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Fourier series are very useful in representing periodic
functions. Examples of periodic functions.

A function is periodic with period T if f(t + T) = f(f) for any f.
The fundamental period is th smallest T with this property.
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The simplest periodic functions are, perhaps, sin f and cos f,
with period 2.
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The simplest periodic functions are, perhaps, sin f and cos f,
with period 2.

In a good sense, any periodic function can be written in terms
of sint and cos f, as a finite or infinite sum: Fourier series.
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The simplest periodic functions are, perhaps, sin f and cos f,
with period 2.

In a good sense, any periodic function can be written in terms
of sint and cos f, as a finite or infinite sum: Fourier series.

A general Fourier series is

i) = 20 Zamcos
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The period is mT/L = 27, T = 2L.
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The period is mT/L = 27, T = 2L.
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flx) = Eal + Zam COS i + b,, sin e (1)
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The period is 1T/L = 271, T = 2L. Example: The oscillations of
the string of a string instrument is composed of the
fundamental note (frequency) and multiples of it (harmonics).
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ao mirx mirx

f(x)=§+n;amcos 7 + b,, sin T

The period is 1T/L = 271, T = 2L. Example: The oscillations of
the string of a string instrument is composed of the
fundamental note (frequency) and multiples of it (harmonics).
These are sines and cosines, and the full decomposition is given
by an expression like (??).

(1)
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This expansion is an expansion in terms of infinitely many

mitx mitx

independent functions, cos ==, sin == or infinitely many

“linearly independent vectors”.
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What if we have finite expansion in terms of finitely many
orthogonal vectors of magnitude one,
V1,V9,V3 0,
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What if we have finite expansion in terms of finitely many
orthogonal vectors of magnitude one,
Vi,Vo,Vz . ,X = A4V + AoVo + aAzvz?

O. Costin: Fourier Series, §10.2-3



What if we have finite expansion in terms of finitely many
orthogonal vectors of magnitude one,
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Take scalar product with say ve:

X -V
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What if we have finite expansion in terms of finitely many
orthogonal vectors of magnitude one,
Vi,Vo,Vz . ,X = A4V + AoVo + aAzvz?

Take scalar product with say ve:

X Vo =aQq1¥1 -V +(12V2-V2 +(13V3-V2
=0 By =0
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What if we have finite expansion in terms of finitely many
orthogonal vectors of magnitude one,
Vi,Vo,Vz . ,X = A4V + AoVo + aAzvz?

Take scalar product with say ve:

X Vo =a1V1-Vy+aoVy Vg +A3V3-Vy = dy !
@ —1 0
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What if we have finite expansion in terms of finitely many
orthogonal vectors of magnitude one,
Vi,Vo,Vz . ,X = A4V + AoVo + aAzvz?

Take scalar product with say ve:
X Vo =a1V1-Vy+aoVy Vg +A3V3-Vy = dy !
0 — =y

Is there a scalar product for functions?
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What if we have finite expansion in terms of finitely many
orthogonal vectors of magnitude one,
Vi,Vo,Vz . ,X = A4V + AoVo + aAzvz?
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Is there a scalar product for functions? Yes. A function can be
thought of as a vector with infinitely many components,
f(I) = fx; x eR
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What if we have finite expansion in terms of finitely many
orthogonal vectors of magnitude one,
Vi,Vo,Vz . ,X = A4V + AoVo + aAzvz?

Take scalar product with say ve:
X Vo =a1V1-Vy+aoVy Vg +A3V3-Vy = dy !
0 — =y

Is there a scalar product for functions? Yes. A function can be
thought of as a vector with infinitely many components,

f(I) = fn x € R

The scalar product
X Y= (11,I2,I3) ° (J/1,J/2,J/3) =
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What if we have finite expansion in terms of finitely many
orthogonal vectors of magnitude one,
Vi,Vo,Vz . ,X = A4V + AoVo + aAzvz?

Take scalar product with say ve:
X Vo =a1V1-Vy+aoVy Vg +A3V3-Vy = dy !
0 — =y

Is there a scalar product for functions? Yes. A function can be
thought of as a vector with infinitely many components,

f(I) = fn x € R

The scalar product
X -y = (X1, X2, X3) - (Y1, Y2, ¥3) = X1¥1 + Xo¥2 + X3Y3
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(x, Y =Xy = (11,362,13) ' (2571,572,;573) =
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(x,y) =x-y = (x1,X0,X3) - (1,0, ¥3) = X1¥1 + XoFo + X3¥3

Likewise,

flx), glx) = 3 1 fx0x
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(x,y) =x-y = (x1,X0,X3) - (1,0, ¥3) = X1¥1 + XoFo + X3¥3

Likewise,

(f(x), glx) = Y. frgr What should }_ be?
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(x,y) =x-y = (x1,X0,X3) - (1,0, ¥3) = X1¥1 + XoFo + X3¥3

Likewise,

(f(x), glx) =Y, fxrgr What should ) be? [, of course. Definition

(u, v) = /Bu(x)v(x)dx
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Proposition 1. If a = —L and 5 = L, then we have

mljjrx,cos ?) =0 Vm, n

(sin
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Proposition 1. If a = —L and 5 = L, then we have

mitx nirx

(sin T T> = {J Vm, n (2)
(sin mfx,sin mgr) =N Vm + n
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Proposition 1. If a = —L and 5 = L, then we have

mitx nirx

(sin T T> = {J Vm, n (2)
(sin mijxl sin mgr) =N Vm + n (3)
(cos mmc,cos @) =N Vm + n
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Proposition 1. If a = —L and 5 = L, then we have

mitx nirx

(sin T T> = {J Vm, n
mirx nirx
(sin ,sin =0 Vm + n
L L
mirx nirx
(cos ,cos——) =0 Vm + n
L L
(sin mTI, sin njrr> =L
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Proposition 1. If a = —L and 5 = L, then we have
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Proposition 1. If a = —L and 5 = L, then we have

mitx

(sin

m?itx

(sin

m?itx

(cos

(sin

(cos ——, cos —)

These vectors are orthogonal,

any two distinct are LIl

O. Costin: Fourier Series, §10.2-3

,c0s——) =0

) =0

, COS ———) =

Vm, n
Vm + n

Vm + n



njx
L

nirx

— are orthogonal.

Any two distinct sin 2% and/or cos &<
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njx
L

nirx

— are orthogonal.

Any two distinct sin 2% and/or cos &<

Proof: Just a calculation of trig integrals. For example, we have
the formula:

/L sin((a —b)L) sin((a + b)L)

. - (by) dr — B
~Lsm(ax)sm( x)dx S o
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njx
L

nirx

— are orthogonal.

Any two distinct sin 2% and/or cos &<

Proof: Just a calculation of trig integrals. For example, we have
the formula:

L : .
—b) L b)L
/ sin (ax) sin (bx)dx = sin ({a ) L) o (@ +b)L)
-L a—->b a+ b
where a = %+, b = 77, and thus the integral vanishes provided
a + bl.
X Vo
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njx
L

nirx

— are orthogonal.

Any two distinct sin 2% and/or cos &<

Proof: Just a calculation of trig integrals. For example, we have
the formula:

/Lsin (ax)sin (bx)dx = sinfle — i) sunije -F D))
~L a—>b a-+b
where a = %+, b = 77, and thus the integral vanishes provided
a + bl.
X-Vo = a9
Thus, it

ozl = 6120 + Z A,y COS szx + b,, sin m;ij

m=1
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njx
L

nirx

— are orthogonal.

Any two distinct sin 2% and/or cos &<

Proof: Just a calculation of trig integrals. For example, we have
the formula:

/Lsin (ax)sin (bx)dx = sinfle — i) sunije -F D))
~L a—>b a-+b
where a = %+, b = 77, and thus the integral vanishes provided
a + bl.
X-Vo = a9
Thus, it
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ozl = 9 Zam COS + b,, sin = a, = (f,cos 7

2 L L

)

m=1

O. Costin: Fourier Series, §10.2-3



What are the Fourier coefficients?

f(x) = % + Z A,y COS mfr + b,, sin miTx

m=1
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What are the Fourier coefficients?
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f(x) = 70 -+ E ap, COS T + b, sin 7 = a, = (f, cos

m=1
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What are the Fourier coefficients?

f(x) = % + Z A,y COS mfr + b,, sin m;JTx

m=1

1. Find L, so that the period is |[—L, L.
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What are the Fourier coefficients?

©.@)
a mirx . mirx
f(x) = 9 E ap, COS + b, sin = a, = (f, cos

2 L L

m=1

1. Find L, so that the period is |[—L, L.

2. Then, a, = f_LLf(I) cos FEdx
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What are the Fourier coefficients?

(0 Xy
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flx) =—+ Zam COS + b,, sin = a, = (f, cos

2 L L

m=1

1. Find L, so that the period is |[—L, L.
2. Then, a, = f_LLf(I) cos FEdx

3. bp = f_LLf(r) sin Hxdx

O. Costin: Fourier Series, §10.2-3




What are the Fourier coefficients?
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1. Find L, so that the period is |[—L, L.
2. Then, a, = f_LLf(I) cos FEdx
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Examples. Consider the function

—

0 1<xandx < —1/3
Glx) =41 —-1/3<xandx <1/3
0O 1/3<xand x <1
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Examples. Consider the function
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Examples. Consider the function

—

0 —-1<xandx< —-1/3
Glx) =41 —-1/3<xand x <1/3 (extended periodically.)
0 1/3<xandx <1
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1. Find L, so that the period is |—L, L|. Here, L =1
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1. Find L, so that the period is [—L, L|. Here, L =1

2. Then, a, = [, f(x)cos Mxdx

1/3 -
G / cosnirxdx = 2 > <Im/3); ap = 2/3
—1/3 nit

5 by = f_iﬁg cos nirxdx = 0
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1. Find L, so that the period is |—L, L|. Here, L =1

2. Then, a, = [, f(x)cos Mxdx

1/3 -
G / cosnirxdx = 2 > (nﬂ/g); ap = 2/3
—1/3 nit

5 bn = f_iﬁg cos nrxdx = 0
Maple 11

> plot(2/3 + sum(2 x sin(n x Pi/3)/n/Pi * cos(n * Pi x x),n =
1.30),x = —1..1);
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