1. Consider the heat equation

$$
u_{t}=u_{x x} ;
$$

with the following initial and boundary conditions:

$$
\begin{equation*}
u(x, 0)=f(x) ; \quad u_{x}(0, t)=0 ; \quad u(\pi, t)=0 \tag{1}
\end{equation*}
$$

(Note that the derivative of u is zero at one end while u itself vanishes at the other. That is, the left endpoint is thermally isolated while the right endpoint is kept at $u=0$.)
Find the general solution by separation of variables. (It is not required that you solve for the coefficients c_{n} in the series solution).
Solution. Separation of variables means looking for particular solutions in the form $X(x) T(t)$. We get

$$
\frac{T^{\prime}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}
$$

This implies that for some constant $\lambda \in(-\infty, \infty)$ we have

$$
\begin{equation*}
T^{\prime}+\lambda T=0 \quad(a) ; \quad X^{\prime \prime}+\lambda X=0 \tag{b}
\end{equation*}
$$

(why)? The boundary conditions $u_{x}(0, t)=0 ; \quad u(\pi, t)=0$ imply $X^{\prime}(0)=$ $0, X(\pi)=0$. From (b), we have, for $\lambda>0$

$$
X=A \sin (\sqrt{\lambda} x)+B \cos (\sqrt{\lambda} x)
$$

Since $X^{\prime}(0)=A$ (check) it follows that $A=0$ and $X=B \cos (\sqrt{\lambda} x)$. We must have $X(\pi)=0$ thus $\cos (\sqrt{\lambda} \pi)=0$, thus

$$
\sqrt{\lambda} \pi=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots,(2 k+1) \frac{\pi}{2}, \ldots
$$

(explain) so

$$
\lambda=(k+1 / 2)^{2}
$$

Then $T=C e^{-(k+1 / 2) t}$. There are no eigenfunctions for $\lambda \leq 0$ (check!). Thus the general solution obtained in this way is

$$
u(x, t)=\sum_{k=0}^{\infty} c_{k} e^{-(k+1 / 2) t} \cos (k+1 / 2) t
$$

The initial condition reads:

$$
u(x, 0)=f(x)=\sum_{k=0}^{\infty} c_{k} \cos (k+1 / 2) t
$$

we are not required to solve for c_{n}.
(a) In the equations below, find the general solution:
(b)

$$
4 y^{\prime \prime}+4 y^{\prime}+y=e^{-x / 2}
$$

(c)

$$
4 y^{\prime \prime}+4 y^{\prime}+y=x e^{-x / 2}
$$

Solution. We solve only (c), as (b) is similar. The characteristic roots are $r=$ $-1 / 2,-1 / 2$ (equal roots). The general solution of the associated homogeneous equation is $A e^{-x / 2}+B x e^{-x / 2}$. By the general formula, the solution of (c) is

$$
A e^{-x / 2}+B x e^{-x / 2}-\frac{1}{4} e^{-x / 2} \int_{0}^{x} s f(s) e^{s / 2} d s+\frac{1}{4} x e^{-x / 2} \int_{0}^{x} f(s) e^{s / 2} d s
$$

where $f(s)=s e^{-s / 2}$. Thus, the solution of (c) is

$$
A e^{-x / 2}+B x e^{-x / 2}+\frac{1}{24} x^{3} e^{-x / 2}
$$

2. Find all the solutions to the initial value problem:

$$
y y^{\prime}=1 ; x>0 \quad y(0)=0
$$

Solution. This is a separable equation. Integrating both sides we get

$$
\frac{y^{2}(x)}{2}=x+C
$$

The initial condition implies

$$
0=0+C
$$

thus $C=0$. So any solution has the property

$$
y(x)^{2}=2 x
$$

Thus there are exactly two solutions, $y(x)= \pm \sqrt{2 x}$; both indeed satisfy the equation for $x>0$ and the initial condition $y(0)=0$.

