1. Solve the initial value problem

$$y'' + 4y = 0;$$
 $y(0) = 0,$ $y'(0) = 1$

- 2. A mechanical oscillator with $m=1, \ \gamma=2, \ k=1$ starts at t=0 in the equilibrium position, x=0, with velocity 1. What is the maximal displacement x? What is the behavior of the solution as $t\to\infty$?.
- 3. (a) In an RLC circuit, L = C = 1. For which range of R is the oscillator **overdamped?**
 - (b) Choose now R = 0 and assume an external voltage $V(t) = \sin(5t/4)$ is applied to the circuit in (a) and that the initial current is -4/9. What is the frequency of the beats?
- 4. Find the general solution of the equation

$$\varphi'' + 2\varphi' + \varphi = e^x + xe^{-x}$$

5. Consider the equation

$$(2x-1)f''(x) - (1+4x^2)f'(x) + (2+4x^2-2x)f(x) = 0 \quad (*)$$

- (a) What is the guaranteed interval of existence of the solution of (*) with f(1) = 0, f'(1) = 0?
- (b) Check that a particular solution of (*) is e^x . Find a second solution, linearly independent from e^x .
- (c) What is the **actual** interval of existence of the solution of (*) with f(1) = 0, f'(1) = 0? Compare with the answer to (a).
- (d) Find the general solution of

$$f''(x) - \frac{(1+4x^2)}{2x-1}f'(x) + \frac{(2+4x^2-2x)}{2x-1}f(x) = x(2x-1)$$

6. Find two linearly independent solutions of the equation below, as power series centered at zero.

$$y'' + x^2y = 0$$

What is the radius of convergence of the series that you obtained? Bonus: Assume that $y(x) \to L$ as $x \to +\infty$. Show that L = 0.

- 7. Consider the differential equation $(x^2+1)y''+y(x)=0$ with the initial condition y(0)=1,y'(0)=0. What is the guaranteed interval of existence of this solution?
 - (b) Find y as a power series. What is the radius of convergence of the series? Compare with (a).