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Any smooth enough (we’ll see what is needed) periodic function
of period 2L can be written as a Fourier series,

flx) = % + Zamcos m;JTI + Z b,, sin m;JTI

m=1 m=1
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Any smooth enough (we’ll see what is needed) periodic function
of period 2L can be written as a Fourier series,

Ay  — mmr w— . MITX
f(r)=§+2amcos T +mesm T (1)

m=1 m=1

where the coefficients can be calculated explicitly, (as scalar
products)
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Any smooth enough (we’ll see what is needed) periodic function
of period 2L can be written as a Fourier series,

Ay  — mmr w— . MITX
f(r)=§+2amcos T +mesm T (1)

m=1 m=1

where the coefficients can be calculated explicitly, (as scalar
products)

1 i
Am = I/Lf(x) COS mzrdx,m >0

O. Costin: Fourier Series, §10.2-3



Any smooth enough (we’ll see what is needed) periodic function
of period 2L can be written as a Fourier series,

Ay  — mmr w— . MITX
f(r)=§+2amcos T +mesm T (1)

m=1 m=1

where the coefficients can be calculated explicitly, (as scalar
products)

1 L
Ay = —/ f(x)cos mmcdx,m >0 (2)
L/ ; L

1 i
b = ZﬁLf(x) sin mgrdr,m > 1
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Any smooth enough (we’ll see what is needed) periodic function
of period 2L can be written as a Fourier series,

Ay  — mmr w— . MITX
f(r)=§+2amcos T +mesm T (1)

m=1 m=1

where the coefficients can be calculated explicitly, (as scalar
products)

1 L
Ay = —/ f(x)cos mmcdx,m >0 (2)
L/ ; L

1 i
b = ZﬁLf(x) sin mgrdr,m > 1

When is this decomposition possible?
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Piecewise differentiable functions
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Piecewise differentiable functions : Essentially given by a “by
cases formula’, “f = Ey" if x < -1, “f = Ey" if x > —1 etc, where
each piece is differentiable.
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Piecewise differentiable functions : Essentially given by a “by
cases formula’, “f = Ey" if x < -1, “f = Ey" if x > —1 etc, where
each piece is differentiable. Def. f and f’ are continuous with the

possible exception of finitely many points, and at those points
both f and f’ have left and right limits, f(x.), f(x_),f (xc,), f'(x_).

_—

/_

/
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Note that f(x,) = f(x_) = f(x) if f is continuous at x.
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Note that f(x,) = f(x_) = f(x) if f is continuous at x.

Theorem 1. 1. Assume f is periodic with period 2L, and that
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Note that f(x,) = f(x_) = f(x) if f is continuous at x.

Theorem 1. 1. Assume f is periodic with period 2L, and that

2. f is piecewise continuous and differentiable on an interval
strictly containing |—L, L]
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Note that f(x,) = f(x_) = f(x) if f is continuous at x.

Theorem 1. 1. Assume f is periodic with period 2L, and that

2. f is piecewise continuous and differentiable on an interval
strictly containing |—L, L]

Then

1 ag = mjirx = . mix
U] + ) = 5+ Y Jameos——+ ) ‘bpsin—

m=1 m=1
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Note that f(x,) = f(x_) = f(x) if f is continuous at x.

Theorem 1. 1. Assume f is periodic with period 2L, and that

2. f is piecewise continuous and differentiable on an interval
strictly containing |—L, L]

Then

S+ £ ) = P+ Y amcos T + 3 bysin T (3

m=1 m=1

1
at all points. Note again that §<f (xy) + f(x_)) is simply f(x) at all

ordinary points. Furthermore, a,,, b, are given by (2).
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Example. ,
—1/2 x € (—m,0)

|12 xe(0n)
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Example.
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' 1/2 x € (-m,0)

|12 xe(0n)



a0=i/ﬂf(x)cos(0x)dx = %/ﬂldx =1
0
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1 (7 1 (7
aO=—/ f(x)cos(()x)dx=—/ ldx =1
JU ) ¢ JU Jo
1

1 Jt il
Am = ;Lﬁf (x) cos (mx)dx = E/o cos (mx)dx =0
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1 —(—=1)™m
m—— f(r)sin(mx)dr= —1)
. aTm
Thus
2 1 1 1
f=—|sinx +=sindx + =sinb5x + =sin7x + - --
T 5 5 !
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1 —(—=1)™m
m—— f(r)sin(mx)dr= —1)
. aTm
Thus
2 1 1 1
f=—|sinx +=sindx + =sinb5x + =sin7x + - --
T 5 5 !

O. Costin: Fourier Series, §10.2-3



2 [ . 1 . 1 1 .
f=;<smr+351n31+65m51+7sm7r+---> (5)
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30 points means largest m is 29.
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60 POINTS 100 POINTS

0.4 1

0.2 4

-3 -2 -1 0

~0.2 1

-0.4

Note that there is overshoot at
the jumps. This is the Gibbs phenomenon. It always occurs at
discontinuities and it is about 8%.
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Note that there is overshoot at
the jumps. This is the Gibbs phenomenon. It always occurs at
discontinuities and it is about 8%.

Note that the series converges to O in the middle.
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Note that there is overshoot at
the jumps. This is the Gibbs phenomenon. It always occurs at
discontinuities and it is about 8%.

Note that the series converges to O in the middle.

But wherefrom the 8% discrepancy?
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Note that there is overshoot at
the jumps. This is the Gibbs phenomenon. It always occurs at
discontinuities and it is about 8%.

Note that the series converges to O in the middle.

But wherefrom the 8% discrepancy? The theorem tells us the
series converges everywhere to f except at disconts, where it
converges to 1/2(f, + f_) = 0 in our case!
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Note that there is overshoot at
the jumps. This is the Gibbs phenomenon. It always occurs at
discontinuities and it is about 8%.

Note that the series converges to O in the middle.

But wherefrom the 8% discrepancy? The theorem tells us the
series converges everywhere to f except at disconts, where it
converges to 1/2(f, + f_) = 0 in our case! Note that the
overshoot is associated to no point!!!

O. Costin: Fourier Series, §10.2-3



Odd and even functions The formulas can be substantially
simplified if the functions are even, or if they are odd.

A function is even if f(x) = f(—x)
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Odd and even functions The formulas can be substantially
simplified if the functions are even, or if they are odd.

A function is even if f(x) = f(—x)

A function is odd if f(x) = —f(—x).
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Properties

1. odd plus odd is odd
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Properties

1. odd plus odd is odd

2. even plus even is even
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Properties
1. odd plus odd is odd
2. even plus even is even

3. odd times even is odd
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Properties

1. odd plus odd is odd

2. even plus even is even
3. odd times even is odd

4. odd times odd is even.
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Properties

1. odd plus odd is odd
2. even plus even is even
3. odd times even is odd

4. odd times odd is even.

5. [F, 0dd(x)dx = [°, Odd(x)dx + [, Odd(x)dx = 0
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Properties

1. odd plus odd is odd
2. even plus even is even
3. odd times even is odd

4. odd times odd is even.

5. [F, 0dd(x)dx = [, Odd(x)dx + [, Odd(x)dx = O (check by
changing variable to x = —x’ in the first integral).
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Properties

1. odd plus odd is odd
2. even plus even is even
3. odd times even is odd

4. odd times odd is even.

5. [F, 0dd(x)dx = [, Odd(x)dx + [, Odd(x)dx = O (check by
changing variable to x = —x’ in the first integral).

6. [*, Even(x)dx = [, Even(x)dx+ [, Even(x)dx = 2 [, Even(x)dx
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Properties

1. odd plus odd is odd
2. even plus even is even
3. odd times even is odd

4. odd times odd is even.

5. [F, 0dd(x)dx = [, Odd(x)dx + [, Odd(x)dx = O (check by
changing variable to x = —x’ in the first integral).

6. f_LL Even(x)dx = f?L EV@H(I)dI—I—[OL Even(x)dx = QfOL Even(x)dx
(check by changing variable to x = —x’ in the first integral).
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Properties

1. odd plus odd is odd
2. even plus even is even
3. odd times even is odd

4. odd times odd is even.

5. [F, 0dd(x)dx = [, Odd(x)dx + [, Odd(x)dx = O (check by
changing variable to x = —x’ in the first integral).

6. f_LL Even(x)dx = f?L EV@H(I)dI—I—[OL Even(x)dx = QfOL Even(x)dx
(check by changing variable to x = —x’ in the first integral).
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. and so on...
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7. and so on.. CHECK THESE PROPERTIES!
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7. and so on.. CHECK THESE PROPERTIES!
Applications

Assume first f is periodic and odd. Then f(x)cos(ax) is odd
(odd x even)
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7. and so on.. CHECK THESE PROPERTIES!
Applications

Assume first f is periodic and odd. Then f(x)cos(ax) is odd
(odd x even)

and f(x)sin(ax) and is even (oddx odd)
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7. and so on.. CHECK THESE PROPERTIES!
Applications

Assume first f is periodic and odd. Then f(x)cos(ax) is odd
(odd x even)

and f(x)sin(ax) and is even (oddx odd)

L
/ f(x)cos mfrdx =0, ap=0
L
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7. and so on.. CHECK THESE PROPERTIES!
Applications

Assume first f is periodic and odd. Then f(x)cos(ax) is odd
(odd x even)

and f(x)sin(ax) and is even (oddx odd)

L
/ f(x)cos L dx = 0, am=20 (6)
1 L
1 [t 2t
b,, = Z[Lf(r) sin m;rrdx — Z/o f(x) sin mgxdx;
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7. and so on.. CHECK THESE PROPERTIES!
Applications

Assume first f is periodic and odd. Then f(x)cos(ax) is odd
(odd x even)

and f(x)sin(ax) and is even (oddx odd)

L
/ f(x)cos L dx = 0, am=20 (6)
I i
(e 2 [*
b = Z[Lf(r) sin m;rrdx - Z/o f(x) sin mgxdx; (7)
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The sawtooth function
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The sawtooth function

This is f(x) = x, x € (-, 1) and extended periodically. (More
generally, the period can be L, arbitrary).
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The sawtooth function

This is f(x) = x, x € (-, 7) and extended periodically. (More
generally, the period can be L, arbitrary).
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The sawtooth function

This is f(x) = x, x € (-, 7) and extended periodically. (More
generally, the period can be L, arbitrary).

We have: f is odd.
Thus

2 JT
adm =0; by, = —/ x sin(msrx)dx =
0

2 m-+
St (g

Tt
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> assume(m,integer);
> F:=(x+Pi)/Pi/2—floor((x+Pi)/Pi/2)-1/2;

F::l X+T7 _ floor 1l X+m _l
2 T 2 T 2
> plot(F,x=—3*Pi..3*Pi,discont=true);
> cm:=2/Pi*int(F*sin(m*x),x=0..Pi);
( 1)1 + m~
cm =
TMmM~
> S:=sum(cm*sin(m*x),m=1..10);
g sin(x) 1 sin(2 x) 1 sin(3 x) 1 sin(4 x) 1 sin(5 x)
e s
T 2 T 3 T 4 T T
1 sin(6 x) n 1 sin(7x) 1 sin(8x) n 1 sin(9x) 1 sin(10x)
6 T 7 T 8 T 9 T 10 T
> plot(S,x=0..Pi);
>
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Extension of functions defined on [0, L]
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Extension of functions defined on [0, L]

Often in PDEs f is defined only on [0, L], but we want to work
on [—L, L]
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on |—L, L].We then have to extend f periodically on [—L, L] We
can
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Extension of functions defined on [0, L]

Often in PDEs f is defined only on [0, L], but we want to work
on |—L, L].We then have to extend f periodically on [—L, L] We

can

1. Even-extend it: g(x) = f(—x) for x < 0 and g(x) = f(x) for
x > 0.
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Extension of functions defined on [0, L]

Often in PDEs f is defined only on [0, L], but we want to work
on |—L, L].We then have to extend f periodically on [—L, L] We

can

1. Even-extend it: g(x) = f(—x) for x < 0 and g(x) = f(x) for
x > 0.

2. Odd-extend it: g(x) = —f(—x) for x < 0 and g(x) = f(x) for
x > 0.
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Extension of functions defined on [0, L]

Often in PDEs f is defined only on [0, L], but we want to work
on |—L, L].We then have to extend f periodically on [—L, L] We

can

1. Even-extend it: g(x) = f(—x) for x < 0 and g(x) = f(x) for
x > 0.

2. Odd-extend it: g(x) = —f(—x) for x < 0 and g(x) = f(x) for
x > 0.

3. Extend it in many other number of ways.
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Extension of functions defined on [0, L]

Often in PDEs f is defined only on [0, L], but we want to work
on |—L, L].We then have to extend f periodically on [—L, L] We

can

1. Even-extend it: g(x) = f(—x) for x < 0 and g(x) = f(x) for
x > 0.

2. Odd-extend it: g(x) = —f(—x) for x < 0 and g(x) = f(x) for
x > 0.

3. Extend it in many other number of ways.

4. Then, the Fourier series, calculated on |[—L, L] will converge to f
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on [0, L] by the general theorem (and to whatever we extended
it with elsewhere).
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