Forced oscillations. Review of
power series
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The characteristic equation is mr? + k = 0,
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We see that w + wg is important.
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Thus a particular solution is A4 cos wt or
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Note that for this solution, there is oscillation with

1 F
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becomes unbounded as w approaches wy. The
general solution of the equation is a particular
solution, for example this, plus the general solution

of the homogeneous equation, A sin(wyt + ¢)

frequency w and amplitude A =
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mx” + kx = Ay cos wpt

Let now w = wq. In this case, a particular solution in
the form A cos wt does not exist, we find one in the

form
Bt sin wyt

Substituting we get
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—Bt(mwj — k) sin wt +2Bw cos(wpt) — A4 cos(wot) = 0)

Thus B = A;/(2wy) and we have a particular solution
in the form At sin wpt/(2wp)and the general solution

Ayt sin wot/(2wo) + A sin wot + B cos wpt

This solution grows without bound.
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Forced oscillations with damping

mx” + yx" + kx = Fycos wt
(General solution is

cre™! + coe™t + Ay cos(wt — 6)

where rq, ro are the characteristic roots.They always
have a real part, and it is negative.This means that
ciem! + coe™! — 0 as t — oo. This is called transient
response, because it lasts a finite time.
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and it is large if w = wy and 7 is small.

Read the textbook for the formulas of the other
constants, o etc.
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Response vs. frequency.



Series: short review. Please brush up

Power series are used to solve differential equations,
when explicit solutions are hard to find.
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