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Extension of functions defined on [0, L]

If we only want to calculate a sufficiently nice function on, say
|0, L], it does not have to be periodic. We can just extend it
periodically. Eg, we extend it by zero on [—L, 0] and then repeat
it periodically.
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Better suited, especially if we want a pure sine decomposition is
the odd extension:
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But maybe your function, in reality, followed the blue path
instead. The Fourier series, calculated by this method, will give
the red function, nonetheless.
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PDEs

The Heat Equation.

(picture from Wikipedia) We start by considering the following
physical problem: a rod of length L is placed between two ice
cubes, so that the temperature u at the endpoints is zero.

At t = 0 u(x,0) = f(x) in the rod, on (0, L) Say the whole rod
was at 20°C. What is the temperature distribution at time 9
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Note that now there are two variables, t and x. Whatever
equation is applicable, it has to involve both x and f. It is a
differential equation, and since there are two independent
variables, it involves partial derivatives.
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Note that now there are two variables, t and x. Whatever
equation is applicable, it has to involve both x and f. It is a
differential equation, and since there are two independent
variables, it involves partial derivatives. It is thus a PDE.
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Note that now there are two variables, t and x. Whatever
equation is applicable, it has to involve both x and f. It is a
differential equation, and since there are two independent
variables, it involves partial derivatives. It is thus a PDE.

The applicable PDE is the heat conduction equation, in short the
heat equation,



The whole problem is

Uy = AUy, ul0,t) = u(L,t) =0, ulx,0) = flx)
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The whole problem is
Uy = AUy, ul0,t) = u(L,t) =0, ulx,0) = flx)

Note that there are three specifications, the analog of initial
conditions for ODELs.
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The whole problem is
Uy = AUy, ul0,t) = u(L,t) =0, ulx,0) = flx)

Note that there are three specifications, the analog of initial
conditions for ODEs. These are the constraints written in blue.
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The whole problem is
Uy = AUy, ul0,t) = u(L,t) =0, ulx,0) = flx)

Note that there are three specifications, the analog of initial
conditions for ODEs. These are the constraints written in blue.
This is a boundary value problem (u(0, f) = u(L, t) = O) for the
heat equation, with an initial condition: u(x,0) = f(x).
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The whole problem is
Uy = AUy, ul0,t) = u(L,t) =0, ulx,0) = flx)

Note that there are three specifications, the analog of initial
conditions for ODEs. These are the constraints written in blue.
This is a boundary value problem (u(0, f) = u(L, t) = O) for the
heat equation, with an initial condition: u(x,0) = f(x).

o is a constant, depending only on the material of the rod, and

it is called thermal diffusivity. See textbook for common values
of a.
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The whole problem is
Uy = AUy, ul0,t) = u(L,t) =0, ulx,0) = flx)

Note that there are three specifications, the analog of initial
conditions for ODEs. These are the constraints written in blue.
This is a boundary value problem (u(0, f) = u(L, t) = O) for the
heat equation, with an initial condition: u(x,0) = f(x).

o is a constant, depending only on the material of the rod, and

it is called thermal diffusivity. See textbook for common values
of a. This is a linear PDE.
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One simple way to solve really simple, linear PDEs is
separation of variables.
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One simple way to solve really simple, linear PDEs is
separation of variables. This is a different from the same named
method in ordinary differential equations.
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that is in a product form, product of two functions each solely
depending on one variable.
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that is in a product form, product of two functions each solely
depending on one variable. In this sense the variables are
separated. But we cannot hope to find the solution to the whole
problem in exactly this form.
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It consists in seeking solutions in the form
u(x, t) = X(x)T(t)

that is in a product form, product of two functions each solely
depending on one variable. In this sense the variables are
separated. But we cannot hope to find the solution to the whole
problem in exactly this form. Why should the variation in
temperature not depend on x?



One simple way to solve really simple, linear PDEs is
separation of variables. This is a different from the same named
method in ordinary differential equations.

It consists in seeking solutions in the form
u(x, t) = X(x)T(t)

that is in a product form, product of two functions each solely
depending on one variable. In this sense the variables are
separated. But we cannot hope to find the solution to the whole
problem in exactly this form. Why should the variation in
temperature not depend on x?It must be faster near the
endpoints and slower in the middle, farther from the ice cubes.



But the problem

Uy = AUy, ul0, t) = u(l, t) =0
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But the problem
Uy = AUy, ul0, t) = u(l, t) =0

is linear homogeneous.
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But the problem
Uy = AUy, ul0, t) = u(l, t) =0

is linear homogeneous. Thus, like in ODEs, if uy, uy are
solutions, then uy + uy is a solution too (check!)
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But the problem
Uy = AUy, ul0, t) = u(l, t) =0

is linear homogeneous. Thus, like in ODEs, if uy, uy are
solutions, then uy + uy is a solution too (check!) Here again,
homogeneity is essential. We cannot simply add up solutions
in nonlinear or nonhomogeneous equations.
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But the problem
Uy = AUy, ul0, t) = u(l, t) =0

is linear homogeneous. Thus, like in ODEs, if uy, uy are
solutions, then uy + uy is a solution too (check!) Here again,
homogeneity is essential. We cannot simply add up solutions
in nonlinear or nonhomogeneous equations.

Now, we can hope to find sufficiently many solutions uy, uy, efc.
so that, when we add uy + us + uz + ... we get the actual solution.
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But the problem
Uy = AUy, ul0, t) = u(l, t) =0

is linear homogeneous. Thus, like in ODEs, if uy, uy are
solutions, then uy + uy is a solution too (check!) Here again,
homogeneity is essential. We cannot simply add up solutions
in nonlinear or nonhomogeneous equations.

Now, we can hope to find sufficiently many solutions uy, uy, efc.
so that, when we add uy + us + uz + ... we get the actual solution.

This really works for the heat equation and other simple linear
problems and it is known as the method of separation of
variables.
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Now back to work.
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Now back to work.

fry
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Now back to work.

fry
u(x, t) = X(x)T(t)

Then us = X(x)T'(t); urr = X" () T(t).
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Now back to work.

fry
u(x, t) = X(x)T(t)
Then us = X(x)T'(t); urr = X" (x)T(t). Thus

X(x)T'(t) = a?X"(x)T(t)
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Now back to work.

fry
u(x, t) = X(x)T(t)

Then uy = X(x)T'(t); uyr = X"(x)T(t). Thus

N —

depends on t alone depends on x alone
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X(x)T'(t) = a?X"(x)T(t)
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N —

depends on t alone depends on x alone

O. Costin: §10.4-5



N —

depends on t alone depends on x alone

How can a function of x exactly match a function of ¢?
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N —

depends on t alone depends on x alone

How can a function of x exactly match a function of {? These
are independent variables. Thus they can be changed

independently. One is fixed, say f and we change x.
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N —

depends on t alone depends on x alone

How can a function of x exactly match a function of {? These

are independent variables. Thus they can be changed
X//<I>

X(x)

does not

independently. One is fixed, say f and we change x. If
T(t)
a?T(t)

changes, then we have a contradiction, since

change, since it does not depend on x.
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X//(I)

Th
us — o)

is simply a constant, say —A.
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X”(I>

Thus
X(x) a?T
equal to the same constant, and it is a constant too.

is simply a constant, say —A. But then
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(1)

t



X" (x) T'(¢)

Thus
X 2T(f)
equal to the same constant, and it is a constant too.

is simply a constant, say —A. But then is

We arrive at a pair of ODEs:

T'(t)

a2T(t) 4
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X”(I>

Thus
X(x) a?T
equal to the same constant, and it is a constant too.

is simply a constant, say —A. But then

We arrive at a pair of ODEs:

T'(t)
a2T(t) 4
X”(I)
X(x) -
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T'(t)
(1)

t

1S



X" (x) T'(¢)

Thus
X 2T(f)
equal to the same constant, and it is a constant too.

1S

is simply a constant, say —A. But then

We arrive at a pair of ODEs:

T'(t)
a2T(t) 4 )
X”(I)
o) = 2)

Now, (1) is an initial value problem (since T(0) is given), while
(2) is a boundary value problem since it is subject to the
conditions X(0) = 0, X(L) = 0 (where the ice cubes lie).
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a2T(t) 4
X”(I)
X(x) -

Note that the boundary value problem (4) is an eigenvalue
problem!
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a®T(t) -
X”(I)
X(x) -4

Note that the boundary value problem (4) is an eigenvalue
problem! Indeed, it is

X"(x) = =AX(x); X(0)=0, X(L)=0
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a2T(t) 4 5)
X//<I>
X(x) - <4>

Note that the boundary value problem (4) is an eigenvalue
problem! Indeed, it is

X"(x) = —AX(x); X(0) =0, X(L)=0 (5)

where we seek nonzero solutions! (a zero solution would not
help much here).
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X"x) = —AX(x); X(0)=0, X(L)=0
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X”<I> _
We studied (6) before.
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X"x) = —AX(x); X(0) =0, X(L)=0
We studied (6) before. Look at that section.
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X"(x) = —AX(x); X(0) =0, X(L) =0 (6)

We studied (6) before. Look at that section. The general solution
is sine+cosine of V/A; only sin(0)=0, thus it is a pure sine, but to
vanish at L we need VAL = nst and thus all the eigenvalues for
this problem are

Ay = n?m%/L%,n =1,2,3,..
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X"(x) = —AX(x); X(0) =0, X(L) =0 (6)

We studied (6) before. Look at that section. The general solution
is sine+cosine of V/A; only sin(0)=0, thus it is a pure sine, but to
vanish at L we need VAL = nst and thus all the eigenvalues for
this problem are

An = n®m%/L*n =1,2,3, ..
and the eigenfunctions are

X, = (cp) sin(nsrx/L)
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X"(x) = —AX(x); X(0) =0, X(L) =0 (0)

We studied (6) before. Look at that section. The general solution
is sine+cosine of V/A; only sin(0)=0, thus it is a pure sine, but to
vanish at L we need VAL = nst and thus all the eigenvalues for
this problem are

An = n*m?/L%n =1,2,3,.
and the eigenfunctions are
X, = (cp) sin(nsrx/L)

We found infinitely many solutions!

O. Costin: §10.4-5



For each of them, we have the T(f) equation,
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For each of them, we have the T(f) equation,

Th ()

2T, (1) = A, thatis T,(t) = (—n*m?/L%)a*Ty(t),n = 1,2,3, ...
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For each of them, we have the T(f) equation,

T,(1)
aTy(t)

which gives immediately

T, (t) = exp(—nZa?m*t/L?)
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For each of them, we have the T(f) equation,

T,(1)
aTy(t)

which gives immediately
T, (t) = exp(—nZa?m*t/L?)
Putting X,, and T, together -remember,
up(x, t) = Xp(x)Ty(t) we have:
unlx, t) = ¢, exp(—n?a’m*t/L?) sin(nx/L)
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— —An thatis T.(t) = (—n?m?/L9)a’Tu(t), n = 1,2,3, ...



Now we really have many solutions, as desired.
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Now we really have many solutions, as desired. Then, by the
linearity and homogeneity of the equation

ch exp(—n?m2a’t/L?) sin(nwx/L)

O. Costin: §10.4-5



Now we really have many solutions, as desired. Then, by the
linearity and homogeneity of the equation

ch exp(—n®m?a®t/L?) sin(nx/L) (7)

is also a solution of the problem.
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Now we really have many solutions, as desired. Then, by the
linearity and homogeneity of the equation

ch exp(—n®m?a®t/L?) sin(nx/L) (7)

is also a solution of the problem.

Indeed, u(0, t) = u(L, t) = 0,
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Now we really have many solutions, as desired. Then, by the
linearity and homogeneity of the equation

ch exp(—n®m?a®t/L?) sin(nx/L) (7)

is also a solution of the problem.
Indeed, u(0, t) = u(L, t) = 0,

How about the initial condition, u(x,0) = f(x) = 20 on (0, L)?
Can it be fitted by (9)?
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Let's try.

Z cp expl—n?m2a0/L?) sin(nsrx /L) Z cp sin(nsrx/L)
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Let's try.

Z cp expl—n?m2a0/L?) sin(nsrx /L) Z cp sin(nsrx/L)

But this is a Fourier sine decomposition, on [—L, L] (because of
‘nirx/L”, the argument of sin.
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Let's try.

Z cp exp(—n?m?a”0/L?) sin(nsrx /L) Z cp sin(nsrx/L)

But this is a Fourier sine decomposition, on [—L, L] (because of
‘ntx/L’, the argument of sin. So, we will extend f, initially
defined on (0, L) as an odd function (to be able to get a pure
sine Fourier series).
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Let's try.

Z cp exp(—n?m?a”0/L?) sin(nsrx /L) Z cp sin(nsrx/L)

But this is a Fourier sine decomposition, on [—L, L] (because of
‘ntx/L’, the argument of sin. So, we will extend f, initially
defined on (0, L) as an odd function (to be able to get a pure
sine Fourier series). The function to be worked with is thus:

20 for x € (—L,0)

flx) = | 20 for x € (0,1

O. Costin: §10.4-5



Let's try.

Z cp exp(—n?m?a”0/L?) sin(nsrx /L) Z cp sin(nsrx/L)

But this is a Fourier sine decomposition, on [—L, L] (because of
‘ntx/L’, the argument of sin. So, we will extend f, initially
defined on (0, L) as an odd function (to be able to get a pure
sine Fourier series). The function to be worked with is thus:

90 for x € (—L,0)
jr— - 8
fix) _20 for x € (0, L) 8)

Since this is indeed an odd function, the coefficients c¢,, are
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given by

1 1 — (=1)"

L L
—/ f(x)sin(nsrx/L)dx = i/ 20 sin(nsrx/L)dx = 40
L J, L Jy nim
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given by

1 1 — (1)

L L
—/ f(x)sin(nsrx/L)dx = i/ 20 sin(nsrx/L)dx = 40
L J, L Jy nim

The complete solution is thus

u(x, t) = 402 exp (—n®m?a’t/L?) sin(nsrx/L)
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given by

! /L]‘(r) sin(nsrx/L)dx = ! /L 20 sin(nstx/L)dx = 401 (=17
L 0 a L 0 a njit
The complete solution is thus
u(x, t) = 402 exp (—n?m2a’t/L?) sin(nstx /L) (9)
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