PROBLEM SET 1

- (1) Let K be an arbitrary compact set in \mathbb{C} . Show that there is a compact Hausdorff space X and a function $f \in C(X)$ such that $\sigma(f) = K$.
- (2) Let M be an n by n matrix and let \mathcal{A} be the Banach algebra generated by M in the operator norm $||M|| = \sup_{x \in \mathbb{R}^n, ||x||=1} |M(x)|$, where $|\cdot|$ is the Euclidian distance. Describe the set of maximal ideals and of multiplicative functionals on \mathcal{A} .
- (3) Let *B* be the Banach space C[0,1] with the usual sup norm, and \mathcal{P} be the operator $f \mapsto \int_0^x f$. Check that \mathcal{P} is bounded. Let \mathcal{A} be the Banach algebra generated by \mathcal{P} . Find $\sigma(\mathcal{P})$ in \mathcal{A} .