POWERS, FROM FIRST PRINCIPLES

In the following, a will be real and greater than one.
Also, the proofs should not use anything from Chapter 18. The notation ":=" means equality by definition.

We have already defined a^{n} and $a^{1 / m}$ for positive a and $m, n \in \mathbb{N}$:
$a^{0}:=1$. For $n \in \mathbb{N}, a^{n}$ is defined inductively as $a^{1}:=a, a^{n+1}:=a^{n} a, a^{-n}:=1 / a^{n}$. Finally, $a^{1 / m}$ is the unique positive root of $x^{m}=a$).
(i) Check by induction that $a^{m+n}=a^{m} a^{n}$. If $q=m / n \in \mathbb{Q}$, then a^{q} is defined by $a^{q}:=\left(a^{1 / m}\right)^{n}$.
(ii) Check that the equality $a^{p+q}=a^{p} a^{q}$ holds if $p, q \in \mathbb{Q}$.
(iii) Check also that if $q>0$ then $a^{q}>1$. As a consequence, a^{q} is increasing in $q \in \mathbb{Q}$.
(i), (ii) and (iii) above are not part of the exercises, but I would recommend that you check these properties.

Exercise 1 (15p). Show that

$$
\lim _{n \rightarrow \infty} a^{1 / n}-1=0
$$

One way is to note that

$$
a-1=\left(a^{1 / n}\right)^{n}-1=\left(a^{1 / n}-1\right)\left(1+a^{\frac{1}{n}}+a^{\frac{2}{n}}+\cdots+a^{\frac{n-1}{n}}\right)
$$

By (iii) above, $a^{m / n}>1$ and thus

$$
\begin{equation*}
a^{1 / n}-1=\frac{a-1}{1+a^{\frac{1}{n}}+a^{\frac{2}{n}}+\cdots+a^{\frac{n-1}{n}}}<\frac{a-1}{n} \tag{1}
\end{equation*}
$$

Exercise 2 (15p). Use the result in the Exercise 1 to show that if $\left\{q_{n}\right\}_{n} \subset \mathbb{Q}$ and $q_{n} \rightarrow 0$ as $n \rightarrow \infty$, then $a^{q_{n}} \rightarrow 1$. Deduce that if $\left\{q_{n}\right\}_{n} \subset \mathbb{Q}$ is a convergent sequence with limit x, then $a^{q_{n}} \rightarrow l$ for some l, and for any other sequence of rational numbers $\left\{Q_{n}\right\}$ converging to $x, a^{Q_{n}} \rightarrow l$ for the same l.

Exercise 3 (30p). (a) Show that there is a unique increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ s.t. $f(q)=a^{q}$ for $q \in \mathbb{Q}$.
(b) Show that this f is continuous. It is then natural to write

$$
a^{x}:=f(x) \forall x \in \mathbb{R}
$$

(c) Use Eq. (1) and the monotonicity of f to show that f is differentiable. Hint: Show first that

$$
\frac{1}{n}\left(1+a^{\frac{1}{n}}+a^{\frac{2}{n}}+\cdots+a^{\frac{n-1}{n}}\right) \rightarrow \int_{0}^{1} a^{s} d s \text { as } n \rightarrow \infty
$$

(d) With the notation $\int_{0}^{1} a^{s} d s=\frac{a-1}{\ln a}$, check that $f^{\prime}=\ln a f$.

This would now allow us to "more directly" define $\ln x$ for all $x>0$. But this is another story...

