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Other Heat Equation settings

Nonhomogeneous boundary conditions. Here, we seek to
solve

Uy = Uy, ul0,t) = Ty, ull, t) = Ty, ulx,0) = f(x)
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Other Heat Equation settings

Nonhomogeneous boundary conditions. Here, we seek to
solve

Ur = Uy, ul0,t) = Ty, ulL, t) = Ty, ulx,0) = f(x)

that is, we have different temperatures at the endpoints. As in
nonhomogeneous ODEs, the solution is essentially any solution
of the nonhomogeneous equation plus the general solution
of the homogeneous one.
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Indeed if ug satisfies the eq, boundary conditions but not
necessarily the initial condition,
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Indeed if ug satisfies the eq, boundary conditions but not
necessarily the initial condition, we write u = ug + v
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Indeed if ug satisfies the eq, boundary conditions but not
necessarily the initial condition, we write u = up + v and then
(o)t + Vi = 0*(U0)xx + A*Vrx
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Indeed if ug satisfies the eq, boundary conditions but not

necessarily the initial condition, we write u = up + v and then

(W)t + Vi = a?(Uo)rx + Q®Vir OF Vi + ((Ug)t — A% (U0)rr) = OPVir.

N 7

=0,by construction
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Indeed if ug satisfies the eq, boundary conditions but not

necessarily the initial condition, we write u = up + v and then

(W)t + Vi = a?(Uo)rx + Q®Vir OF Vi + ((Ug)t — A% (U0)rr) = OPVir.

N 7

=0,by construction

We need v(0, t) + ug(0, t) = Ty but up(0, t) = Ty, by construction,
so: v(0, t) = 0. Likewise, v(L, t) = 0. v satisfies the same problem,
with homogeneous boundary values, and initial condition

v(x,0) + uplx,0) = flx) =
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Indeed if ug satisfies the eq, boundary conditions but not

necessarily the initial condition, we write u = up + v and then

(W)t + Vi = a?(Uo)rx + Q®Vir OF Vi + ((Ug)t — A% (U0)rr) = OPVir.

N 7

=0,by construction

We need v(0, t) + ug(0, t) = Ty but up(0, t) = Ty, by construction,
so: v(0, t) = 0. Likewise, v(L, t) = 0. v satisfies the same problem,
with homogeneous boundary values, and initial condition

v(x,0) + uolx,0) = f(x) = v(x,0) = flx) — uolx,0)
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A particular solution of
U = Uyy, u(0,t) = Ty, ulL,t) = Ty

is easy to find.
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A particular solution of
ur = Uy, ul0,t) = Ty, ull,t) = Ty

is easy to find. Look, for instance for solutions that don't
depend on f. Then

uxx — O,
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A particular solution of
ur = Uy, ul0,t) = Ty, ull,t) = Ty

is easy to find. Look, for instance for solutions that don't
depend on f. Then

Uy =0, =u=Ax + B;
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A particular solution of
ur = Uy, ul0,t) = Ty, ull,t) = Ty

is easy to find. Look, for instance for solutions that don't
depend on f. Then

Uy =0 =u=Ax+B, AO+B=T{, AL+ B =T,
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A particular solution of
ur = Uy, ul0,t) = Ty, ull,t) = Ty

is easy to find. Look, for instance for solutions that don't
depend on f. Then

Uy =0 =u=Ax+B, AO+B=T{, AL+ B =T,
B = T1,A= (TQ—T1)/L,’

O. Costin: §10.6-7 4qqd 4 O P PP — —



A particular solution of
ur = Uy, ul0,t) = Ty, ull,t) = Ty

is easy to find. Look, for instance for solutions that don't
depend on f. Then

Uy =0 =u=Ax+B, AO+B=T{, AL+ B =T,
B=TA = (TQ — T1)/L,’ Uy = I(TQ — T1)/L—l— Ty (1)

Then, the problem for v becomes

v = a?vyey, v(0,t) =0,v(L, t) =0,v(x,0) = flx)—[x(To—Ty)/L+T]
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A particular solution of
ur = Uy, ul0,t) = Ty, ull,t) = Ty

is easy to find. Look, for instance for solutions that don't
depend on f. Then

Uy =0 =u=Ax+B, AO+B=T{, AL+ B =T,
B=TA = (TQ — T1)/L,’ Uy = I(TQ — T1)/L—l— Ty (1)

Then, the problem for v becomes

v = a?vyey, v(0,t) =0,v(L, t) =0,v(x,0) = flx)—[x(To—Ty)/L+T]
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v = a?vyey, v(0,t) =0,v(L, t) =0,v(x,0) = flx)—[x(To—T4)/L+T]
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v = a?vyey, v(0,t) =0,v(L, t) =0,v(x,0) = flx)—[x(To—T4)/L+T]

We have studied this equation in §10.5. The solution is

vix,t) = Z cp expl—n?m?a’t/L?) sin(nsx/L)
n=1
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v = a?vyey, v(0,t) =0,v(L, t) =0,v(x,0) = flx)—[x(To—T4)/L+T]

We have studied this equation in §10.5. The solution is
vix,t) = ch exp(—n?ma’t/L?) sin(nsx/L)
n=1

where now ¢, are the Fourier sine coeffs. of v(x,0),

L
Cm = f/ v(x,0) sin(nsrx/L)dx;
0
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v = a?vyey, v(0,t) =0,v(L, t) =0,v(x,0) = flx)—[x(To—T4)/L+T]

We have studied this equation in §10.5. The solution is

ch exp(—n?ma’t/L?) sin(nsx/L)

where now ¢, are the Fourier sine coeffs. of v(x,0),

Cm = —/L v(x,0) sin(nsrx/L)dx; v(x,0) = flx) — [x(Ty — Ty)/L + T4]
L Jo
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Thus, since u(x, t) = up(x, t) + v(x, t) we obtain

u(x,t) = x(Ty — Ty)/L + Ty + ch exp(—n“m?a’t/L?) sin(nsrx /L)

n=1

O. Costin: §10.6-7 4qd 4 O P PP — —



Thus, since u(x, t) = up(x, t) + v(x, t) we obtain

u(x,t) = x(Ty — Ty)/L + Ty + ch exp(—n“m?a’t/L?) sin(nsrx /L)

n=1

Example:

Ut = Uyy, u(0, 1) = 20, u(30, t) = 50, u(x,0) = 60 — 2x Particular
solution:
ug(x) = x(50 — 20)/30 + 20 = x + 20
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Thus, since u(x, t) = up(x, t) + v(x, t) we obtain

u(x,t) = x(Ty — Ty)/L + Ty + ch exp(—n“m?a’t/L?) sin(nsrx /L)

n=1

Example:

Ut = Uyy, u(0, 1) = 20, u(30, t) = 50, u(x,0) = 60 — 2x Particular
solution:

up(x) = x(60 — 20)/30 + 20 = x + 20 (2)
Homogeneous problem:

v = very, V(0,1) =0, v(30,t) = 0;
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Thus, since u(x, t) = up(x, t) + v(x, t) we obtain

u(x,t) = x(Ty — Ty)/L + Ty + ch exp(—n“m?a’t/L?) sin(nsrx /L)

n=1

Example:

Ut = Uyyp, u(0, 1) = 20,u(30, t) = 50, u(x,0) = 60 — 2x Particular
solution:

up(x) = x(60 — 20)/30 + 20 = x + 20 (2)
Homogeneous problem:

v = very, V(0,1) =0, v(30,t) = 0;
v(x,0) = 60 — 2x — up(x) = 60 — 2x — x — 20 = 40 — 3x (3)
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v = Ve, V0, 1) =0, v(30,t) = 0;
v(x,0) = 60 — 2x — uplx) = 60 — 2x —x — 20 = 40 — 3x
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v = Ve, V0, 1) =0, v(30,t) = 0;
v(x,0) = 60 — 2x — uplx) = 60 — 2x —x — 20 = 40 — 3x (4)

general sol

ulx,t) =x + 20+ ch exp(—n?m?t/900) sin(nsrx/30)
(2) n=1
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v = Ve, V0, 1) =0, v(30,t) = 0;
v(x,0) = 60 — 2x — uplx) = 60 — 2x —x — 20 = 40 — 3x (4)

general sol

ulx,t) =x + 20+ ch exp(—n?m?t/900) sin(nx/30)  (5)
(2) n=1

30 Com
Cn = g (40 — 3x) sin(nsrx/30)dx = 20(4 + 5(=1)™)
NJo ——— mat
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Another example of separation of variables: rod with
isolated ends. Heat transfer is proportional to the temperature
difference (gradient, u,). If there is no conduction at the
endpoints, then u, = 0 at the endpoints
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Another example of separation of variables: rod with
isolated ends. Heat transfer is proportional to the temperature
difference (gradient, u,). If there is no conduction at the
endpoints, then u, = 0 at the endpoints . Then, the problem
becomes

Ur = QUyr, U(0,1) = 0, u (L, t) =0, ulx,0) = flx)

This can be solved by separation of variables as well.
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Another example of separation of variables: rod with
isolated ends. Heat transfer is proportional to the temperature
difference (gradient, u,). If there is no conduction at the
endpoints, then u, = 0 at the endpoints . Then, the problem
becomes

Ur = QUyr, U(0,1) = 0, u (L, t) =0, ulx,0) = flx)

This can be solved by separation of variables as well.

Remark. In the book the problem is solved anew.
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Another example of separation of variables: rod with
isolated ends. Heat transfer is proportional to the temperature
difference (gradient, u,). If there is no conduction at the
endpoints, then u, = 0 at the endpoints . Then, the problem
becomes

Ur = QUyr, U(0,1) = 0, u (L, t) =0, ulx,0) = flx)

This can be solved by separation of variables as well.

Remark. In the book the problem is solved anew. We note that
this can be reduced to our first problem in the following way:
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Another example of separation of variables: rod with
isolated ends. Heat transfer is proportional to the temperature
difference (gradient, u,). If there is no conduction at the
endpoints, then u, = 0 at the endpoints . Then, the problem
becomes

Ur = QUyr, U(0,1) = 0, u (L, t) =0, ulx,0) = flx)

This can be solved by separation of variables as well.

Remark. In the book the problem is solved anew. We note that
this can be reduced to our first problem in the following way:
By taking one x derivative, we get: Uy = a°Uyyy that is

(Uy)f = 0?(Uy)rr. Let uy = v. Then vy = a?vyy
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Another example of separation of variables: rod with
isolated ends. Heat transfer is proportional to the temperature
difference (gradient, u,). If there is no conduction at the
endpoints, then u, = 0 at the endpoints . Then, the problem
becomes

Ur = QUyr, U(0,1) = 0, u (L, t) =0, ulx,0) = flx)

This can be solved by separation of variables as well.

Remark. In the book the problem is solved anew. We note that
this can be reduced to our first problem in the following way:
By taking one x derivative, we get: Uy = a°Uyyy that is

(Uy)f = 0?(Uy)rr. Let uy = v. Then vy = a®vyy ,

v(0,1) =0,v(L,t) =0, v(x,0) = f(x)
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Another example of separation of variables: rod with
isolated ends. Heat transfer is proportional to the temperature
difference (gradient, u,). If there is no conduction at the
endpoints, then u, = 0 at the endpoints . Then, the problem
becomes

Ur = QUyr, U(0,1) = 0, u (L, t) =0, ulx,0) = flx)

This can be solved by separation of variables as well.

Remark. In the book the problem is solved anew. We note that
this can be reduced to our first problem in the following way:
By taking one x derivative, we get: Uy = a°Uyyy that is

(Uy)f = 0?(Uy)rr. Let uy = v. Then vy = a®vyy ,

v(0,t) =0,v(L,t) =0,v(x,0) = f'(x), that we have already
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solved
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solved . We clearly get u from v by one x integration.

O. Costin: §10.6-7 4qd 4 O P PP — —



Since we want to practice separation of variables, let’s not take
the shortcut, but solve the problem from scratch.
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Since we want to practice separation of variables, let’s not take
the shortcut, but solve the problem from scratch.

Take u(x, t) = X(x)T(t) as before,

T'(t) B X" (x)
o?T(t) X(x)
~—— ~——

depends on t alone depends on x alone

X”(I)
X(x)

Thus is simply a constant, say —A.
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Since we want to practice separation of variables, let’s not take
the shortcut, but solve the problem from scratch.

Take u(x, t) = X(x)T(t) as before,

T'(t) B X" (x)
o?T(t) X(x)
~—— ~——

depends on t alone depends on x alone

X//<I>
Thus X}

the same constant.

T'(t)
a?T(t)

is simply a constant, say —A. Then is equal to
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We need to look at all signs of A and then select those that
work. We have

X"(x) = =AX(x); X'(0)=0, X(L)=0
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We need to look at all signs of A and then select those that
work. We have

X"(x) = =AX(x); X'(0)=0, X(L)=0 (0)
where we seek nonzero solutions. (1) A > 0. As in §10.5,
X(x) = a, sin(VAx) + ¢, cos(VAx)

X'(0) = apVAcos(0VA) — cpVASIn(OVA) = ap, VA
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We need to look at all signs of A and then select those that
work. We have

X"(x) = =AX(x); X'(0)=0, X(L)=0 (0)
where we seek nonzero solutions. (1) A > 0. As in §10.5,
X(x) = a, sin(VAx) + ¢, cos(VAx)

X'(0) = apVAcos(0VA) — cpVASIn(OVA) = ap, VA
Thus a, = 0 and X,(x) = ¢, cos(vVAx)
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We need to look at all signs of A and then select those that
work. We have

X"(x) = =AX(x); X'(0)=0, X(L)=0
where we seek nonzero solutions. (1) A > 0. As in §10.5,
X(x) = ansin(VAx) + ¢, cos(VAx)

X'(0) = apVAcos(0VA) — cpVASIn(OVA) = ap, VA
Thus a, = 0 and X,(x) = ¢, cos(vVAx)

We need: X/(L) = 0, thus —c,VAsin(v/AL) = 0, VA, = ni/L.
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We took A > 0. As in §10.5, we need to analyze the cases A = 0
and A < 0.
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We took A > 0. As in §10.5, we need to analyze the cases A = 0
and A < 0.

[fA =0 then X"=0, X=ax+b, X' =0
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We took A > 0. As in §10.5, we need to analyze the cases A = 0
and A < 0.

[fA=0then X" =0, X =ax + b, X" =0 means a = 0. Thus
A = 0 is an eigenvalue here
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We took A > 0. As in §10.5, we need to analyze the cases A = 0
and A < 0.

I[f L =0 then X" =0, X =ax +b, X"=0 means a = 0. Thus
A = 0 is an eigenvalue here and X = c¢/2, for any constant cq,
are eigenfunctions.

If A = —pp? < 0 then X" = X,
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We took A > 0. As in §10.5, we need to analyze the cases A = 0
and A < 0.

I[f L =0 then X" =0, X =ax +b, X"=0 means a = 0. Thus
A = 0 is an eigenvalue here and X = c¢/2, for any constant cq,
are eigenfunctions.

If & = —p2 < 0 then X” = i2X, X = Ael* + Be H*,
X'(0) = (A - B)u

O. Costin: §10.6-7 4qd 4 O P PP — —



We took A > 0. As in §10.5, we need to analyze the cases A = 0
and A < 0.

I[f L =0 then X" =0, X =ax +b, X"=0 means a = 0. Thus
A = 0 is an eigenvalue here and X = c¢/2, for any constant cq,
are eigenfunctions.

If A = —p? < 0then X’ = X, X = Ael* + Be H7,
X'(0) = (A - B)n and thus A = B and X = A(ef* + e #*).
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We took A > 0. As in §10.5, we need to analyze the cases A = 0
and A < 0.

I[f L =0 then X" =0, X =ax +b, X"=0 means a = 0. Thus
A = 0 is an eigenvalue here and X = c¢/2, for any constant cq,
are eigenfunctions.

If A = —p2 < 0 then X" = p2X, X = Ae#* + Be—hT.

X'(0) = (A - B)n and thus A = B and X = A(ef* + e #*).

X'(L) = Apletl — e~y = Apetl(1 — e=2) which is zero only if
either
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We took A > 0. As in §10.5, we need to analyze the cases A = 0
and A < 0.

I[f L =0 then X" =0, X =ax +b, X"=0 means a = 0. Thus
A = 0 is an eigenvalue here and X = c¢/2, for any constant cq,
are eigenfunctions.

If A = —p2 < 0 then X" = p2X, X = Ae#* + Be—hT.

X'(0) = (A - B)n and thus A = B and X = A(ef* + e #*).

X'(L) = Apletl — e~y = Apetl(1 — e=2) which is zero only if
either (1) A =0
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We took A > 0. As in §10.5, we need to analyze the cases A = 0
and A < 0.

I[f L =0 then X" =0, X =ax +b, X"=0 means a = 0. Thus
A = 0 is an eigenvalue here and X = c¢/2, for any constant cq,
are eigenfunctions.

If A = —p2 < 0 then X" = p2X, X = Ae#* + Be—hT.

X'(0) = (A - B)n and thus A = B and X = A(ef* + e #*).

X'(L) = Apletl — e~y = Apetl(1 — e=2) which is zero only if
either (1) A =0 or (2) e %t =1.
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We took A > 0. As in §10.5, we need to analyze the cases A = 0
and A < 0.

I[f L =0 then X" =0, X =ax +b, X"=0 means a = 0. Thus
A = 0 is an eigenvalue here and X = c¢/2, for any constant cq,
are eigenfunctions.

If A = —p2 < 0 then X" = p2X, X = Ae#* + Be—hT.

X'(0) = (A - B)n and thus A = B and X = A(ef* + e #*).

X'(L) = Apletl — e~y = Apetl(1 — e=2) which is zero only if
either (1) A =0 or(2) e =1. Bute " =1 meanspu =0,
which is not the case.
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We took A > 0. As in §10.5, we need to analyze the cases A = 0
and A < 0.

I[f L =0 then X" =0, X =ax +b, X"=0 means a = 0. Thus
A = 0 is an eigenvalue here and X = c¢/2, for any constant cq,
are eigenfunctions.

[f A = —p? < 0 then X" = p?X, X = Ael + Be H*.

X'(0) = (A - B)n and thus A = B and X = A(ef* + e #*).

X'(L) = Apletl — e~y = Apetl(1 — e=2) which is zero only if

either (1) A =0 or(2) e =1. Bute " =1 meanspu =0,
which is not the case. So A = 0, and thus X = 0 and there are
no nonzero solutions, A < 0 is never an eigenvalue.
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We took A > 0. As in §10.5, we need to analyze the cases A = 0
and A < 0.

I[f L =0 then X" =0, X =ax +b, X"=0 means a = 0. Thus
A = 0 is an eigenvalue here and X = c¢/2, for any constant cq,
are eigenfunctions.

[f A = —p? < 0 then X" = p?X, X = Ael + Be H*.

X'(0) = (A - B)n and thus A = B and X = A(ef* + e #*).

X'(L) = Apletl — e~y = Apetl(1 — e=2) which is zero only if

either (1) A =0 or(2) e =1. Bute " =1 meanspu =0,
which is not the case. So A = 0, and thus X = 0 and there are
no nonzero solutions, A < 0 is never an eigenvalue.
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Thus the general solution is

0 ch exp(—n?m?a’t/L?) cos(nsx/L)
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Thus the general solution is
4 ch exp(—n?m?a’t/L?) cos(nmx/L)

which is a general Fourier cosine series. To {it the initial
condition into a Fourier cosine series, we need an even
extension U; of the initial data.
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Thus the general solution is
4 ch exp(—n?m?a’t/L?) cos(nmx/L)

which is a general Fourier cosine series. To {it the initial
condition into a Fourier cosine series, we need an even
extension U; of the initial data.

For instance, if L = 71, a = 1 and u(x,0) = f(x) = x, then
, and
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Thus the general solution is
4 ch exp(—n?m?a’t/L?) cos(nmx/L)

which is a general Fourier cosine series. To {it the initial
condition into a Fourier cosine series, we need an even
extension U; of the initial data.

For instance, if L = 71, a = 1 and u(x,0) = f(x) = x, then
= |x|, and

Co = JT,Cp = g/ x cos(nx) = —%(1 — (=1)"); (n >1)
JU Jo jan
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