$$= \varphi_z \left(\sum_{n=0}^N \alpha_n \chi_n \right)$$ for every function $\sum_{n=0}^{N} \alpha_n \chi_n$ in \mathcal{P}_+ , it follows from Proposition 1.21 that ψ is continuous. 2.53 From Proposition 2.3 we know that the maximal ideal space of $C(\mathbb{T})$ is just \mathbb{T} . We have just shown that the maximal ideal space of the closed subalgebra A of $C(\mathbb{T})$ is $\overline{\mathbb{D}}$. Moreover, if φ_z is a multiplicative linear functional on A, and |z|=1, then φ_z is the restriction to A of the "evaluation at z" map on $C(\mathbb{T})$. Thus the maximal ideal space of $C(\mathbb{T})$ is embedded in that of A. This example also shows how the maximal ideal space of a function algebra is, at least roughly speaking, the natural domain of the functions in it. In this case although the elements of A are functions on \mathbb{T} , there are "hidden points" inside the circle which "ought" to be in the domain. In particular, viewing χ_1 as a function on \mathbb{T} , there is no reason why it should not be invertible; on $\overline{\mathbb{D}}$, however, it is obvious why it is not—it vanishes at the origin. Let us consider this example from another viewpoint. The element χ_1 is contained in both of the algebras A and $C(\mathbb{T})$. In $C(\mathbb{T})$ we have $\sigma_{C(\mathbb{T})}(\chi_1) = \mathbb{T}$, while in A we have $\sigma_A(\chi_1) = \overline{\mathbb{D}}$. Hence not only is the "A-spectrum" of χ_1 larger, but it is obtained from the $C(\mathbb{T})$ -spectrum by "filling in a hole." That this is true, in general, is a corollary to the next theorem. 2.54 Theorem. (Šilov) If \mathfrak{B} is a Banach algebra, \mathfrak{U} is a closed subalgebra of \mathfrak{B} , and f is an element of \mathfrak{U} , then the boundary of $\sigma_{\mathfrak{U}}(f)$ is contained in the boundary of $\sigma_{\mathfrak{B}}(f)$. **Proof** If $(f - \lambda)$ has an inverse in \mathbb{U} , then it has an inverse in \mathfrak{B} . Thus $\sigma_{\mathbb{U}}(f)$ contains $\sigma_{\mathfrak{B}}(f)$ and hence it is sufficient to show that the boundary of $\sigma_{\mathbb{U}}(f) \subset \sigma_{\mathfrak{B}}(f)$. If λ_0 is in the boundary of $\sigma_{\mathbb{U}}(f)$, then there exists a sequence $\{\lambda_n\}_{n=1}^{\infty}$ contained in $\rho_{\mathbb{U}}(f)$ such that $\lim_{n\to\infty}\lambda_n=\lambda_0$. If for some integer n it were true that $\|(f-\lambda_n)^{-1}\|<|1/(\lambda_0-\lambda_n)|$, then it would follow that $$\|(f-\lambda_0)-(f-\lambda_n)\|<1/\|(f-\lambda_n)^{-1}\|$$ and hence $f - \lambda_0$ would be invertible as in the proof of Proposition 2.7. Thus we have $\lim_{n\to\infty} \|(f-\lambda_n)^{-1}\| = \infty$. If λ_0 were not in $\sigma_{\mathfrak{B}}(f)$, then it would follow from Corollary 2.8 that $\|(f-\lambda)^{-1}\|$ is bounded for λ in some neighborhood of λ_0 , which is a contradiction. 2.55 Corollary. If \mathfrak{B} is a Banach algebra, \mathfrak{U} is a closed subalgebra of \mathfrak{B} , and f is an element of \mathfrak{U} , then $\sigma_{\mathfrak{U}}(f)$ is obtained by adding to $\sigma_{\mathfrak{B}}(f)$ certain of the bounded components of $\mathbb{C}\backslash\sigma_{\mathfrak{B}}(f)$. 84 Banach Algebra Techniques in Operator Theory $\sigma(U) = \exp(i\sigma(H))$ by Corollary 2.37, we see that the spectrum of H must be real. **4.28 Theorem.** If \mathfrak{B} is a C^* -algebra, \mathfrak{A} is a closed self-adjoint subalgebra of \mathfrak{A} , then $\sigma_{\mathfrak{A}}(T) = \sigma_{\mathfrak{B}}(T)$. **Proof** Since $\sigma_{\mathfrak{A}}(T)$ contains $\sigma_{\mathfrak{B}}(T)$, it is sufficient to show that if $T-\lambda$ is invertible in \mathfrak{B} , then the inverse $(T-\lambda)^{-1}$ is in \mathfrak{A} . We can assume $\lambda=0$ without loss of generality. Thus, T is invertible in \mathfrak{B} , and therefore T^*T is a self-adjoint element of \mathfrak{A} which is invertible in \mathfrak{B} . Since $\sigma_{\mathfrak{A}}(T^*T)$ is real by the previous theorem, we see that $\sigma_{\mathfrak{A}}(T^*T)=\sigma_{\mathfrak{B}}(T^*T)$ by Corollary 2.55. Thus, T^*T is invertible in \mathfrak{A} and therefore $$T^{-1} = (T^{-1}(T^*)^{-1})T^* = (T^*T)^{-1}T^*$$ is in $\mathfrak A$ and the proof is complete. We are now in a position to obtain a form of the spectral theorem for normal operators. We use it to obtain a "functional calculus" for continuous functions as well as to prove many elementary results about normal operators. Our approach is based on the following characterization of commutative C^* -algebras. **4.29 Theorem.** (Gelfand-Naimark) If $\mathfrak A$ is a commutative C^* -algebra and M is the maximal ideal space of $\mathfrak A$, then the Gelfand map is a *-isometric isomorphism of $\mathfrak A$ onto C(M). **Proof** If Γ denotes the Gelfand map, then we must show that $\overline{\Gamma(T)} = \Gamma(T^*)$ and that $\|\Gamma(T)\|_{\infty} = \|T\|$. The fact that Γ is onto will then follow from the Stone-Weierstrass theorem. If T is in \mathfrak{A} , then $H = \frac{1}{2}(T + T^*)$ and $K = (T - T^*)/2i$ are self-adjoint operators in \mathfrak{A} such that T = H + iK and $T^* = H - iK$. Since the sets $\sigma(H)$ and $\sigma(K)$ are contained in \mathbb{R} , by Theorem 4.27, the functions $\Gamma(H)$ and $\Gamma(K)$ are real valued by Corollary 2.36. Therefore, $$\overline{\Gamma(T)} = \overline{\Gamma(H) + i\Gamma(K)} = \Gamma(H) - i\Gamma(K) = \Gamma(H - iK) = \Gamma(T^*),$$ and hence Γ is a *-map. To show that Γ is an isometry, let T be an operator in \mathfrak{A} . Using Definition 4.26, Corollary 2.36, Theorem 2.38, and the fact that T^*T is self-adjoint, we have $$||T||^{2} = ||T^{*}T|| = ||(T^{*}T)^{2^{k}}||^{1/2^{k}} = \lim_{k \to \infty} ||(T^{*}T)^{2^{k}}||^{1/2^{k}}$$ $$= ||\Gamma(T^{*}T)||_{\infty} = ||\Gamma(T^{*})\Gamma(T)||_{\infty} = ||\Gamma(T)|^{2}||_{\infty} = ||\Gamma(T)||_{\infty}^{2}.$$ Therefore Γ is an isometry and hence a *-isometric isomorphism onto $C(M)$.