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It is hard to overemphasize the importance of complex analysis in
virtually every field of mathematics. Its power stems from a number
of sources; one of them is that it is the “ultimate” extension of real
numbers: it satisfies all the axioms of the reals except for ordering.
Furthermore, the Gelfand-Mazur theorem lists all division algebras.
These are: R,C and the quaternions (a non-commutative algebra).
Relatedly, functions that extend from R to C, the analytic functions,
preserve all their local properties, by the so-called principle of perma-
nence of relations that will be discussed later. Hence, to understand
the properties of such functions, we’d better look at the entire domain
of definition. A popular example is the function 1/(1 + x2) which has
a convergent power series at zero, whose radius is 1. There is noth-
ing special about x = ±1 but as soon as we extend the function to
C we see that ±i are singular points because of they are roots of the
denominator.

More generally, the fundamental theorem of algebra holds in C, not
necessarily in R.

To show the exponential decay of Fourier transforms of real-analytic
functions, one “needs” complex-analytic arguments.

1. Review: Complex numbers, functions of a complex
variable

◦ Complex numbers, C form a field; addition, multiplication of com-
plex numbers have the same properties as their counterparts in R.

◦ There is no “good” order relation in C. Except for that, we op-
erate with complex numbers in the same way as we operate with real
numbers.

◦ A function f of a complex variable is a function defined on some
subset of C with complex values. Alternatively, we can view it as a
pair of real valued functions of two real variables. We write z = x+ iy
with x, y real and i2 = −1 and write x =Re(z), y =Im(z). We write

f(z) = f(x+ iy) = u(x, y) + iv(x, y)

◦ We note that i2 = (−i)2 = −1. There is no intrinsic distinction
between i and −i. This entails a fundamental symmetry of the theory,
symmetry with respect to complex conjugation 1.

◦ Based on the basic properties of complex numbers, we can right
away define a number of elementary complex functions: z, 1/z and

1More precisely, z = x+ iy → z = x− iy is an involution and a field isomorphism
of C
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more generally form ∈ Z we easily define zm and in fact any polynomial∑K
m=0 cm(z − z0)

m.
◦ To be able to define and work with more interesting functions we

need to define continuity, derivatives and so on. For this we need to
define limits. Seen as a pair of real numbers (x, y), the modulus of z,
|z| =

√
x2 + y2 gives a measure of length and thus of smallness which

induces a natural norm which makes C a complete metric space.
Convergence then reduces to one of real numbers:

(1.2) zn → z ⇔ |z − zn| → 0 as n→ ∞
The topology of C is the same of that of R2, if we identify z = x + iy
with the point (x, y) ∈ R2. Some basic facts in topology are reviewed
in Appendix §50.1.

In the sequel, a domain in C is an open connected set in C. Examples
are the disks of radius r ⩾ 0 centered at some point z0 ∈ C:
(1.3) D(z0, r) := {z : |z − z0| < r}
The special cases r = 0 (the empty set, ∅) and r = ∞ (the whole of C)
are open sets. The unit disk D

D := D(0, 1)
will play a special role as a canonical choice of a disk.

Exercise 1.1. Show that zn → z if and only if Re (zn) → Re (z) and
Im (zn) → Im (z). Using completeness of R show that C is a complete
normed space.

Definition 1.2. For functions, limits are similarly reduced to the real
case: limz→z0 f(z) = a iff |f(z)− a| → 0 as z → z0.

2. Convergent power series

2.1. Series. A complex series is written as

(2.2)
∞∑
k=0

ak

where ak, k ⩾ 0 are complex, and is said to converge if, by definition,
the sequence of partial sums

(2.3) SN :=
N∑
k=0

ak

converges as N → ∞.
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The series is said to converge absolutely if the real-valued series

(2.4)
∞∑
k=0

|ak|

converges.

Exercise 2.3. Check that a necessary condition of convergence is ak →
0 as k → ∞ and that absolute convergence implies convergence. Verify
that the convergence criteria that you know from real analysis: the
ratio test, the n-th root test, in fact any test that does not rely on
signs carry over to complex series. The proofs over C require minor, if
any, modifications of the standard proofs in R; we will illustrate that
shortly.

2.2. Power series. A power series centered at z0 is a series of the form

(2.5)
∞∑
k=0

ck(z − z0)
k

where ck, z, z0 are complex.

Theorem 2.4 (Abel). If for some z1 ̸= z0 the series

(2.6)
∞∑
k=0

ck(z1 − z0)
k

converges, then

(2.7)
∞∑
k=0

ck(z − z0)
k

converges absolutely and uniformly in any disk D(z0, r) if r < |z1− z0|.

Exercise 2.5. Prove this theorem by reducing it to a familiar property
of real series and using the completeness of C.

Abel’s theorem tells us that the domain of convergence of a power
series is a disk; convergence can extend to parts of the boundary. The
largest r for which a series (2.7) converges for all z ∈ D(z0, r) is called
the radius of convergence. The disk of convergence may be degen-
erate: in one extreme situation it is a point, z = z0 (zero radius of
convergence) in the other, the whole complex domain (“infinite radius
of convergence”).
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3. Continuity and differentiability

Definition. A complex function is continuous at z0 if f(z) → f(z0)
as z → z0.

Exercise 3.6. Show that polynomials are continuous in C.

We can now define differentiability.
Definition. A function f is differentiable at z0 if, by definition,

there is a number, call it f ′(z0) such that

f(z)− f(z0)

z − z0
→ f ′(z0) as z → z0

Exercise 3.7. Show that differentiation has the properties we are fa-
miliar with from real variables: the sum rule, product rule, chain rule
etc. hold for complex differentiation. (Prove this; it amounts to noth-
ing more than mimicking the proofs over the reals.)

Differentiability in C is far more demanding than differentiability
in R. For the same reason, complex differentiable functions are much
more regular and have better properties than real-differentiable ones.

We will see that if f is analytic, then its derivative is also analytic,
implying that f has continuous derivatives of all orders. This comes
from the crucial fact that in complex analysis the derivative has an
integral formula.

We will also see later that analyticity in a domain D is equivalent to
the convergence of the Taylor series at all points z0 ∈ D.

3.1. Differentiability of power series.

Theorem 3.8. If the power series

(3.2) S(z) =
∞∑
k=0

ck(z − z0)
k
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converges in the open disk D(z0, r), r > 0 (see Theorem 2.4), then S(z)
has derivatives of all orders in D(z0, r)}. In particular,

S ′(z) =
∞∑
k=0

kck(z − z0)
k−1(3.3)

S ′′(z) =
∞∑
k=0

k(k − 1)ck(z − z0)
k−2(3.4)

.....(3.5)

S(p)(z) =
∞∑
k=0

k(k − 1) · · · (k − p+ 1)ck(z − z0)
k−p(3.6)

.......(3.7)
and all these series converge in D(z0, r) to the corresponding derivative
of S.

Proof. For the proof we only need to show the result for S ′: for larger
p the proof follows by induction. Furthermore, by taking z′ = z − z0
we reduce the problem to the case when z0 = 0. Let |z| < ρ < r and
choose h small enough so that |z|+ |h| < ρ. Note first that, if z and h
are in R+ we have

(3.8) (z + h)n − zn − nzn−1h =
n(n− 1)

2
zn−2h2 +

n∑
k=3

(
n

k

)
hkzn−k

⩽ n(n− 1)

2
(z + a)n−2h2 ⩽ n(n− 1)

2
ρn−2h2

where a ∈ (0, δ) where we applied the Taylor remainder theorem. If
z, h are complex the equality above still holds. Hence

(3.9)
∣∣∣∣(z + h)n − zn

h
− nzn−1

∣∣∣∣ = ∣∣∣∣n(n− 1)

2
zn−2h+ · · ·+ hn−1

∣∣∣∣
⩽ n(n− 1)

2
|z|n−2|h|+

n∑
k=3

(
n

k

)
|h|k|z|n−k ⩽ n(n− 1)

2
ρn−2|h|

(since in the term after the first inequality |z| and |h| are positive).
Thus, for the partial sums SN(z) =

∑N
k=0 ck(z − z0)

k we have∣∣∣∣SN(z + h)− SN(z)

h
− S ′

N(z)

∣∣∣∣ ⩽ |h|
N∑
k=0

k(k − 1)

2
|ck|ρk ⩽ C|h|

where C =
∞∑
k=0

k(k − 1)

2
|ck|ρk where the series converges as ρ < r. □
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Corollary 3.9. Show that S(k)(z0) = k!ck and thus (3.2) is the con-
vergent Taylor series of S.

Corollary 3.10. Assume S(z) converges in a disk D(z0, r) and that
there is a sequence {zn}n∈N with an accumulation point at z0 so that
S(zn) = 0 for all n ∈ N. Then S(z) is identically zero.

Proof. We can assume without loss of generality that z0 = 0. We show
that all coefficients of S(z) are zero, and thus S = 0. We write
(3.10) S(z) = c0 + zT (z)

where T converges in D(0, r). We have, by assumption
(3.11) S(zn) = 0 = lim

n→∞
[c0 + znT (zn)]

and thus c0 = 0. From here we proceed by induction, as S(z)/z is a
power series with the same properties as S etc. (check!)

3.2. Some basic functions.
◦ The exponential. We define

(3.12) ez =
∞∑
k=0

zn

n!

This series converges for any z ∈ C and thus it is differentiable for any
z in C by Theorem 3.8. We have, by (3.3) and (3.12)
(3.13) (ez)′ = ez

Thus,
(3.14) (eze−z)′ = 0

and thus eze−z does not depend on z, and takes the same value ev-
erywhere, the value for z = 0. But we see immediately that e0 = 1.
Thus
(3.15) eze−z = 1 ⇔ e−z = 1/ez

In the same way,

(3.16) (ez+ae−z) ′ = (ez+a)′e−z + ez+a(e−z)′ = 0

⇔ ez+ae−z = eae0 = ea ⇔ ez+a = ezea

which provides us with the fundamental property of the exponential.
Also, we immediately check Euler’s formula: for ϕ ∈ R we have

(3.17) eiϕ = cosϕ+ i sinϕ
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Exercise 3.11. (a) We tacitly used something more in these arguments:
what? Fill in the missing details using results we have already proven.

(c) Define cos and sin in C by their power series and show that (3.17)
holds for all z in C: eiz = cos z + i sin z. This leads to the important
formulas for sin, cos in terms of the exponential:

sin z =
eiz − e−iz

2i
; cos z =

eiz + e−iz

2i

Use these representations to show that sin2+cos2 = 1 throughout C.
Exercise 3.12 (A first form of permanence of analytic relations). (a)
Let F and f be analytic in a domain D that contains an interval in R
and assume that F (f(x)) = 0 for x ∈ R. Show that F (f(z)) = 0 in D.

(b) Use (a) to give an alternative proof of the identities of the expo-
nential, based on Corollary 3.10.

(c) Use (a) and the series extension of sin, cos to C to show that
sin2+cos2 = 1 in C.
Exercise 3.13. Show that
(3.18) es = 1 ⇔ s = 2Nπi, N ∈ Z
◦ The logarithm. In the complex domain the log is a trickier function.
For the moment we look at a simpler question, that of defining log(1+z)
only for |z| < 1. This is done via the convergent Taylor series
(3.19) log(1 + z) = z − z2/2 + z3/3− z4/4 + · · ·
By (3.3) we get

(3.20) d

dz
log(1 + z) = 1− z + z2 − z3 + · · · = 1

1 + z
if |z| < 1

Exercise 3.14. Show that if |s| is small we have
log(es) = s; elog(1+s) = 1 + s

We will return later to the question of defining log z for more general
z ∈ C, z ̸= 0 and we will study its properties carefully. It is one of
the fundamental “branched” complex functions. Many other branched
functions have their branching due to that of the log.
3.3. Operations with power series. If S and T are power series
convergent in a neighborhood of z0, then S+T, S×T , S/T if T (z0) ̸= 0
and S(T ) if T (z0) = 0 (see Exercise 3.15 below) are convergent in some
neighborhood of z0 as well. Formulas for these new series are obtained
by noticing that power series are limits of polynomials, and then by
finding the formulas for the corresponding polynomials. For instance,
(3.21) ST = s0t0+(s1t0+s0t1)(z−z0)+(s2t0+s1t1+s0t2)(z−z0)2+· · ·
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Exercise 3.15. (a) If S and T are two power series with radius of
convergence r, then ST has radius of convergence at least r.

(b) Write three terms of the series S/T if T (z0) ̸= 0.
(c)∗ Under the assumptions above, show that S/T has nonzero radius

of convergence.
(d)∗ Under the assumptions above with the one in (b) replaced by

T (z0) = 0, show that S ◦ T has nonzero radius of convergence.

3.4. The Cauchy-Riemann equations. Analytic functions can be
defined by many equivalent properties, that we will soon explore.

Definition 3.16. The function f defined in a domain D is analytic in
D if it is differentiable at all points in D.

As a first definition equivalent to differentiability, an analytic func-
tion is a function which satisfies the Cauchy-Riemann (C-R) equations:

Theorem 3.17 (C-R). (1) Assume that f = u + iv is analytic in a
domain D in C. Then the Cauchy-Riemann equations hold:

(3.22) ux = vy
uy = −vx

throughout D and u, v are differentiable in D.

(2) Conversely, if (u, v) are differentiable and satisfy (3.22) in D,
then f is differentiable in D.

Proof. (1) Let f(z) = u(x, y) + iv(x, y) and f ′(z0) = a + ib. We can
again take wlog z0 = 0. We show that the stated equivalence for any
z0 ∈ D. By a translation, we can arrange that z0 = 0. We have

(3.23)
f(z)− f(0) = u(x, y)− u(0, 0) + iv(x, y)− iv(0, 0) = [f ′(0) + ε(z)]z

= (a+ib)[x−x0+i(y−y0)]+ε(z)z = ax−by+i(ay+bx)+ib(x−x0)+ε(z)z
where ε(z) → 0 as z → z0 implying ux, uy, vx, vy exist at z0 and satisfy
the C-R equations (see also Exercise 3.18 below).

(ii) Differentiability of u and v at (x0, y0) implies

(3.24) f(z)− f(0) = u(x, y)− u(0, 0) + iv(x, y)− iv(0, 0)

= ux(0, 0)x+ uy(0, 0)y+ ivx(0, 0)x+ ivy(0, 0)y+ ε(x, y)x+ iη(x, y)y

where ε and η go to zero as z → z0.
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Exercise 3.18. Show that (3.23) and (3.24) are compatible if and only
if (3.22) hold. (The real and imaginary parts must be equal to each
other, and x− x0 and y − y0 are independent quantities.)

3.5. Analyticity at infinity. As |z| → ∞, 1/z → 0. By definition f
is analytic at infinity if f(1/z) is analytic at zero.

4. Integrals

Integration plays an important role in complex analysis. As we shall
see, the derivative of a function can be written as an integral, and many
of the nice properties of analytic functions originate in this fact.

If f(t) = u(t)+iv(t) is a complex-valued function of one real variable
t then

∫ b
a
f(t)dt is defined by

(4.2)
∫ b

a

f(t)dt =

∫ b

a

u(t)dt+ i

∫ b

a

v(t)dt

This reduces the questions of complex integration to the familiar real
integration.

Note 4.19. In the following, unless otherwise specified, we assume that
the curves we use are piecewise differentiable.

Note.
Let γ(t) = x(t) + iy(t), t ∈ [a, b] be a piecewise C1 parametrized

curve. We define ∫
γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt

essentially in the same way as (4.2): breaking up γ, γ′ and f into their
real and imaginary part. Do this calculation.

Note that the sign of the integral depends on the orientation of γ,
specified by stating that t goes from a to b, rather than only t ∈ [a, b]. It
is natural to say that γ(a) is the starting point of γ, and γ(b) is its final
point. The same geometric curve with opposite orientation is denoted
by −γ; a formula is easily found as (−γ)(t) = x(a+b−t)+iy(a+b−t),
t ∈ [a, b]. We see that

(4.3)
∫
−γ
f(z)dz =

∫ a

b

f(γ(t))γ′(t)dt = −
∫
γ

f(z)dz

If γ(a) = γ(b) the curve is called closed. Positive orientation, the
counterclockwise one, is assumed (unless otherwise specified), and we
denote

∮
γ
:=
∫
γ
.
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Exercise 4.20. Show that

(4.4)
∫
γ

f(z)dz =

∫
γ

(
udx− vdy

)
+ i

∫
γ

(
udy + vdx

)
Exercise 4.21. Show that the integral along a curve (as a set) can
depend on the parametrization of the curve only through a sign.

A curve is called simple if it has no self-intersections. For example,
the circle is simple, but the figure ”8” is not.

A domain D is called simply connected if any simple closed curve γ
contained it D can be deformed to a point continuously through curves
completely contained in D. This means:

There is a continuous function of two variables F (t, s) = x(t, s) +
iy(t, s) defined on [a, b]× [0, 1] with values in D such that F (t, 0) = γ(t)
and F (t, 1) = p, a point in D. Intuitively, a simply connected domain
has no holes. For example a disk is a simply connected domain, but a
punctured disk (such as D \ {0}), or an annulus: {z ∈ C| r < |z| < R},
are not simply connected.
Theorem 4.22 (Cauchy). Assume D is a simply connected domain
and that f is continuously differentiable in D. If γ is a piecewise
differentiable simple closed curve contained in D then

(4.5)
∮
γ

f(z)dz = 0

Proof. Start with the decomposition (4.4) and use Green’s theorem
to write

(4.6)
∫
γ

(
udx− vdy

)
= −

∫ ∫
Int(γ)

(
∂v

∂x
+
∂u

∂y

)
dxdy = 0

which vanishes by (3.22) The second integral in (4.4) is dealt with
similarly. □

Cauchy thought that continuity of the derivative was needed. Later
on Montel and others weakend this hypothesis imposing only bound-
edness, L1, or other conditions. Goursat noticed that mere differentia-
bility suffices.
Theorem 4.23 (Cauchy-Goursat–Goursat (1884)). Assume D is a
simply connected domain and that f is differentiable in D. If γ is a
piecewise differentiable simple closed curve contained in D then

(4.7)
∮
γ

f(z)dz = 0
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Proof. We first note that, due to the continuity of f and the piecewise-
differentiability of γ we can approximate with arbitrary accuracy

∫
γ
f(s)ds

with integrals along polygonal lines,
∫
P
f(s)ds. Decomposing the poly-

gon into triangles, it is then enough to show that
∫
T
f(s)ds = 0 along

any triangle contained in D. This is done in the following steps.

T
11

22
T

Figure 1. Directions of integration after the first par-
tition(left); a few partitions (right).

We split the triangle into 4 smaller triangles and write
∫
T
=
∑4

1

∫
Tj

where the orientation of the inner triangles is chosen so that the in-
tegrals along the inner sides cancel. We denote by T11 the triangle
with the property

∣∣∣∫T11 f(s)ds∣∣∣ = maxj

{∣∣∣∫Tj f(s)ds∣∣∣}. We see that∣∣∫
T
f(s)ds

∣∣ ⩽ 4
∣∣∣∫T11 f(s)ds∣∣∣.

We now split T11 into 4 smaller triangles, and proceed in a similar
manner to pick T22, and continue inductively in the same fashion.

It follows inductively that for all n ∈ N,
∣∣∫
T
f(s)ds

∣∣ ⩽ 4n
∣∣∣∫Tnn

f(s)ds
∣∣∣.

Since the closed triangles Tnn are compact and nested there is a z0 ∈ T
such that ∩nTnn = {z0}.

Now for any fixed n and z on ∂Tnn we have f(z) = f(z0)+f
′(z0)(z−

z0) + ε(z)(z − z0) where ε(z) → 0 as n → ∞ (since z − z0 → 0 as
n→ ∞).

We check, using Cauchy’s theorem, that
∫
Tnn

f(s)ds =
∫
Tnn

ε(s)(s−
z0)ds. Note that for some constant C the length of the perimeter of
Tnn as well as |z − z0| are bounded by C2−n.

It follows that
∣∣∫
T
f(s)ds

∣∣ ⩽ C24n2−n2−n supTnn
|ε(s)| → 0 as n →

∞.

It is sometimes useful to integrate analytic functions along the bound-
ary of their analyticity domain. This can be done for instance if f is
continuous up to this boundary; Cauchy’s theorem still holds:
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Exercise 4.24. Assuming that f is analytic on D, continuous on D,
and that D is a rectifiable curve of winding number one show that (4.7)
holds if γ is a simple closed curve in D.

5. Cauchy’s formula

5.1. Homotopic curves. Let D be domain in C. Two curves in D
are said to be homotopic in D if they can be continuously deformed
into each other by a deformation inside D (see paragraph preceding
Theorem 4.23). For example, if D is simply connected then any simple
closed curve is homotopic to a point, see Fig. 2. As another example, if
D is the annulus {z |1 < |z| < 2} then all circles |z| = r with 1 < r < 2
are homotopic to each other, but not to a point, while any simple closed
curve not going around 0 is homotopic to a point.

γ

Figure 2. All dotted curves inside γ are homotopic to
each other and to the central point.

We will find useful to consider curves γ1,2 inD, given by two functions
γ1,2(t) for t ∈ [a, b], which have the same endpoints, γ1(a) = γ2(a),
and γ1(b) = γ2(b). Two such curves are called homotopic with fixed
endpoints if they can be continuously deformed into each other through
a transformation preserving the endpoints with range within D, see
Fig. 3.

5.2. Independence of the integral on the path. Line integrals are
additive w.r.t. the domain of integration: consider an oriented curve
γ1, and then let γ2 start at the final point of γ1, say, γ1(t) for t from
a to b, γ2(t) for t from b to c, with γ1(b) = γ2(b). We denote for short
γ1 + γ2 the concatenated curve from t from a to c and we have by
definition

(5.2)
∫
γ1−γ2

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz
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γ

γ

1

2

Figure 3. Two homotopic curves, γ1 and γ2.

(i) Suppose f is analytic in a simply connected domainD, and γ1,2 are
two oriented curves in D having the same endpoints. Then γ = γ1−γ2
is a closed curve. If there is a domain D′ ⊂ D containing γ1 − γ2 and
γ1−γ2 is homotopic to a point in D′, then by (4.7), (5.2), (4.3) we find

0 =

∫
γ1−γ2

f(z) dz =

∫
γ1

f(z) dz −
∫
γ2

f(z) dz

and therefore the integral of an analytic function on a simply connected
domain is path independent if the paths are homotopic:

(5.3)
∫
γ1

f(z) dz =

∫
γ2

f(z) dz

γ

γ

1

2

γ
3

γ
4

Figure 4. γ1 and γ2 are not homotopic in the yellow
domain while γ3 and γ4 are.

5.3. Cauchy’s Formula. Let D be a domain in C and z0 ∈ D. The
functions (z−z0)−n, n = 1, 2, ... are analytic in D\{z0}. Thus, if γ1 and
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γ2 are two closed curves in D not passing through z0, and homotopic
to each-other in D \ {z0} then

(5.4)
∫
γ1

(z − z0)
−ndz =

∫
γ2

(z − z0)
−ndz

Clearly, these integrals are zero if γi does not contain z0 inside. To
calculate the integrals on a simple closed curve encircling z0 it suffices,
by (5.4), to do the calculation when the curve is a circle, which can
be done explicitly. Indeed, a circle centered at z0 with radius ρ is
parametrized by z = z0 + ρeit, t ∈ [0, 2π] (where we used Euler’s
formula), and we get

(5.5)
∮

dz

(z − z0)n
=

i

ρn−1

∫ 2π

0

e−i(n−1)tdt =

{
2πi if n = 1
0 otherwise

Definition 5.25. If γ is a curve and z0 /∈ γ, then the index of z0 w.r.t.
γ is defined as

Indγ(z0) =
1

2πi

∮
γ

dζ

ζ − z0

and it represents the “number of times γ winds around z0”.

Theorem 5.26 (Cauchy’s formula). If f is analytic in the simply
connected domain D and γ is piecewise a differentiable simple closed
curve in D around z, we have

(5.6) f(z) =
1

2πi

∮
γ

f(s)

s− z
ds

Proof. Note first that f(s)− f(z) = f ′(z)(s− z) + ε(s)(s− z) where
ε(s) → 0 as s → z. Note that ε is continuous in D \ {z0}. We choose
a small δ and a ρ such that |ε(s)| < δ/(2π)for s ∈ D := Dρ(z0). Then,

(5.7) 1

2πi

∮
γ

f(s)

s− z
ds =

1

2πi

∮
∂D

f(s)

s− z
ds =

1

2πi

∮
∂D

f(z)

s− z
ds

+
1

2πi

∮
∂D

f(s)− f(z)

s− z
ds = f(z)

1

2πi

∮
∂D

ds

s− z
+f ′(z)

∮
∂D
ds+

∮
∂D
ε(s)ds

where the absolute value of the last integral is bounded by δ, and the
result follows from (5.5) by letting δ → 0.

6. Taylor series of analytic functions

Theorem 6.27 (Taylor series; Cauchy’s formula for higher deriva-
tives). If f(z) is continuously differentiable in D and z0 ∈ D then there
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exists ρ such that, for z ∈ D(z0; ρ) we have

(6.2) f(z) =
∞∑
k=0

ck(z − z0)
k where

ck =
1

2πi

∮
∂Dρ(z0)

f(s)

(s− z0)k+1
ds =

f (k)(z0)

k!

Assume f is analytic in D and let z0 ∈ D. Consider the disk Dρ(z0)

with ρ small enough so that its closure Dρ(z0) is contained in D.
By Theorem 5.26 we have, for z ∈ Dρ(z0)

(6.3) f(z) =
1

2πi

∮
∂Dρ(z0)

f(s)

s− z
ds

We write

(6.4) 1

s− z
=

1

s− z0 − (z − z0)
=

1

s− z0

∞∑
k=0

(
z − z0
s− z0

)k
Note that the geometric series above converges absolutely and the ex-
pression above is bounded in absolute value by

1

|s− z0|

∞∑
k=0

∣∣∣∣z − z0
s− z0

∣∣∣∣k
Applying the dominated convergence theorem, we see that

(6.5) f(z) =
∞∑
k=0

ck(z − z0)
k; ck =

1

2πi

∮
∂Dρ(z0)

f(s)

(s− z0)k+1
ds

Exercise 6.28 (Cauchy remainder). Check that

(6.6) f(z) =
n∑
k=0

ck(z − z0)
k + E(z, z0, n)

where

(6.7) E(z, z0, n) =
1

2πi

∮
∂Dρ(z0)

f(s)

(s− z)

(z − z0)
n+1

(s− z0)n+1

Show that, if Dρ(z0) ⊂ D, then

(6.8)
∣∣E(z, z0, n)∣∣ ⩽ max

Dρ(z0)
|f | |z − z0|n+1

(ρ− |z − z0|)
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which in this case is optimal. If Dρ(z0) is the maximal disk centered at
z0 contained in D, then the optimal estimate becomes

(6.9)
∣∣E(z, z0, n)∣∣ ⩽ inf

ρ′⩽ρ
sup

Dρ′ (z0)

|f | |z − z0|n+1

(ρ′ − |z − z0|)

From these considerations it follows that

Theorem 6.29. If f is analytic in a domain D and z0 ∈ D, then f
has derivatives of any order at z0.

Therefore if f is analytic on D, so are f ′, f ′′, etc.

Furthermore:

Note 6.30. The expression of f (k) as an integral makes differentiation
a “smooth” operation on analytic functions, unlike usual differentiation
in real analysis.

Remark 6.31. The disk of convergence of the Taylor series of an an-
alytic function cannot, by the estimate (6.9), be zero. We claim that
the radius of convergence of the series exactly equals the radius r of
the largest disk centered at z0 where f is analytic (“the distance to the
nearest singularity”), see Fig. 5. Indeed, in any smaller disk we can

R

Figure 5. Disk of convergence of a Taylor series where
the yellow region is a domain of analyticity and the red
dot is a singularity.

apply Theorem 6.27 above. If the radius of convergence were larger
than r, f would be analytic in a larger domain since convergent power
series are analytic.
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Example. Consider the function 1
1+z2

. Its Taylor series at z = 0 is

1

1 + z2
=

∞∑
k=0

(−1)k+1z2k, convergent for |z| < 1

and on the boundary of the disk of convergence there are singularities
of 1

1+z2
, namely z = ±i. As a corollary we have

Theorem 6.32 (Liouville’s theorem). A function which is entire
(meaning analytic in all of C) and bounded in C is constant.

Proof. Let M = supC |f |. We have, by 6.27, for any ρ > 0,

(6.10) f ′(z) =
1

2πi

∮
∂Dρ(0)

f(s)

(s− z)2
ds

and thus

(6.11) |f ′(z)| ⩽ 1

2π
M

1

ρ2
2πρ =M/ρ

Taking ρ→ ∞ it follows that f ′(z) ≡ 0. Then f is a constant. □
Exercise 6.33. * Show that an entire function other than a polynomial
must grow faster than any power of |z| along some path as z → ∞.

7. The fundamental theorem of algebra

One classical application of Liouville’s Theorem is the Fundamental
Theorem of Algebra:
Theorem 7.34 (The Fundamental Theorem of Algebra). A polynomial
Pn(z) of degree n has exactly n roots in C, counting multiplicity.
Proof. It is enough to show the existence of one root when n ⩾ 1, since
the general form follows inductively by factoring the polynomial.
Exercise 7.35. Let P be a nonconstant polynomial. Then there exists
an R such that 1/P is analytic in the domain {z : |z| > R} and
1/P (z) → 0 as |z| → ∞.

By this exercise, Pn must have a root, since otherwise 1/Pn(z) would
be entire and bounded (check).

8. More properties of analytic functions

Assume f is analytic in Dρ(z0) and all derivatives of f are zero at
z0. Then f is zero in the whole of Dρ(z0) (check). More is true.
Proposition 8.36. Assume f is analytic in a domain D and all deriva-
tives at z0 ∈ D of f are zero. Then f is identically zero in D.
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Proof. For any z ∈ D there is a polygonal line P joining z0 to z:
segments [zj−1, zj], j = 1, . . . , n (with zn = z) and disks Drj(zj) ⊂ D.
(see Proposition 50.19).

Elementary geometry arguments show that we can find some ρ > 0
so that any disk centered at a point on P and of radius ρ is contained
in D. We cover P by a finite number of disks of radius ρ, centered at
spaced points on P , so that the center of each disk is contained in the
previous one (for example, their centers are <ρ/2 distance apart). The
first disk is centered at z0. Then f is identically zero on the first disk.
This means that f and all its derivatives are zero at the center of the
second disk, hence f is identically zero on the second disk as well. The
argument is continued up to the last disk, showing that f(z) = 0.
Theorem 8.37 (Morera). Let f be continuous in a simply connected
domain D and such that

∮
γ
fds = 0 for any simple piecewise differen-

tiable closed curve γ contained in D. Then f is analytic in D. The
same is true if we restrict the set of curves γ to triangles.

Proof. Let z0 ∈ D and let F (z) =
∫ z
z0
f(s)ds. Here the integral is

along any piecewise differentiable path from z0 to z which is contained
in D; note that the value of the integral does not depend on the choice
of the path, by the assumption of the theorem. We choose such a path
γ.

We take δ small enough, choose a path γ′ from z0 to z + δ and note
that

∫
γ
f(s)ds−

∫
γ′
f(s)ds =

∫ z+δ
z

f(s)ds where the path can be chosen
to be a straight line. We write f(s) = f(z) + ε(s), lims→0 ε(s) = 0 and
note that

∫ z+δ
z

f(s)ds = f(z)δ + ε1(δ)δ with limδ→0 ε1(δ) = 0. Hence,
F is continuously differentiable in D and F ′ = f . By Theorem 6.29 f
is analytic. The restriction to triangles is left as an exercise, below.

□
Exercise 8.38 (Restriction to triangles). (a) Find a similar argument
in the case when the set of curves γ is restricted to triangles, using
polygonal-path connectedness.

(b) Find an alternative proof based on the piecewise differentiability
of the curve and approximations by polygons.

We have now three equivalent views of analytic functions: as dif-
ferentiable functions of z, as sums of power series, and as continuous
functions with zero loop integrals. All these characterizations are quite
valuable.
Theorem 8.39 (Weierstrass’s theorem). Assume that fn are analytic
in the domain Ω and converge uniformly on any compact set in Ω to
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f . Then f is analytic in Ω. Furthermore, f ′
n → f ′ uniformly on any

compact set in Ω.

Note 8.40. Clearly this implies that for any k ∈ N f
(k)
n → f (k) uni-

formly on any compact set in Ω.

Proof. Let T be a triangle contained in the compact K ⊂ Ω. Then, by
analyticity,

(8.2)
∫
T

fn(z)dz = 0

Uniform convergence implies that f is continuous and that we can
apply dominated convergence which implies

(8.3)
∫
T

f(z)dz = 0

Using Morera’s theorem, we see that f is analytic. The properties
of the derivatives are immediate, by Cauchy’s formula and dominated
convergence.

9. Harmonic functions

A real-valued, C2 function u(x, y) which satisfies Laplace’s equation
(9.2) uxx + uyy = 0

in some domain U is called harmonic in U .

Theorem 9.41. Let D be a simply connected domain in C. A function
u is harmonic in D if and only if u is the real part (or, equivalently,
the imaginary part) of an analytic function: u = Re(f) with f analytic
in D; f is unique up to an arbitrary imaginary constant.

In other words, for any harmonic function u, there exists a function v,
harmonic on the same domain, and unique up to an additive constant,
so that u+ iv is analytic. The function v is called harmonic conjugate
of u.

Proof. If u = Re(f) then u ∈ C∞ (check this, for instance by using
the Taylor series of f). Then (9.2) follows immediately from the C-R
equations. In the opposite direction, consider the field E = (−uy, ux).
We check immediately that this is a potential field and thus E = ∇v
for some v (unique up to an arbitrary constant). But then, by the C-R
theorem, u+ iv is analytic in D. □
Lemma 9.42. Let f = u+ iv be analytic near a point z0 and assume
f ′(z0) ̸= 0. Then the constant level curves u(x, y) = u(x0, y0) and
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v(x, y) = v(x0, y0) exist near z0, they are smooth and orthogonal to
each-other.

The fact that f ′(z0) ̸= 0 implies, by C-R that ∇u,∇v are nonzero at
x0, y0. The rest follows from the implicit function theorem in R2, and
from ∇u · ∇v = 0, a consequence of C-R.

9.1. Potential and Hamiltonian flows. Consider an autonomous
system of ODEs in a domain D: the system ẋ = E1(x, p); ṗ = E2(x, p)
is a Hamiltonian system if there is an H ∈ C1(D) such that E1 = ∂H

∂p

and E2 = −∂H
∂x

. It is a potential system if there is a V ∈ C1(D) such
that E1 =

∂V
∂x

and E2 =
∂V
∂p
. We see that a system is both potential and

Hamiltonian if there exist two functions H and V such that ∂H
∂p

= ∂V
∂x

and ∂H
∂x

= −∂V
∂p
. If H and V are smooth enough, then a system is both

potential and Hamiltonian iff H and V are harmonic functions, the real
and imaginary part of an analytic function. In Hamiltonian systems,
H is a conserved quantity, meaning: d

dt
H(x(t), y(t)) = ∂

∂H
ẋ+ ∂

∂H
ṗ = 0

for any solution, as can be easily checked. In gradient systems, ⟨ẋ, ṗ⟩
(when nonzero) clearly gives the direction of steepest ascent of V at
the point ⟨x, p⟩.
Note 9.43. The steepest decent/ascent lines of u satisfy the system
of ODEs ẋ = ∂v/∂x, ẏ = ∂v/∂y; the solution is smooth wherever
v2x + v2y ̸= 0. This will be important in understanding the steepest
descent method.

10. The maximum modulus principle

An analytic function in a domain D can attain its maximum absolute
value only on the boundary of D:
Theorem 10.44. Assume f is analytic and nonconstant in the domain
D. Then |f | has no maximum point in D, unless f is a constant.

Usually the proofs use Cauchy’s formula. Look up these other proofs,
because they extend to harmonic functions in more than two dimen-
sions.

We will give a proof based on Taylor series.
Proof. Assume that z0 ∈ D is a point of maximum of |f |. There

is nothing to prove if f = 0. Otherwise, replacing f by f/M and z
by z − z0 without loss of generality, we can assume that M = 1 and
z0 = 0. If f is not 1 everywhere, then there exists k > 0 so that the
Taylor coefficient ck of f at 0 is nonzero, and in some Dρ(0) we have

f(z) = 1 + ckz
k + ck+1z

k+1 + · · · = 1 + ckz
k(1 + dkzE1(z))
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with E1 analytic at zero. Let z1 be such that ckzk1 ∈ R+ and small
enough so that |z1dkE1(z1)| < 1. We see that |f(z1)| > 1, a contradic-
tion. □
Exercise 10.45. Show that if |f | has a minimum in D, then this
minimum is zero.
Exercise 10.46. * Find the maximum and minimum values of | sin z|
inside the closed unit disk.
Steepest ascent/descent lines Let f be analytic in a neighborhood
of z0 and k ∈ N be the least positive index for which ck ̸= 0. A
direction d ∈ C is a steepest ascent (descent) direction at z0 of |f | if
ckd

k ∈ R+ (ckdk ∈ R−, resp.). A curve γ that follows at each point a
steepest ascent/descent direction (is tangent to d = d(z) for all z ∈ γ
is a steepest ascent/descent curve.
Note 10.47. By note 9.43, the lines of steepest ascent/descent are
smooth and unique through any z0 such that f(z) = f(z0)+ f

′(z0)(z−
z0) + ... with f ′(z0) ̸= 0. A saddle point is a point where f ′(z0) = 0.
Then f is given locally by zk + ... with k ⩾ 2. Check that there are
exactly k directions of steepest ascent at the saddle point. Hence,
lines of steepest descent can be continued, in k possible ways, through
a saddle point. These notions are important for understanding the
steepest descent method (a.k.a. saddle point method).

Harmonic functions in a domain D do not have extremum points in
D:
Theorem 10.48. Assume u is harmonic and non-constant in D. Then
u has no minimum or maximum in D.

Proof. Let u = Re(f) and define g = ef , clearly analytic in D. We
have ef = eueiv; |ef | = eu and then u has a maximum if and only if
|g| has a maximum. But this cannot happen strictly inside D. For the
minimum, note that min(u) = −max(−u) □
10.1. Application. The soap film picked up by a thin closed wire has
the minimum possible area compatible with the constraint that it is
bordered by the wire, since the potential energy is proportional to the
surface area. Then, if the wire is close to planar (say the (x, y) plane),
the local height u(x, y) of the film satisfies Laplace’s equation. (This is
not hard to show using some elementary differential geometry.) If the
wire is planar, then u = 0 on the boundary, and by Theorem 10.48 the
minimal surface is flat. This is probably not a surprise. We will however
be able to solve Laplace’s equation with any boundary constraint, and
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this will provide us with a lot of insight on minimal surfaces, and
conversely, the intuition we have about shapes of soap films gives us an
intuition on the solution of Laplace’s equation. For instance, it is clear
that the shape can have no local extremum, otherwise by flattening it
locally would make the surface area smaller.

10.2. Cauchy principal value integrals (PV). Suppose that f is
analytic in a domain containing the simple closed piecewise differen-
tiable curve C. By Cauchy’s theorem we have

(10.2) 1

2πi

∮
C

f(s)

s− z
ds =

{
f(z) if z is inside C

0 otherwise
What if z lies on C? Then the integral is in need of a definition. In
one such definition a symmetric segment of the curve centered at z of
length ε is cut out and then ε is taken to zero, giving the ”Cauchy
principal part integral” denoted PV

∮
(or P or with a bar through the

integral). Another definition is to take the half sum of the integral on
a curve circumventing z from the outside and of the integral on a curve
circumventing z from the inside.
Exercise 10.49. Show that if C is a smooth closed curve and f is
analytic in a neighborhood of C, then

(10.3) 1

2πi
PV

∮
C

f(s)

s− z
ds =

1

2
f(z)

and that the two definitions above coincide. Clearly if f(s)/(s − z)
extends to an analytic function at z, then the PV integral and the usual
one coincide.
Definition 10.50. [PV on the line] If for any small ε > 0 f ∈
L1(a,−ε) ∩ L1(ε, b), then PV is defined as

(10.4) PV

∫ b

a

f(s)ds = lim
ε↓0

(∫ L−ε

a

f(s)ds+

∫ b

L+ε

f(s)ds

)
if the limit exists.
Example 10.51. The Hilbert transform, an important operator in
applications is defined as

(10.5) H(u)(t) =
1

π
PV

∫ +∞

−∞

u(τ)

t− τ
dτ

It is is a bounded operator in Lp for 1 < p <∞ where the limit exists
pointwise almost everywhere, as well as from L1 to weak L1. With some
Hölder continuity, the limit exists everywhere. The Hilbert transform
is crucial in solving Riemann-Hilbert problems.
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Exercise 10.52. Show that if f ∈ L1(a, b) then

(10.6) PV

∫ b

a

f(s)ds =

∫ b

a

f(s)ds

11. Automorphisms of the disk

Exercise 11.53. Let a ∈ C with |a| < 1 and θ ∈ R. Show that

(11.2) z 7→ A(z) := eiθ
a+ z

1 + az

is a one-to-one transformation of the closed unit disk onto itself. This
is of course equivalent to the general family of transformations

(11.3) z 7→ A(z) := eiθ
a− z

1− az

a presentation that makes some properties more manifest.

12. Poisson’s formula

Proposition 12.54. Assume u is harmonic in the open unit disk and
continuous in the closed unit disk. Then

(12.2) u(0) =
1

2π

∫ 2π

0

u(eit)dt

Proof. If v is the harmonic conjugate of u then f := u+iv is analytic
in the open unit disk, and we have by Cauchy’s formula for any ρ < 1,

(12.3) u(0) + iv(0) = f(0) =
1

2πi

∮
Dρ(0)

f(s)

s
ds =

1

2π

∫ 2π

0

f(ρeit)dt

=
1

2π

∫ 2π

0

u(ρeit)dt+ i
1

2π

∫ 2π

0

v(ρeit)dt

We get (12.2) by taking the real part of (12.3) and passing to the limit
ρ→ 1. □
Exercise 12.55. * (i) Let u as in Proposition 12.54 and T as in
Exercise 11.53. Show that
(12.4) U(z) = u(T (z))

is harmonic in the open unit disk and continuous in the closed unit
disk.

(ii) Show that, if z0 = reiθ we have
(12.5)

u(z0) =
1

2π

∫ 2π

0

u

(
eiθ

r + eis

1 + reis

)
ds =

1

2π

∫ π

−π
u

(
eiθ

r + eis

1 + reis

)
ds
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Proposition 12.56 (Poisson’s formula). (1) Let u be as in Proposi-
tion 12.54 and z0 = reiθ with r < 1. We have

(12.6) u(reiθ) =
1

2π

∫ 2π

0

1− r2

1− 2r cos(t− θ) + r2
u(eit)dt

(2) Conversely, if f(eit) : [−π, π) is a continuous function, then u(reiθ)
defined by (12.5) where u(eit) is replaced by f(eit is harmonic in D,
continuous on D and solves Laplace’s equation in D with u(eit) as
boundary condition on ∂D.

The proof of (1) is left any easy exercise:

Exercise 12.57. Prove (12.5) by making the change of variable

(12.7) eiθ
r + eis

1 + reis
= eit

in (12.5).

Proof of (2). By a rotation, we can arrange that θ = 0. Write, for
r < 1,

(12.8) u(r) =
1

2π

(∫
(−π−δ)∪(δ,π)

+

∫ δ

−δ

)
1− r2

1− 2r cos(t) + r2
f(eit)dt

and note that by dominated convergence the first integral vanishes as
r → 1. For the second integral, we note that cos(t) = 1 − t2ϕ(t)/2
where ϕ(t) → 1 as t→ 0. The integral becomes

(12.9) 1

2π

∫ δ

δ

(1 + r)(1− r)

(1− r)2 + rt2ϕ(t)
f(eit)dt

We change variables: t = (1− r)τ and the second integral becomes

(12.10) 1

2π

∫ δ
1−r

− δ
1−r

(1 + r)(1− r)

(1− r)2 + (1− r)2τ 2ϕ((1− r)τ)
f(ei(1−r)τ )(1− r)dτ

=
1

2π

∫ δ
1−r

− δ
1−r

1 + r

1 + rτ 2ϕ((1− r)τ)
f(ei(1−r)τ )dτ

We now take the limit r → 1 and get, by dominated convergence
2

2π
f(1)

∫ ∞

−∞

1

1 + τ 2
dτ = f(1)
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12.1. The Dirichlet problem for the Laplacian in D. Formula
(12.10) gives the solution of Laplace’s equation in two dimensions with
Dirichlet boundary conditions, namely with u specified on the bound-
ary , when the domain is D. A simple change of variables adapts this
formula to any disk. More generally, we will see that the formula can
be adjusted to apply to a general simply connected domain lying in the
interior of any simple, closed, piecewise differentiable curve. This is a
consequence of the Riemann mapping theorem.
12.2. Application. The soap film picked up by a thin closed wire has
the minimum possible area compatible with the constraint that it is
bordered by the wire, since the potential energy is proportional to the
surface area. Then, if the wire is close to planar (say in the (x, y) plane),
the local height u(x, y) of the film satisfies Laplace’s equation. (This is
not hard to show using some elementary differential geometry.) If the
wire is planar, then u = 0 on the boundary, and by Theorem 10.48 the
minimal surface is flat. This is probably not a surprise. Formula (12.10)
however solves Laplace’s equation with any boundary constraint, and
this can provide us with a lot of insight on minimal surfaces, and con-
versely, the intuition we have about shapes of soap films gives us an
intuition on the solution of Laplace’s equation. For instance, it is clear
that the shape can have no local extremum, otherwise by flattening
it locally would make the surface area smaller. Before getting to the
Riemann mapping theorem we have to restrict ourselves to wires whose
projection on a plane is a circle.
Example 12.58. The Faraday cage. “A region surrounded by a
conductor does not feel the electrical influence of static outside charges.”
We show this in two dimensions.

We note first that the electric potential along a conductor, at equi-
librium, is zero. For otherwise, there would be a potential difference
between two points, thus an electric current i = V/R where R is the
resistivity. This would contradict equilibrium. This is of course a un-
controversial physics argument of little mathematical value. We could
have modeled the problem mathematically and proved something rig-
orously, but this would carry us beyond the scope of our course.

Thus we deal with (27.2) with V = C on ∂D. Since V = C is a
solution, it is the solution. But then E = −∇V = 0 which we wanted
to prove □.
Problem: (In two dimensions) explain why a region surrounded

by a conductor does not feel the electrical influence of static outside
charges.

Solution.
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Thus we deal with (27.2) with V = C on ∂D. Since V = C is a
solution, it is the solution. But then E = −∇V = 0 which we wanted
to prove □.

13. Isolated singularities, Laurent series

Definition 13.59. f has an isolated singularity at z0 if f is analytic
in a punctured disk Dρ(z0) \ {z0} for some ρ > 0.

More generally, we will analyze functions analytic in annuli Dρ(z0) \
Dρ′(z0) where 0 < ρ′ < ρ.

For example the functions e1/z and 1/ sin z have an isolated singu-
larity at zero, whereas the singularity of ln z is not isolated (we will see
that ln is not well defined in D \ {0}).
Definition 13.60. An isolated singularity z0 of f is

(1) a pole of order M if ak = 0 for all k < −M ,

(2) a removable singularity if f extends to a function f̃ analytic
in the whole disk. By slight abuse of notation we typically do not
distinguish notationally f̃ from f itself.

(3) an essential singularity if the singularity is not of type (1) or (2).

A function all of whose singularities are poles is called meromorphic.
In the following we denote the punctured disk Dρ(z0)\{z0} by D∗

ρ(z0).

Proposition 13.61 (Laurent series). A function f analytic in Dρ(z0)\
Dρ′(z0) where 0 < ρ′ < ρ has the convergent representation

(13.2) f(z) =
∑
k∈Z

ak(z − z0)
k, convergent for z ∈ Dρ(z0) \ Dρ′(z0)

where
ak =

1

2πi

∮
f(s)

(s− z0)k+1
ds, k ∈ Z

with the integral taken on any circle around z0 of radius less that ρ.
Proof. We take wlog z0 = 0. Consider the annulus between two circles
Co, Ci in A = Dρ \ Dρ′ , as in Fig. 6 (Co is the outside circle, and Ci is
the interior one). Make a cut L in the annulus as shown. Then A \ L
is simply connected and Cauchy’s formula applies there:

(13.3) f(z) =
1

2πi

∮
Co

f(s)

s− z
ds− 1

2πi

∮
Ci

f(s)

s− z
ds
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Figure 6. Circles of integration and cut in the proof of
the Laurent series expansion.

where we used the fact that the boundary of the cut annulus is the
closed path composed of Co, ran counterclockwise from the cut point
back to it, followed by the segment ℓ along the cut, then Ci going
clockwise, and back to the starting point following −ℓ. The rest of
the proof is similar to Taylor theorem’s proof and is left as an exercise
below. □

Exercise 13.62. Complete the proof of formula (13.2) by expanding
the integrands in (13.3) in powers of z/s and s/z respectively, and
estimating the remainders as we did for obtaining formula (6.3).

Note. Check that (13.3) gives a decomposition of f into a part f1
analytic in the disk enclosed by Co and a function f2 analytic in 1/z
in the exterior of the disk bounded by Ci. In [3] this decomposition is
used for a nice proof of (13.2). □

For example e1/z has an essential singularity at z = 0. Application
of (13.2) yields

(13.4) e1/z =
∞∑
k=0

z−k/k!

Note. The part of the Laurent series containing the terms with nega-
tive k is called the principal part of the series.
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Note. Laurent series are of important theoretical value. However,
Laurent are impractical for calculating functions in a small neighbor-
hood of an essential singularity. Its convergence gets slower as the
singularity is approached.
Theorem 13.63 (Casorati-Weierstrass; also known as the “little Pi-
card theorem”). Assume f is analytic in D∗

ρ(z0) and has an essential
singularity at z0. Then, for any ρ1 < ρ, f(D∗

ρ1
(z0)) is dense in C.

Proof. Without loss of generality, we may assume z0 = 0. Assume to
get a contradiction that there is a ζ ∈ C and a ρ1 such that |f(z)−ζ| >
c > 0 in D∗

ρ1
(0). Then h(z) = (f(z) − ζ)−1 is bounded in D∗

ρ1
(0) and

thus 0 is a removable singularity of h (why?). But then f(z) = ζ+1/h
has a removable singularity or a pole at zero (why?), contradiction.

14. Laurent series and Fourier series

Let f be 2π−periodic and satisfying the following
Assumption The Fourier coefficients of f , {ck}k ∈ Z} are in ℓ1(Z).

Then,
∞∑
k=0

ckz
k =: g(z)

converges absolutely and uniformly in D, and thus g is analytic in D
and continuous up to the boundary. We see that for all k ⩽ −1 we
have ∮

∂D

g(s)

sk+1
ds = 0

Similarly, define
∞∑
k=1

ckζ
k =: H(ζ)

Then, H is analytic in D and continuous in D. This means h(z) =
H(1/z) is analytic in ext(D) and continuous down to ∂D. You can
check that for all k ⩾ 0 ∮

∂D

h(s)

sk+1
ds = 0 ∀k ⩾ 0

Thus, f(s) = h(eis) + g(eis), s ∈ R. In this sense:
Proposition 14.64. If f is periodic and its Fourier coefficients satisfy
the assumption above, then f is the sum of two functions, one ana-
lytic in D and continuous in D, and the other analytic in ext(D) and
continuous in ext(D).
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z1

γ

Figure 7. Multiply connected domains

15. Calculating the Taylor series of simple functions

One easy way to calculate Taylor series is to use operations with
series, see§3.3.
Example. (1) The Taylor series of the function z−1 sin z is

(15.2) sin z

z
= 1− z2/6 + z4/120 + · · ·

(2) The Taylor series of the function z/ sin z is

(15.3)
z

sin z
=

1

1− (z2/6− z4/120 + · · · )
= 1 + (z2/6− z4/120 + · · · )+

(z2/6− z4/120 + · · · )2 + · · · = 1 + z2/6− z4/120 + z4/36 + · · ·
= 1 + z2/6 + 7z4/360 + · · ·

The first function defined is entire; the second one is not. What is the
radius of convergence of the second series?

Exercise 15.65. Find the integral of 1/ cos z on a circle of radius 1/2
centered at z0 = π/2.

16. Residues and integrals

Definition 16.66. A function f is meromorphic in a neighborhood of
a point z0 if it is analytic in some punctured domain D\{z0} and there
is a k ⩾ 0 so that (z − z0)

kf has a removable singularity at z0.

Note 16.67. Meromorphic functions have one-sided convergent Lau-
rent expansions in D \ {z0}, in the sense that only a finite number of
Laurent coefficients of negative order are nonzero.
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Definition 16.68 (Residues). Let f be meromorphic in D \{z0}. The
coefficient c−1 in its Laurent expansion at z0 is called the residue of
f at z0. You can check that if Dρ(z0) ⊂ D, then (2πi)−1

∮
∂Dρ(z0)

= c−1,
hence the name “residue”.

Proposition 16.69. Let D be a simply connected domain. Consider
a function f which is analytic in the domain D \∪nk=1Dk where Dk are
disks centered at zk ∈ D, and consider a simple closed curve piecewise
differentiable γ which encircles each Dk once (see Definition 18.75 and
Figure 9). We have

(16.2)
∮
γ

f(s)ds = 2πi
n∑
k=1

Res(f)z=zk

Exercise 16.70. Prove Proposition 16.69 by deforming and cutting the
curve of integration appropriately.

Example. Calculate ∮
dz

sin3 z

on a circle of radius 1/2 around the origin.
Solution. We have, in D(0, 1/2),

(16.3)
1

sin3 z
=

1

(z − z3/6 + z5/120 · · · )3
=

1

z3
1

(1− z2/6 + z4/120 · · · )3
=

1

z3
(
1 + z2/2 + 17z4/120

)
+ · · · )

and thus the residue of sin−3(z) at z = 0 is 1/2 and the integral equals
πi.

Exercise 16.71. Show that if f has a pole of order m at z = zi then

(16.4) Resfz=zi =
[(z − zi)

mf(z)](m−1)
z=zi

(m− 1)!

by applying Laurent’s formula near z = zi.

17. Integrals of trigonometric functions

Contour integration is very useful in calculating or estimating Fourier
coefficients of periodic functions. Consider the integral

(17.2) I =

∫ 2π

0

cos(nt)

2 + cos t
dt = Re (J); J :=

∫ 2π

0

eint

2 + cos t
dt
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Let z = eit. Then

(17.3) J = −i
∮
C

zn−1

2 + (z + 1/z)/2
dz = −2i

∮
C

zn

z2 + 4z + 1
dz

where C is the unit circle. The roots of z2 + 4z + 1 are −2 ±
√
3 and

only one, z0 = −2 +
√
3 lies in the unit disk. Thus,

(17.4) J = −2i · 2πi zn0
2z0 + 4

⇒ I =
4πzn0
2z0 + 4

=
2πzn0√

3

18. Counting zeros and poles

Notations and definitions. (1) Assume f is analytic in a disk Dρ(z0)
and f(z0) = 0. Then, in Dρ(z0) we have

(18.2) f(z) =
∞∑
k=1

ck(z − z0)
k

If f is not identically zero then there exists some k0 such that ck0 ̸= 0
(see Proposition 8.36). The smallest such k0 is called the order (or
multiplicity) of the zero z0. For a meromorphic function g (see p.
13.60), the order of a pole at z0 is the multiplicity of the root of 1/g at
z0.

Exercise 18.72. (The zeros of an analytic function are isolated)
Assume f ̸≡ 0 is analytic near z0 and f(z0) = 0. Use Taylor series to
show that there is some disk around z0 where f(z) = 0 ⇒ z = z0.

Assume f is meromorphic in D; let γ be a piecewise differentiable
simple closed curve contained in D together with its interior Γ. Since
γ ∪ Γ is a closed subset of D, the region of analyticity of f strictly
exceeds Γ. For the purpose of the next proposition, the assumptions
can be relaxed, allowing γ to be the boundary of the analyticity domain
of f if we impose continuity conditions on f and f ′.

Theorem 18.73 (counting zeros and poles). Let f be as above, and
assume f has no zeros on γ. Let N be the total number of zeros of f
in Γ counting multiplicities and let P be the number of poles, each pole
being counted p times if it has order p. Then

(18.3) 1

2πi

∮
γ

f ′(s)

f(s)
ds = N − P
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Proof. The function f ′/f is also meromorphic. Check that f ′/f has a
pole of order 1 and residue ni at a zero of order ni of f and a pole of
order 1 and residue −pi at a pole of order pi of f (check!). The rest
follows from the residue theorem, Proposition 16.69.

Note 18.74. We observe that N − P is an integer and, by continuity,

g(ζ) =
1

2πi

∮
γ

f ′(s)

f(s)− ζ
ds = const.

in Γ. Hence, in Γ, f takes every value the same number of times. This
number is called the order of f in Γ.

Definition 18.75. The winding number of z0 with respect to the closed,
piecewise C1 curve γ ̸∋ z0 is defined as

(18.4) 1

2πi

∮
γ

dz

z − z0

Exercise 18.76. Show that the winding number defined above is always
an integer.

Figure 8. The image of the circles of radius 1/4 (inner-
most curve), of radius 3/4 (middle curve) and of radius
5/4 all centered at zero under the map (z − 1)(z − 1/2).
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Note 18.77 (Some further properties of the log). If γ is a curve without
self-intersections that does not pass through zero joining 1 to z, then∫ z
1
ds/s =: logγ z, where the integral is taken along γ defines an analytic

function in a neighborhood of γ. We can homotopically deform γ and
ensure it starts with the interval [1, 1 + ε] for some small ε. Since for
positive x we have elog x = x, by permanence of relations, we will have
elog z = z in a neighborhood of γ. If we write the polar representation
z = ρeiϕ and log z = u + iv we see that eueib = ρeiϕ whence log z =
log |ρ|+ iψ where ψ = ϕ+2nπi for some n ∈ Z. The logs defined along
different curves may only differ by a multiple of 2πi.

Note 18.78 (The argument principle). If we take, formally for now,
g = ln f , then g′ = f ′/f and then (18.3) shows that the change in ln f
as we traverse positively γ is N −P . Another formulation is that if we
take the image of a parametrization of γ under f , then, N − P counts
the number of times the image turns around zero.

More precisely, since f is not zero on the contour, we can define the
log of f on γ as follows. Since the zeros of f ′ are isolated, there will be
only finitely many of them on γ. We break the integral at the points
where f ′ vanishes. Take a z0 ∈ γ such that f ′(z0) ̸= 0 and choose
any smooth curve γ′ joining 1 and f(z0), which avoids zero. Define
log f(z0) =

∫
γ′
ds/s. As discussed, the value of this integral depends on

the path through a multiple of 2πi which will turn out to be immaterial.
We take a smal disk Dρ(z0) where f ′ ̸= 0, and we note that, for z ∈
Dρ(z0),

∫ f(z)
f(z0)

ds/s =
∫ z
z0
f ′(u)/f(u)du := log(f(z)) − log(f(z0)). We

note that these integrals are equal piecewise between any two successive
points where f ′ ̸= 0, thus everywhere alng γ and you can check that
this log f is well defined and analytic in the union of the disks. We
then have

(18.5) N − P =
1

2πi
∆ log f =

1

2πi

∮
γ

f ′(s)

f(s)
ds =

1

2πi

∮
f◦γ

dζ

ζ

which is the winding number of 0 with respect to f ◦ γ, see Definition
18.75, the number of times, positive or negative, f ◦ γ winds around 0.

Exercise 18.79. Let f(z) = exp(1/z) − 1; clearly 0 is an essential
singularity and Proposition 18.73 does not apply. Find however, as a
function of ε > 0, how many times the curve {f(εeit) : t ∈ [0, 2π)}
turns around zero.

18.1. Hurwitz’s theorem. This theorem shows that a uniform limit
of analytic functions which have no zeros in a domain is either exactly
zero, or it is an analytic function which has no zeros in the domain:
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Theorem 18.80 (Hurwitz). If {fn}n∈N are analytic and nonzero in a
domain Ω ⊂ C and {fn}n∈N converges uniformly on compact sets to
f ̸≡ 0. Then f(z) has no zeros on Ω either.

Proof. As we know, the uniform convergence of {fn}n∈N implies that f
is analytic. We do the analysis in the neighborhood of a point z0; as
usual we can take z0 = 0. If f ̸≡ 0, then there is a Dδ such that f(z) ̸= 0
in ∂Dδ \ {0} (apply Corollary 3.10). Since fn → f uniformly (together
with f ′

n by Weierstrass’s Theorem 8.39), {f ′
n/fn}n∈N to converges f ′/f

uniformly on the circle ∂Dδ/2(0). The rest follows from Theorem 18.73.

18.2. Rouché’s Theorem.

Theorem 18.81 (Rouché). Assume f and h are analytic in a domain
D containing the piecewise differentiable simple closed curve γ and its
interior Γ. Assume that on γ we have |h| < |f |. Then the number
of zeros of f and f + h in Γ is the same (we can think of f + h as a
“small” perturbation of f).

Proof. Note that all the assumptions hold in a small neighborhood of γ
too. We need to all restrict the analysis to such a neighborhood since
f might have zeros in Γ. Since 0 ⩽ |h| < |f |, f can have no zeros in a
neighborhood of γ. We have

(18.6) f + h = f · (1 + h/f) =: fQ

The key remark is that, since we have |h/f | < 1, the series

q =
∞∑
k=1

k−1(−1)k+1gk; g = h/f

converges in a neighborhood of γ and by Theorem 8.39 q is analytic in
a neighborhood of γ. We see that

q′ = g′
∞∑
k=0

(−1)kgk =
g′

1 + g
=
h′/f − hf ′/f 2

1 + h/f
=

1 +
(
h
f

)′
1 + h

f

=
Q′

Q

This implies
(fQ)′

fQ
=
f ′

f
+
Q′

Q

But
∮

Q′

Q
= 0 since, for any z0 ∈ γ,

∮
q′ = q(z0) − q(z0) = 0, and the

proposition follows (the number of poles of f is by assumption zero).
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19. The inverse function theorem

Theorem 19.82. Assume f is analytic at z0 and f ′(z0) = a ̸= 0.
Then there exists a disk Dε(z0) such that f is invertible from Dε(z0) to
f(Dε(z0)) and the inverse is analytic.

Without loss of generality, we may assume that z0 = 0 and f(z0) = 0.
We have f(z) = az + z2g(z) where g(z) → g(0) as z → 0. We want to
find a disk of injectivity for f . Note that

(19.2) f(z)− f(z1) = a(z − z1) + (z − z1)
2g(z) + z21 [g(z)− g(z1)]

= (z − z1)
[
a+ g(z)(z + z1) + z21g

′(z)(1 + ε(z1)
]

Take a disk Dρ(z) with ρ small enough so that for z1 ⊂ Dρ(0) we have
|(z + z1)g(z) + z21g

′(z)(1 + εg(z1))| < |a|
Then, in Dρ(z), the term on the second line of (19.2) cannot vanish,
and it follows that f is injective. The inverse is manifestly continuous,
hence the image f(Dρ(z)) is open. From here, you can show as in
calculus that the inverse function defined on f(Dρ(z)) is differentiable,
thus analytic.

Exercise 19.83 (Important generalization). Assume f is analytic in
a neighborhood of z0, say z0 = 0, that f(0), f ′(0), ..., f (k−1)(0) = 0 and
that f (k)(0) = a ̸= 0. Show that there is a disk Dε(f(0)) such that, for
all t ∈ Dε(0), the equation f(z) = t has exactly k roots. Hint: the proof
is a straightforward generalization of the proof of Theorem 19.82

By definition, a mapping from the domain D to C is open if the
image of every open set O ⊂ D is open.

Theorem 19.84 (The open mapping theorem). Let f be analytic and
non-constant in the domain D. Then f is open.
Exercise 19.85. Use Theorem 19.82 and Exercise 19.83 to prove the
open mapping theorem.

20. Analytic continuation

Assume that f is analytic in D and f1 is analytic in D1, D1 ⊋ D and
f = f1 in D. Then f1 is an analytic extension of f . We also say that
f1 has been obtained from f by analytic continuation.

The point of view favored by Weierstrass was to regard analytic
functions as properly defined chains of Taylor series, up to a natural
equivalence (more about this later), each one of them being the analytic
continuation of the adjacent ones. If f is analytic at z0, then there
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exists a disk of radius ε centered at z0 such that f is the sum of this
series; we take ε0 to be the largest ε with this property. If we take a
point z1 inside this disk, f is analytic at z1 too, and thus near z1 it is
given by a series centered at z1. The disk of convergence of this series
is, as we know, at least equal to the distance d(z1, ∂Dε(z0)), but might
be larger. (Take as an illustration the function 1/(1 + z) with disks
centered at at z = 0 and at z = 1/2.) In the latter case, we have found
a function f1, piecewise given by the two Taylor series, which is analytic
in the union Dε(z0)∪Dε1(z1). In fact, we can continue this process and
define chains z0, z1, ... such that fi is analytic in Dεi(zi). Now, there is
a natural equivalence relation between the various fs thus defined: fα
is equivalent to fβ if they are analytic continuations of each other.

Definition 20.86 (Global Analytic Functions in the sense of Weier-
strass). An analytic function in the sense of Weierstrass is an equiva-
lence class with respect to this relation.

Uniqueness. If there is an analytic continuation in Dε(z0) ∪ Dε1(z1),
then it is unique (use Proposition 8.36 to show this).

This “global analytic function” is not necessarily a function, since
the chains may intersect each other while the value of the continuation
of f in the overlap region can be different. Indeed the log defined by∫
ds/s along any curve avoiding zero has the property that the value

at -1 if the curve is an upper semicircle differs from the one on the
lower semicircle by 2πi: indeed the residue of 1/s at 0 is 1. Now, as
discussed, the log is well defined along any curve avoiding 0 from 1 to
any point z, and it is analytic in a neighborhood of each curve. But as
you see, there is disagreement about the value at −1, and at any other
point ultimately: this function is not single-valued.
Cuts. One way to restore single-valuedness is to define log in C \

(−∞, 0] where (−∞, 0] is called a cut and its function is to prevent
curves to circle around 0.

We note that the cut (−∞, 0] is highly arbitrary. It can be re-
placed by any ray {teiϕ : ϕ ∈ [0, 2π)} or any curve that has the same
functionality, namely to prevent the paths of continuation to encircle
0. This is worth emphasizing this, because many books tend to give the
wrong impression that the cut (−∞, 0], giving the ”principal branch of
the log”, is somehow set in stone. Notably too, the value of the log
may depend on the cut.

Exercise 20.87. What is the value of log e3πi/4 if the cut is (−∞, 0]
and what is it if the cut is {it : t ⩾ 0}?
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Natural boundaries. For general analytic functions, it might happen
that one encounters lines, or more generally closed regions through
which no analytic continuation exists.

Such a boundary is called “natural boundary”. It represents a set of
”terminus” points for a global analytic function in the sense of Weier-
strass.

The standard example of such a function is f(z) =
∑∞

k=0 z
2k : we have

f(z) → ∞ as z → 1, and also as z → −1 to i and −i and more generally
as z → e2πiN/2

M , (N,M) ∈ N2, which form a dense set on the unit circle.
This shows that no point on the circle is a point of analyticity (why is
that?). This is a special case of a lacunary series: if the sequence
of natural numbers pk has the property that lim infn→∞ pn+1/pn =
1 + δ, then the series

∑∞
k=0 ckz

pk is called lacunary. There is a whole
literature about them. The following theorem is due to Hadamard, and
the proof can be found in [7].

Theorem 20.88. Assume that for n ∈ N we have pn+1/pn > 1 + 1/n
and that the series S(z)

∑∞
n=0 cnz

pn has radius of convergence 1. Then
∂D is a natural boundary for f .

The same was shown to hold in the more general case lim inf pn+1/pn =
1 + δ by Mandelbrojt (1921).

For later: Natural boundaries occur in the uniformization of nontriv-
ial Riemann surface. Such is R, the set of curves in C \ {0, 1} modulo
homotopies. A uniformization ψ map is a bi-analytic bijection between
R and D. Then ∂D is a natural boundary for ψ−1.

Exercise 20.89 (Example of natural boundary due to Poincaré). **
Consider the rational numbers r = p/q (we assume p and q are relatively
prime) and associate to it Npq = 7|p|5|q| (check that this is injective as
a function from Q+ to N). Similarly, you will find an isomorphism
between Q− and Z−. Take the function

(20.2) f(z) =
∞∑
Npq

2−Npq

z − p/q

Show that the series converges for z ∈ C \ R and that R is a natural
boundary for f .

How can this example can be modified to obtain an analytic function
f in any domain bounded by a simple closed curve γ, and γ is a natural
boundary of f?
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21. The Schwarz reflection principle

Assume f is analytic in the domains D1,D2 which have a common
piece of boundary, a piecewise differentiable curve γ. Assume further
that f is continuous across γ. Then, by Morera’s theorem, f is analytic
in D1 ∪ D2 (check this statement). If all is known about a function
f is analyticity in D1, and the fact that a piece of the boundary is
an analytic curve (meaning, there is a parametrization by a function
γ : [0, 1] → C which extends analytically in a complex neighborhood
of [0, 1]) up to which f is continuous, and a further condition on the
values of f on γ holds, then it is possible to extend f analytically past
γ. We start with the simplest such case.

Theorem 21.90 (The Schwarz reflection principle). Assume f is ana-
lytic in a domain D in the upper half plane (UHP, also denoted in these
notes by Hu) whose boundary contains an interval I ⊂ R and assume
f is continuous on D ∪ I and real valued on I. Then f has analytic
continuation across I, in a domain D ∪D∗ where D∗ = {z : z ∈ D}.

Note 21.91. see §32.4 for a generalization of this result.

Proof. Consider the function F , given by F (z) = f(z) in D ∪ I and
equal to f(z) in D∗ ∪ I. This function is continuous in D ∪ I ∪ D∗

(explain this continuity). It is also analytic in D∗ as it can be immedi-
ately seen using a local Taylor series argument. Now Morera’s theorem
applies: integrals along closed curves completely contained in D or D∗

are evidently zero, whereas since a closed curve crossing I can be split
into two integrals, with I as the splitting, traversed twice, in opposite
directions (where is the fact that f is real on I used?). Check the
details.
Note. When we learn more about conformal mappings, we shall see

that much more generally, a function admits a continuation across a
curve γ if the curve is an analytic arc (we will define this precisely) and
f(γ) is an analytic arc as well.

Example 21.92. The square root function defined by
√
z = ρ1/2eiϕ/2

if z = ρeiϕ, ϕ ∈ [0, π) is analytic in the upper half-plane and continu-
ous down to [0,∞) and real-valued there, and thus can be continued
analytically in the lower half plane by Schwarz reflection. What is the
continuation? Let z = ρe−iθ ∈ Hl (θ ∈ (0, π)). Then z = ρeiθ ∈ Hu

where √ was defined:
√
z = ρ1/2eiθ/2. Then

√
z = ρ1/2e−iθ/2.
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22. Multi-valued functions

As we discussed, as a result of analytic continuation in the complex
plane we may get a global analytic function which is not necessarily a
function on C since the definition is path–dependent; the function is
thus defined on a space of paths or curves, modulo homotopies.

As long as the domain of continuation is simply connected, we still
get a function in the usual sense:

Exercise 22.93 (The monodromy theorem). * Assume that f is
analytic in Dε(z0) and that we have and two piecewise differentiable
curves γ1 and γ2 joining z0 to z which can be continuously deformed
into each-other and furthermore analytic continuation exists along each
intermediate curve:

That is, there is a smooth map γ : [0, 1]2 7→ C such that γ(s, 0) =
z0 ∀s ∈ [0, 1] and γ(s, 1) = z1∀s ∈ [0, 1] and furthermore f admits
analytic continuation from z0 to z1 along t 7→ γ(s, t), t ∈ [0, 1] for any
s ∈ [0, 1].

Assume that D = γ((0, 1)2) is simply connected. Show that there is
an analytic function F in D which coincides with f in Dε(z0). As we
know, this continuation is then unique. (Rough sketch: consider the
first curve which by compactness is covered by a finite number of disks
of analytic continuation. Choose an intermediate curve close enough
so that it is well covered by the same disks. From this point, it should
be straightforward.)

This means in a nutshell: if f has analytic continuation along
any path in the domain D, then it is analytic in D. Some
continuations must explicitly fail to prevent analyticity.

22.1. Generalization: log of a function. If g is a function defined
in a region in C we can define ln g by

(22.2) ln g =

∫ z

a

g′(s)

g(s)
ds

Now, depending on the properties of g, the homotopy classes will be in
general more complicated than those of log z.

If, for instance, g is a meromorphic function, then all the zeros and
poles S = {zi, pj} of g1 are points where the integral is undefined. log g
is defined on homotopy classes of curves over C \ S.

It is convenient to define a branch of ln g by cutting the plane along
rays originating at the points in S. Check that such cuts exist for any
such g.



44

A domain for
ln

(
z + 1

z2 + 1

)
z = −i

z = 0

z = i

Figure 9. Cuts defining the log of a rational function.

22.2. General powers of z. Once we have defined the log, it is nat-
ural to define

(22.3) zα = eα ln z

Since ln z is defined on the homotopy classes of curves over C \ {0},
so is zα. For a general α ∈ C, the multivaluedness of zα is inherited
from the multivaluedness of the log: eα(ln z+2NπI) = eα ln ze2Nπiα. Note
however that if p ∈ Z then the value does not depend on the homotopy
class and the definition (22.3) defines a function in C\{0}, with a pole
at zero if p < 0 and a removable singularity if p ⩾ 0. Check that this
definition coincides with the usual power on R+, hence in C.

Another special case is that when α = p/q, p, q relatively prime
integers. In this case e2(p/q)πi only takes q distinct values.
Note. Beware of possible pitfalls.

(22.4) eln z1+ln z2 = eln z1eln z2 = z1z2

However, this does not mean ln z1 + ln z2 = ln z1z2, but just that

(22.5) ln z1 + ln z2 = ln z1z2 + 2Nπi
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For the same reason, zα1zα2 is not necessarily zα1+α2 . Note the falla-
cious calculation2

(22.6) 1 =
√
1 =

√
(−1)(−1) =

√
−1

√
−1 = i · i = −1 (?!)

23. Riemann surfaces: a first view

I will start with two definitions of a Riemann surface adapted from
Wikipedia 3:

Definition 23.94. A Riemann surface Ω is a connected complex man-
ifold of complex dimension one. This means that Ω is a connected
Hausdorff space that is endowed with an atlas of charts to D: for every
point x ∈ Ω there is a neighborhood of x that is homeomorphic to D,
and the transition maps between two overlapping charts are required
to be analytic.

Definition 23.95. A Riemann surface Ω is an oriented manifold of
(real) dimension two – a two-sided surface – together with a conformal
structure. Again, manifold means that locally at any point x of Ω, the
space is homeomorphic to a subset of the real plane. The supplement
“Riemann” signifies that Ω is endowed with an additional structure
which allows angle measurement on the manifold, namely an equiv-
alence class of so-called Riemannian metrics. Two such metrics are
considered equivalent if the angles they measure are the same. Choos-
ing an equivalence class of metrics on Ω is the additional datum of the
conformal structure.

Clearly, C itself is a Riemann surface. So are domains D ⊂ C.

Figure 10. The Riemann sphere (taken from Google images)

2 This calculation was done as presented by an early version of a computer
algebra program.

3https://en.wikipedia.org/wiki/Riemann_surface
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An important surface in complex analysis is the Riemann sphere
S2 = Ĉ. The complex plane contains the equator of a sphere Ĉ, rep-
resented by ∂D ⊂ C. For any point z in the plane, one draws a line
segment from the north pole of the sphere through the sphere, cutting
the sphere at some point p(z). Clearly, to any point z in the plane,
there corresponds a unique p(z) on Ĉ. 0 ∈ C corresponds to the south
pole in Ĉ. There is no point in C corresponding to the north pole on
Ĉ; this is “the point at infinity”. Points in the southern hemisphere
map to points in D while those in the northern hemisphere are in Dc.

We will later study the properties of bianalytic transformations, and
will see that, in the limit where the size of a triangle goes to zero, a
bianalytic (conformal) map takes such a triangle into a similar triangle:
the angles are preserved. The triangle is simply rotated and rescaled,
in this limit.

Bianalytic transformations are the natural isomorphisms of domains,
and more generally of Riemann surfaces in complex analysis. The very
important and deep uniformization theorem states that, up to such
isomorphisms, there are only 3 distinct simply connected Riemann sur-
faces: Ĉ,C and D. Riemann surfaces that are not “very simple” are
conformally equivalent to D.

Typically, we cannot embed usefully Riemann surfaces in R3 and
they are not easy to depict. In common cases, a useful way to handle
Riemann surfaces is to think of them as spaces of curves, closed or not,
modulo homotopies. The endpoints of these curves are the points on
the Riemann surface. Thus, the log that we have defined by integrating
ds/s over various paths avoiding zero is naturally generating such a set
of equivalence classes.

An important object is the fundamental group π(Ω, p) generated
by the homotopy classes of closed curves joining p to p under compo-
sition. Here, the product is concatenation of curves, the inverse of γ,
γ−1 is t 7→ γ(1− t) and 1 = γγ−1.

Exercise 23.96. Check that the fundamental group of C \ {0} is the
free group generated by one element, an abelian group.

Let us uniformize Ω0, the Riemann surface of the log. That means
finding a bianalytic bijection from Ω0 to one of Ĉ,C,D.

The log is well defined by log z =
∫ z
1
ds/s on curves from 1 to z

modulo homotopies in Ĉ \ {0}, and is manifestly analytic in z. The
fact that it is injective follows from the calculation log z1 = log z2 ⇒
exp log z1 = exp log z2 ⇒ z1 = z2. It is also onto since any z ̸= 0 can be
written as log x+ iϕ+ 2Nπi for some x ∈ R+, ϕ ∈ [0, 2π) and N ∈ Z.
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Figure 11. The Riemann surface of the log (from
https://en.wikipedia.org/wiki/Complex_logarithm)

The Riemann surface of the log is uniformized by the log onto C.
In the opposite direction, let us look again at the action of the expo-

nential on C. As we have seen, exp is one-to-one bi-analytic from any
vertical strip

Sn{z = u+ iv : u ∈ R, v ∈ [2nπi, 2(n+ 1)πi)} → C \ {0}

(think again of the polar representation of complex numbers). If we
take exp to be defined on C, it is not invertible because it is many-
to-one. It is not univalent. But in each strip it is one-to-one and we
can take as its inverse log |z|+ iϕ+2nπi. By taking ∪nSn we cover all
the possible values of log. We see that, if we define exp from C to the
Riemann surface of the log, then it is one-to-one, onto and bi-analytic.
Covering maps. A covering map (also called a covering or projec-

tion) is a surjective open map f : X → Y that is locally a homeomor-
phism. In a covering map, the preimages f−1(y) are discrete sets in X
whose cardinality (finite or infinte) do not depend on y.
Universal covers The universal cover of a connected topological

space X is a simply connected space Y with a map f : Y → X that is a
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covering map. If X is simply connected, i.e., has a trivial fundamental
group, then it is its own universal cover. For instance, the sphere
S2 = Ĉ is its own universal cover. The universal cover is always unique
and, under very mild assumptions, always exists. In fact, the universal
cover of a topological spaceX exists iff the spaceX is connected, locally
pathwise-connected, and semilocally simply connected.

We see that the exponential is the covering map of C \ {0} and
C is its covering space. Note that, of course, C \ {0} is not simply
connected while the covering space, C, is. If we look at the image of
f(z) = ez = ueiv where u is fixed and v ∈ (a, b) ⊂ R where b ⩽ ∞
as a parametrized curve, this curves circles, infinitely many times as
b → ∞. around 0. The set of all these curves are the natural curves
on which the log is analytic. Here f−1(y) = {a+ 2nπi : ea = y}.

As another example, f = z 7→ z2 as a map from C \ {0} to C \ {0}
is a covering map in which f−1 always consists of two points. The
exponential is a universal cover of C \ {0} where the inverse image of
a point is an infinite set.

As another example, consider the equivalence relation x+ iy ∼ x+
m + i(y + n) iff (m,n) ∈ Z2 and the quotient map π : C :→ C/ ∼.
Then π is the universal cover of the torus T.
The Riemann surface of the square root As the log, the square

root, definable in terms of the log is analytic on the Riemann surface
of the log. We note however, from its log-based definition, that closed
curves starting at some z0 ̸= 0, say z0 = 1 that encircle 0 twice yield
the same value of the square root, here 1. What is different from the
case of the log is that the fundamental group has a relation: a2 = 1.
The Riemann surface of the square root is different from that of the
log: the second floor of the “infinite parking lot” is glued to the first.
It is not possible to embed this surface in R3, but we can draw a more
or less suggestive picture, below.

24. Evaluation of definite integrals

Contour integrals can be evaluated using the residue theorem. Many
definite integrals for which the endpoints are at infinity can also be
evaluated using the residue theorem; we can think of them as closed
contour integrals on the Riemann sphere, although infinity is often a
singular point for the functions of interest. Similarly, a number of
integrals whose endpoints are singular points can also be evaluated in
closed form. Here is a first simple case.

Proposition 24.97. Let R be a rational function, continuous on R
and such for some C > 0 and all z ∈ C we have |R(z)| ⩽ C|z|−2 in C.
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Figure 12. An approximate depiction of the
Riemann surface of the square root (from
https://commons.wikimedia.org/wiki/)

(This happens if the numerator has degree lower by at least two than
the denominator.) Then
(24.2)∫ ∞

−∞
R(x)dx = 2πi

∑
zi∈UHP

Res(R; z = zi) = 2πi
∑

zi∈LHP

Res(R; z = zi)

where zi are poles of R.

Here and in the sequel “UHP” and “LHP” denote the upper (lower,
resp.) half planes; alternative notations are Hu,Hl resp. Check that if
all the poles of R are in the upper, or in the lower half planes, then
the integral vanishes. Proof. Under the given assumptions, we take as
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−A A

A+ iA

C1

A− iA

Figure 13.

a contour the square in the figure below and write

(24.3)
∫ ∞

−∞
R(x)dx = lim

A→∞

∫ A

−A
R(x)dx

= lim
A→∞

∮
[−A,A]∪C1

R(z)dz − lim
A→∞

∫
C1

R(z)dz

= 2πi
∑
zi∈Hu

Res(R; z = zi)− lim
A→∞

∫
C1

R(z)dz = 2πi
∑
zi∈Hu

Res(R; z = zi)

since

(24.4)
∣∣∣∣∫
C1

R(z)dz

∣∣∣∣ ⩽ constA−2(3A) = 3A−1 → 0 as A→ ∞

Note It is useful to interpret what we have done as taking the ini-
tial conour of integration R+ and “pushing” or “deforming” it towards
+i∞. Every time a pole is crossed, a residue is collected. Since there
are only finitely many poles, from a certain “height” on the contour
can be pushed all the way to infinity, and that integral vanishes since
the integrand vanishes at a sufficient rate.

Example. Find

I =

∫ ∞

−∞

1

1 + x4
dx

Solution The singularities of R in the upper half plane are at z1 = eiπ/4

and z2 = e3iπ/4 with residues 1/[(1 + x4)′]z=zi . The result is I = π/
√
2.
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25. Certain integrals with rational and trigonometric
functions

We focus on integrals often occurring in Fourier transforms, of a type
which can be reduced to

(25.2)
∫ ∞

−∞
eiaxQ(x)dx

where Q has appropriate decay so that the integral makes sense.
Here we take a > 0 for convenience, as in the inverse Fourier transform.
We would like to push the contour, as above, towards +i∞ since the
exponential goes to zero in the process. We need Q to satisfy decay and
analyticity assumptions too, for this process to be possible. Jordan’s
lemma provides such a result suitable for applications.

Lemma 25.98 (Jordan). Assume a > 0 and that Q is analytic in the
domain D = {z : Im (z) ⩾ 0, |z| > c} and that γ in the UHP is a
semicircle of radius ρ > c centered at zero. Assume furthermore that
for large |z| we have |Q(z)| ⩽M . Then,

(25.3)
∣∣∣∣∫
γ

eiazQ(z)dz

∣∣∣∣ ⩽ Mπ

a

In particular, if Q(z) → 0 as z → ∞, then

(25.4)
∫
γ

eiazQ(z)dz → 0 as ρ→ ∞

Proof. Let ρ0 be such that |Q(z)| ⩽ M for all z with |z| > ρ0. Then,
for ρ > ρ0 and γ as above we have

(25.5)
∣∣∣∣∫
γ

eiazQ(z)dz

∣∣∣∣ = ∣∣∣∣∫ π

0

eiaρe
iϕ

Q(ρeiϕ)ρieiϕdϕ

∣∣∣∣
⩽M

∫ π

0

ρe−ρa sinϕdϕ = 2M

∫ π
2

0

ρe−ρa sinϕdϕ

(By the symmetry sin t = sin(π − t) the integral is twice the one on
[0, π/2].) To calculate the last integral we bound below sin θ by bθ
for some b > 0. By an elementary calculation we see that t−1 sin t is
decreasing on [0, π/2] and thus sin θ ⩾ 2θ/π for θ in [0, π/2] and we get

(25.6)
∣∣∣∣∫
γ

eiazQ(z)dz

∣∣∣∣ ⩽M

∫ π/2

0

2ρe−2ρaϕ/πdϕ ⩽ Mπ

a

and the result follows. The second statement is immediate.
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Proposition 25.99. Assume a > 0 and Q is a rational function con-
tinuous on R and vanishing as |z| → ∞ (that is, the degree of the
denominator exceeds the degree of the numerator). Then

(25.7)
∫ ∞

−∞
Q(x)eiaxdx = 2πi

∑
zi∈Hu

Res(Q(z)eiaz; z = zi)

The proof is left as an exercise: it is a simple combination of Jordan’s
lemma and of the arguments in Proposition 24.97.

The fact that we are dealing with a rational function is crucial; simply
1/z-like decay would not ensure the existence of the improper integrals
involved. Note that the improper integral

∫∞
1
z−1eiz exists, and that

for large |z| and some constant c ∈ C, |Q(z)− a/z| ⩽ const(|z|+ 1)−2

and that (|z|+ 1)−2 ∈ L1.
Example Let τ > 0 and find

(25.8) I =

∫ ∞

0

cos τx

x2 + 1
dx

Solution. The function is even; thus we have

(25.9) 2I =

∫ ∞

−∞

cos τx

x2 + 1
dx = Re

∫ ∞

−∞

eiτx

x2 + 1
dx

which is of the form in Proposition 25.99 and thus a little algebra shows

I =
π

2
e−τ

Note that we have calculated the cos Fourier transform of a function
which is analytic in a neighborhood of the real line, and the transform
is exponentially small as τ → ∞. This is not by accident: formulate
and prove a result of this type for cosine transforms rational functions
with no poles on R.

Example([13] p. 116) Assume Re z > 0. Show that

(25.10) I(z) =

∫ ∞

0

t−1(e−t − e−tz)dt = log z

Solution (for another solution look at the reference cited) Note that the
integrand is continuous at zero and the integral is well defined. Fur-
thermore, it depends analytically on z and by dominated convergence
we get

(25.11) I ′(z) =

∫ ∞

0

e−tzdt = z−1 ⇔ I(z) = log z + C

Check that the constant C is zero.
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Example: A common definite integral. Show that

(25.12)
∫ ∞

0

sin t

t
dt =

π

2

Solution This brings something new, since a naive attempt to write

(25.13)
∫ ∞

−∞

sin t

t
dt = Im

∫ ∞

−∞

eit

t
dt (??)

cannot work as such, since the rhs is ill–defined. But we can still apply
the ideas of the residue calculations in these lectures. Here is how.

(1) Use the box argument (see figure below) andA = (2N+1)π/2, N ∈
Z to show that∫ ∞

−∞

sin t

t
dt =

∫ ∞+i

−∞+i

sin t

t
dt =

∫ ∞

−∞

sin(t+ i)

t+ i
dt

(2) Now we can write∫ ∞

−∞

sin(t+ i)

t+ i
dt =

∫ ∞

−∞

ei(t+i) − e−i(t+i)

2i(t+ i)
dt =

∫ ∞

−∞

ei(t+i)

2i(t+ i)
dt−

∫ ∞

−∞

e−i(t+i)

2i(t+ i)
dt

The first integral is zero, by Proposition 25.99. The last term equals∫ ∞

−∞

−ei(t−i)
−2i(t− i)

dt

to which Proposition 25.99 applies again, giving the stated result (check!)

C

C

C1

2

3

−A A

Exercise 25.100. ** Find ∫ ∞

0

sin4 t

t4
dt

26. Integrals of branched functions

We now show that, for α ∈ (0, 1) we have

(26.2)
∫ ∞

0

t−α

t+ 1
dt =

π

sin πα
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iε

A

D

z = 0

R1

R3

R2

Figure 14.

Note that

(26.3)
∫ ∞

0

t−α

t+ 1
dt = lim

ε→0,A→∞

∫ A

ε

t−α

t+ 1
dt

Note that the integrand has an integrable singularity at t = 0 and
decays like t−α−1 for large t, thus the integral is well defined. The
integral is performed along R+ so we know what t−α means. We extend
t−α to a global analytic function; it has a branch point at t = 0 and
no other singularities. Consider the region in the figure below. t−α

is analytic in C \ [0,∞). Note first that the integral along any ray
ρeit, ρ ∈ [0,∞] equals the limit when 0 < ε → 0 of the integral along
ρeit, ρ ∈ [ε,∞]. Thus

(26.4)
∮
R1∪R2∪R3

t−α

t+ 1
dt = 2πiRes

(
t−α

t+ 1
; z = −1

)
= 2πie−πiα

In the limit ε → 0, A → ∞
∫
R3

→ 0 and
∫ A
0

converges to
∫∞
0

and we
get

(26.5)
∫
R+

t−α − t−αe−2πiα

t+ 1
dt = (1− e−2πiα)

∫
R+

t−α

t+ 1
dt = 2πie−πiα

The rest is straightforward.
More generally, we have the following result.
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Proposition 26.101. Assume Re a ∈ (0, 1) and Q is a rational func-
tion which is continuous on R+ and is such that xaQ(x) → 0 as x→ 0
and as x→ ∞. Then

(26.6)
∫ ∞

0

xa−1Q(x)dx = −πe
−πia

sin aπ

∑
Res(za−1Q(z); zi)

where zi are the poles of Q.
Exercise 26.102. Prove Proposition 26.101.
Exercise 26.103. * Let a ∈ (0, 1). Calculate

P

∫ ∞

0

xa−1

1− x
dx

where P denotes the Cauchy principal part, as defined before.
Exercise 26.104. ∫ ∞

0

x−1/2 lnx

x+ 1
dx

(There is a simple way, using the previous results.)

27. Conformal Mapping

Laplace’s equation in two dimensions
(27.2) ∆f = fxx + fyy = 0

describes a number of problems in physics; it describes the flow of
an incompressible fluid. It also describes the space dependence of the
electric potential in a region where the density of charges, ρ, is zero and
the electric and magnetic fields E and B fields are time-independent.
For the latter problem, Maxwell’s equations are ∇ · E = ε−1

0 ρ = 0
and ∇ × E = −∂B

∂t
= 0. The second equation implies E = −∇V ,

for some V (called potential) and the first equation gives ∆V = 0.
Since the electric field is produced by charges, the boundary conditions
are expected physically to determine the solution. A typical problem
would be to solve eq. (27.2) with u = V in D with V given on ∂D
(Dirichlet problem).

In the case of two-dimensional incompressible fluid flow, let ⟨v, u⟩ be
the velocity field. Incompressibility translates into
(27.3) div⟨v, u⟩ = vx + uy = 0

while the fact that the flow is irrotational implies
(27.4) ∇×V = 0 ⇒ ux − vy = 0

(27.3) and (27.4) imply that ⟨v, u⟩ are harmonic conjugates. In any
simply connected domain, (27.4) implies V = ∇φ for some φ called
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velocity potential. We can check that ∆φ = 0, thus φ is harmonic. Its
harmonic conjugate ψ is called the stream function. In the physical
applications above, the ODE system associated with V and E are both
potential and gradient. In the case of fluid flow, the lines of constancy
of ψ are parallel to the flow, see §9.1. If the fluid flows in some domain
D, a natural boundary condition (no, not a natural boundary!) is that
the fluid does not flow through ∂D, that is ⟨v, u⟩ · ⟨n1, n2⟩ = 0 where
⟨n1, n2⟩ is the normal direction to the boundary; this is also known
as a no-penetration condition. Laplace’s equation where the normal
derivative is given on ∂D is called a Neumann problem.

We already know the general solution of the Dirichlet problem when
D is a disk, (12.7). The solution of the Dirichlet problem exists and is
unique in any connected domain D with smooth enough boundary and
continuous data on the boundary.
27.1. Uniqueness. We showed the existence of a of the Dirichlet prob-
lem, given in terms of a Poisson integral. We show uniqueness here,
which is very easy: if we had two solutions u1, u2 then u = u1−u2 would
satisfy (27.2) with u = 0 on ∂D. But a harmonic function reaches both
its maximum and minimum on the boundary. Thus u ≡ 0. A similar
argument shows that in the Neumann problem, u is determined up to
an arbitrary constant.
27.2. Existence. We have the uniques solution of the Dirichlet prob-
lem in D. What about other domains?

It is often the case in PDEs that a symmetry group exist and then it
is very useful in solving the equation and/or determining its properties.

It turns out that (27.2) has a huge symmetry group: the equation is
conformally invariant. This means the following.
Proposition 27.105. If u solves (27.2) in D, a simply connected do-
main, and f = f1 + if2 : D1 → D is analytic, then u(f1(s, t), f2(s, t))
is a solution of (27.2) in D1.

Proof. We know that u has a harmonic conjugate v determined up
to an additive constant. Let g = u + iv. Then g is analytic in D.
Then the composite function g(f) is analytic in D1, and in particular
u(f1(s, t), f2(s, t)) and v(f1(s, t), f2(s, t)) satisfy the C-R equations in
D1. But then u(f1(s, t), f2(s, t)) is harmonic in D1. □.

We will be mostly interested in analytic homeomorphisms which have
many nice properties. Two regions that are analytically homeomorphic
to each-other are called conformally equivalent.

The Riemann mapping theorem, which we will prove later, states
that any simply connected domain other that C itself is conformally
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f

Figure 15. To be made rigorous in the sequel.

equivalent to the unit disk. The boundary of the region is then mapped
onto the unit circle. The “orbit” of the disk under the group of con-
formal homeomorphisms group contains every simply connected region
other that C itself.

The conformal group is large enough so that by its action we can solve
Laplace’s equation in any simply connected domain (the boundary has
to be smooth enough for the boundary condition to make sense; C1,α

is sufficient.)
This is one of many motivations for a careful study of conformal

maps.

27.3. Preservation of angles and small shapes: heuristics. Let
f be analytic at z0, f ′(z0) = a ̸= 0 (w.l.o.g. z0 = 0, f(0) = 0) and
consider a tiny neighborhood N of zero. If zβ are points in N then
(27.5) f(zβ) ≈ azβ

All these points get multiplied by the same number a. Multiplication
by a complex number rescales it by |a| and rotates it by arg a. If we
think of zβ as describing a figure, then f(zβ) describes the same figure,
rotated and rescaled. The shape (form) of the figure is thus preserved
and the transformation is conformal.

Since a tiny square of side ε becomes a square of side |aε| areas are
changed by a factor of |a2|.

We make this rigorous in what follows.

27.4. Preservation of angles. Additivity of arguments holds up to a
multiple of 2π. In the calculations below, this multiple will be immate-
rial. Assume f is analytic in a disk D, z0 ∈ D and that f ′(z0) ̸= 0. The
angle between two smooth curves γ(t) and Γ(t) which cross at a point
z = γ(t0) = Γ(t1) (w.l.o.g. we can take t0 = t1 = 0) is by definition
the angle between their tangent vectors, that is arg γ′(0) − arg Γ′(0),
assuming of course that these derivatives don’t vanish.
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The angle between the images of these curves is given by

(27.6)
arg[f(γ)′(0)]− arg[f(Γ)′(0)] = arg[f ′(γ(0))γ′(0)]− arg[f ′(Γ(0))Γ′(0)]

= arg f ′(γ(0))+arg γ′(0)−
(
arg f ′(Γ(0))+arg Γ′(0)

)
= arg γ′(0)−arg Γ′(0)

That is to say the image of two curves intersecting at an angle α is a
pair of curves intersecting at the same angle α. Preservation of angles
means that a small enough domain is transformed into a similar one,
only rotated and rescaled.

Exercise 27.106. More precisely, consider a sequence of similar trian-
gles whose sides go to zero and with a common point z0, with f ′(z0) ≠ 0.
Consider their images through f . For each triangle, rescale both the tri-
angle by the size L of one of its sides, and rescale their images through
f by L|f ′(z0)|. Show that in the limit of vanishing sides, the images of
these triangle converge to triangles congruent to them. Then, polygons
are preserved in the same sense, and by approximation by polygons any
“small” smooth shapes are also preserved.

27.5. Rescaling of arc length. The arc length along a curve γ(t) is
given by

(27.7) L(γ) =

∫ b

a

|γ′(t)|dt =:

∫
γ

d|z|

If f is analytic, then
(27.8)

L(f(γ)) =

∫ b

a

|f(γ)′(t)|dt =
∫ b

a

|f ′(γ(t))| |γ′(t)|dt =
∫
γ

|f ′(z)|d|z|

and thus the arc length is locally stretched by |f ′(z)|, as seen in Exercise
27.106.

27.6. Transformation of areas. The area of a domainA is its Lebesgue
measure,

(27.9)
∫∫
A

dxdy

Let u + iv = f : B → A be injective and analytic. After the transfor-
mation (x, y) 7→ (u(x, y), v(x, y)) the area becomes

(27.10)
∫∫
f−1(A)

|J |dudv
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where the Jacobian J is, using the C-R equations, |f ′|2 (check!). Tis
also follows from Exercise 27.106 if you think how small squares are
transformed.

Note 27.107. It is interesting to remark that it is enough that (u, v) is
a smooth transformation that preserves angles for u+iv to be analytic.
It is also enough that it rescales any figure by the same amount for it
to be analytic or anti-analytic (f is analytic). This is not difficult to
show; see [3], p 74. This gives a very nice characterization of analytic
functions: they are those which are “locally Euclidian”.
Note 27.108. Observe that we did not require f to be globally one-to-
one. The simple fact that f is analytic with nonzero derivative makes
it conformal.
Note 27.109 (Note on bijectivity). In R it suffices that f ′ ̸= 0 ev-
erywhere for f to be bijective. This is not the case in C. Clearly
exp′ = exp ̸= 0 in C but exp is not injective.

We need to impose bijectivity for two regions to be conformally equiv-
alent. On the other hand, if f is an analytic homeomorphism between
D1 and D2 then f is conformal (that is, f ′ ̸= 0 in D). This also follows
from the following proposition.
Proposition 27.110 (Ramified expansions: Puiseux series). Assume
that f : D1 7→ D2 is analytic, that for some z0 ∈ D1 we have f (j)(z0) = 0
if j = 1, ...,m− 1 and f (m)(z0) = a ̸= 0. (Take z0 = 0, f(z0) = 0.) Let
{ωk}1⩽k⩽m be the mth roots of unity. Then, there exists an analytic
function A in a neighborhood of 0, A(0) = 0 such that, given a choice
of t1/m, all the solutions of the equation f(z) = t near zero are given
by zk = A(ωkt

1/m), 1 ⩽ k ⩽ m.
Furthermore, A′(0) ̸= 0 and hence A is a local bianalytic bijection.

Proof. In a neighborhood of 0 we have, with a ̸= 0

f(z) = zm(a+ b1z + b2z
2 + · · · ) = zmg(z)

and g(z) is analytic, g(0) = a and thus g ̸= 0 in some disk Dε1(0).
Choose a branch h = g1/m and of t1/m. For a given ζ, our equation
becomes (zh(z))m = t, equivalent to m equations, zh(z) = ωkt

1/m. The
function zh is analytic at zero and (zh)′(0) = h(0) ̸= 0. By the inverse
function theorem, the equation zh = ωkt

1/m has exactly one solution,
A(ωkt

1/m), where A is a locally analytic bijection. □
Note 27.111. WritingA(s) =

∑
j⩾0 ajs

j we see that z(t) =
∑

j⩾0 ajω
j
kt
j/m

a ramified expansion, a special case of a Puiseux series.
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f(z) = z2

Figure 16. To be made rigorous in the sequel.

This gives us another proof of the open mapping theorem,

Theorem 27.112. Let D be a domain and f : D → C be a nonconstant
analytic function. Then f is open, that is, the images of open sets are
open.

Proof. This follows immediately from the fact that A is a bijection and
is left as an exercise.

27.6.1. Conformally equivalent domains.

Definition 27.113. Two domains D1 and D2 are conformally equiv-
alent if there is a biholomorphic bijection f : D1 → D2. In this case,
we say that f maps conformally D1 to D2.

The boundary behavior of analytic maps is a very important tool to
determine their conformal mapping properties.

Recall that a curve is traversed in anticlockwise direction if the pa-
rameterization is such that the interior is to the left of the curve as the
parameter increases.
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Proposition 27.114. Assume that f : D 7→ D1 is analytic and γ is
a simple piecewise differentiable closed curve contained in D together
with its interior.

If f is one-to-one from γ to f(γ), then f maps one-to-one confor-
mally Int(γ) onto f(Int(γ)) and preserves the orientation of the curve.
Proof. It follows easily from the assumptions that f(γ) is also a simple
curve. Let w0 ∈Int(f(γ)). Cauchy’s formula implies

(27.11) 1

2πi

∫
f(γ)

dw

w − w0

= 1

On the other hand by assumption f is one-to-one on γ and we can
change variables w = f(z), z ∈ γ, and we get

(27.12) 1 =
1

2πi

∫
γ

f ′(z)dz

f(z)− w0

=
1

2πi

∫
γ

(f(z)− w0)
′dz

f(z)− w0

and by Proposition 18.73 (and since f is analytic) this shows that
f(z)−w0 has exactly one zero in Int(γ), or there is exactly one z0 such
that f(z0) = w0. Then f is conformal, one-to-one onto between Int(γ)
and f(Int(γ)). This also shows that f preserves orientation, otherwise
the integral would be −1.

27.7. Automorphisms of the plane.
Theorem 27.115. The group of automorphisms of the plane is exactly
the Euclidean group, z 7→ az + b, a ̸= 0.
Proof. In one direction it is clear: each Euclidean transformation is in
Aut(C).

If f ∈ Aut(C) then by a translation we can arrange that f(0) = 0.
Since f is bijective, in particular bijective from D to f(D), there is a
c > 0 s.t.
(27.13) |f(z)| > c for |z| ⩾ 1
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We want to show that f does not have an essential singularity at in-
finity, meaning that 0 is not an essential singularity for h(z) = f(1/z).
This is clearly so, or otherwise, by Casorati-Weierstrass we would con-
tradict (27.13). Hence f =

∑0
k=−∞ ckz

−k + P (z) in a neighborhood
of infinity and thus f is entire and polynomially bounded in C, and
thus it is a polynomial by Exercise 6.33. But, if deg(P ) = n > 1,
then the equation P (1/z) = w would have n > 1 roots for large z, by
Proposition 27.110.

27.8. Automorphisms of the Riemann sphere. A linear fractional
transformation (LFT), or Möbius map is a map of the form

(27.14) S(z) =
az + b

cz + d

where ad − bc ̸= 0. Clearly, S is meromorphic, with only one pole at
z = −d/c.
Exercise 27.116. Associate to a LFT the coefficients matrix

(27.15) M̂ :=
az + b

cz + d
7→
(
a b
c d

)
If T1 and T2 are LFTs, then show that
(27.16) M̂(T1 ◦ T2) = M̂(T1)M̂(T2)

where the product on the right side of (27.16) is the usual matrix
product. Hence LFT with composition are isomorphic to SL(2,C)
with multiplication (some authors prefer PSL(2,C) to emphasize the
projective invariance, and in some sense the arbitrariness of the nor-
malization ac − bd = 1. It is a normalization that we do not wish to
ensure every time a LFT is constructed). In particular, they form a
group.

Theorem 27.117. F : Ĉ → C is analytic iff F is a rational function.
Analytic functions are defined of course through charts.

Proof. Constants are of course analytic; assume F is nonconstant.
Since f is analytic, it cannot have essential singularities in Ĉ (but it
can have poles since ∞ is a regular point in Ĉ, the North pole). Hence,
F is meromorphic in C. Since no value of F can accumulate anywhere
in Ĉ and since Ĉ is compact, F has finitely many poles. Therefore, for
a polynomial P, PF = Q is analytic in C. At ∞ the Laurent series of
P has to be of the form P1(z) + A(1/z) where A is analytic at zero.
But then Q is analytic in C and polynomially bounded hence it is a
polynomial.
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Theorem 27.118. The automorphism group of Ĉ is the Möbius group.

Proof. It is straightforward to check that Möbius maps are automor-
phisms of Ĉ. If f is an automorphism of Ĉ then of course it is analytic
and thus, by Theorem 27.117, it is of the form P/Q, P,Q polynomials.
Since in C the value ∞ is taken at most once with multiplicity one, we
must have Q(z) = cz+d. Now, z 7→ 1/z is an automorphism of Ĉ, and
this implies that Q/P is also an automorphism, hence P (z) = az + b.
We must have ac− bd = 0 or else the fraction simplifies to a constant.

28. Linear fractional transformations (Möbius
transformations)

If c = 0 we have a linear function. If c ̸= 0 we write

(28.1) az + b

cz + d
=
a

c
− ad− bc

c2(z + d/c)

It is clear from (28.1) that S(z1) = S(z2) iff z1 = z2 and in particular
S ′(z) ̸= 0: If a LFT F is defined in the domain D (that is, −d/c /∈ D),
then D and F (D) are conformally equivalent. It also follows from the
decomposition (28.1) that

Proposition 28.1. The Möbius group is generated by z 7→ z + a,
z 7→ az and z 7→ 1/z. This implies that PSL(2,C) is generated by the
matrices of the form

(28.2)
(
a 0
0 1

)
,

(
1 b
0 1

)
and

(
0 −1
1 0

)
(we took a negative sign in the last matrix to have determinant one.)

Hence, the automorphisms of Ĉ are represented by PSL(2,C) while

those of C are given by the subgroup generated by the matrices
(
a 0
0 1

)
and

(
1 b
0 1

)
.

Exercise 28.2. Show that z 7→ 1/z maps a line or a circle into a line
or a circle. Hint: Show first that the equation

αzz + βz + βz + γ = 0

where α, γ ∈ R and β ∈ C and |β|2 > αγ is the most general equation
of a line or a circle. Then apply the transformation to the equation.

As a result we have an important property of LFTs
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Proposition 28.3. A LFT maps a line or a circle into a line or a
circle.

Proof. By Exercise 28.2 inversion has the property above, and clearly,
so do Euclidean transformations.□

28.1. Finding specific LFTs. A line is determined by two of its
points and a circle is determined by three. We now show that for
any two circles/lines there is a LFT mapping one into the other, and
find the formula for it. Let z1, z2, z3 be three points in C. Then the
transformation

(28.3) S =
z1 − z3
z1 − z2

z − z2
z − z3

maps z1, z2, z3 into 1, 0,∞ in this order; this is easy to check. If one of
z1, z2, z3 is ∞, we pass the transformation to the limit. The transfor-
mation taking (∞, z1, z2) to (1, 0,∞) is is

(28.4) z − z1
z − z2

To find a transformation that maps z1, z2, z3 into z̃1, z̃2, z̃3 in this order,
we can write it as ˜̃S := S̃−1S. By Exercise 28.4 this transformation is
unique.

Exercise 28.4. Check that a LFT that takes (1, 0,∞) into itself is the
identity.

28.1.1. Cross ratio. If zi, i = 1...4 are four distinct points and wi =
S(zi) then (check!)

w1 − w2

w1 − w3

w3 − w4

w2 − w4

=
z1 − z2
z1 − z3

z3 − z4
z2 − z4

This is often a handy way to determine the image of a fourth point
when the transformation is calculated using three points.

28.2. Mappings of regions. We know that LFTs are conformal and
one-to-one and transform circles/lines onto circles/lines. Proposition
27.114 shows that LFTs map disks/half planes to disks/half planes. To
see the latter, note that on the Riemann sphere LFTs map circles to
circles, hence disks to disks. This argument requires some tidying up,
left as an easy exercise.

Exercise 28.5. (i) Show that the Cayley transform f(z) = (z−i)/(z+
i) maps conformally the UHP to D. Its inverse, i(1 + w)/(1 − w), of
course maps conformally D to the UHP.



65

(ii) Find a LFTs that maps the disk (x− 1)2 + (y− 2)2 = 4 onto the
unit circle and the center is mapped to i/2.

(iii)(*) Find the most general LFT that maps the unit disk onto
itself.

28.3. As usual, we let D be the open unit disk.

Theorem 28.6 (Schwarz lemma). Let f : D → D be analytic and such
that f(0) = 0. Then

(i)

(28.5) |f(z)| ⩽ |z|

for all z ∈ D.
(ii) If there is some nonzero z0 ∈ D such that for z = z0 we have

equality in (28.5) then f(z) = eiϕz for some ϕ ∈ R.
(iii) |f ′(0)| ⩽ 1 and if equality holds then again f(z) = eiϕz for some

ϕ ∈ R.

Proof. (i) Since f(0) = 0, the function f(z)/z extends analytically in
D. By the maximum modulus principle,∣∣∣∣f(z)z

∣∣∣∣ ⩽ lim
r↑1

max
|z|=r

∣∣∣∣f(z)z
∣∣∣∣ ⩽ 1

(ii) If z0 is such that equality in (28.5) holds, then z0 is a point
of maximum of |f(z)/z|, which cannot happen unless f(z)/z = C =
f(z0)/z0.

(iii) The inequality follows immediately from (28.5). Assume f ′(0) =
eiϕ, ϕ ∈ R. If f(z) ̸≡ eiϕz, then we can write

f(z)/z = eiϕ(1 + zmeiψh(z))

where h is analytic and h(0) ∈ R+. If we then take z = ε exp(−iψ/m)
with ε small enough we contradict (i). □

Corollary 28.7. If h is an automorphism of the unit disk and h(0) = 0
then h(z) = eiϕz for some ϕ ∈ R.

Proof. We must have, by Theorem 28.6 |h(z)| ⩽ |z|. But the inverse
function h−1 is also an automorphism of the unit disk and h−1(0) = 0.
Thus |h−1(z)| ⩽ |z| for all z, in particular |z| = |h−1(h(z))| ⩽ |h(z)|
or |z| ⩽ |h(z)|. Thus |h(z)| = |z| for all z and the result follows from
Theorem 28.6 (ii).□
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28.4. Automorphisms of the unit disk. We have seen that the
subgroup of LFTs:

(28.6) S(z) = eiϕ
z − α

1− αz
with ϕ ∈ R and |α| < 1

maps the unit disk one-to-one onto itself.
The converse is also true:

Theorem 28.8. Any automorphism f of D into itself is of the form
(28.6) with α = f−1(0).
Proof. The function h = S ◦ f−1 is an automorphism of the unit disk
and h(0) = S(α) = 0. But then Corollary 28.7 applies and the result
follows. □.
Exercise 28.9. Show that the automorphisms of the upper half plane
are of the form az+b

cz+d
where a, b, c, d are real and ad − bc > 0 (see also

Exercise 27.116). The automorphism is unique, the identity, if φ(0) = 0
and φ(1) = 1.

As we have seen, this subgroup of the LFTs is isomorphic to PSL(2,R).
The automorphisms of the canonical forms of simply connected Rie-

mann surfaces, Ĉ,C,D, are therefore subgroups of PSL(2,C).
Of course, knowing the generators of a group can be very useful, for

instance when we need to prove a property of the whole group.

29. The modular group

In preparation for elliptic function theory, we now look into the prop-
erties of an important subgroup of PSL(2,R) namely the modular
group Γ = PSL(2,Z), course isomorphic to the subgroup of LFT

z 7→ az + b

cz + d
,

a, b, c, d ∈ Z, |ad− bc| = 1, with M and −M identified.
Note 29.10. The fact that ad − bc = ±1 implies that the fractions
a/b, a/c, c/d, b/d are all irreducible. Check this.
Definition 29.11 (Lattices). A two-dimensional lattice generated by
the complex numbers, or periods, ω1 and ω2 with ω1/ω2 /∈ R is the set
(29.7) Λω1,ω2 := Λ = {z ∈ C : z = m1ω1 +m2ω2; m1,m2 ∈ Z}

Any such Λ is a module over Z. Geometrically, a lattice provides a
tesselation of the plane by identical parallelograms:
Definition 29.12. A tessellation, or tiling of a region is a family of
disjoint open sets whose union of closures cover the region.
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29.1. Bases of lattices. Lattices are clearly discrete sets. Hence there
is a ω1 of minimal absolute value. Choose any ω ∈ Λ which is not of the
form nω1 and among these ω choose one of minimal absolute value; call
it ω2. We must have ω2/ω1 /∈ R, or else if n is s.t. n < ω2/ω1 < n+ 1,
then |nω1 − ω2| < |ω1|, a contradiction.
Proposition 29.13. PSL(2,Z) is a symmetry of any lattice Λ. In
other words PSL(2,Z)Λ = Λ.
Proof. (Simplified, from [3].) If

(29.8) M =

(
a b
c d

)
∈ PSL(2,Z)

with a, b, c, d ∈ Z, ad − bc = 1, and Λ = Λω1,ω2 with ω2/ω1 /∈ R, we
want to show that MΛ = Λ. Let

(29.9)
(
ω′
1

ω′
2

)
=

(
a b
c d

)(
ω1

ω2

)
Note that (ω′

1, ω
′
2) and (ω1, ω2) play a symmetric role, for

(29.10)
(
ω1

ω2

)
=M−1

(
ω′
1

ω′
2

)
Eq. (29.10) shows in particular that ω′

2/ω
′
1 /∈ R. Check that, for

instance by assuming the contrary and arriving at a contradiction.
Now, the pair (29.9) and (29.10) shows that Λω1,ω2 ⊂ Λω′

1,ω
′
2
and

Λω′
1,ω

′
2
⊂ Λω1,ω2 .

Corollary 29.14. .
• Any two bases of a lattice Λ are related by a modular transfor-
mation (29.9).

• PSL(2,Z) are automorphisms of lattices, and hence of the 2d
torus T (in fact, these are all).

29.2. The fundamental region of PSL(2,Z). There is a special ba-
sis of importance for PSL(2,Z) and for the theory of elliptic functions:
Theorem 29.15. There exists a basis (ω1, ω2) such that the ratio τ =
ω2/ω1 satisfies the following conditions:

(1) Im τ > 0
(2) −1

2
< Re τ ⩽ 1

2
(3) |τ | ⩾ 1
(4) Re τ ⩾ 0 if |τ | = 1.

The ratio τ is uniquely determined by these conditions, and there is a
choice of two, four, or six corresponding bases. The region R is shown
in Fig. 29.2.
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Figure 17. The fundamental region R (the grey region
together with the right part of the circle, that is, starting
at i) and the action of PSL(2,Z) on it, figure from Wiki:
[14].

Proof. (Slightly simplified version of the proof in [3].) Choose ω1 and
ω2 as in the beginning of §29.1. Then, |ω1| ⩽ |ω2|, |ω2| ⩽ |ω1 + ω2|
and |ω2| ⩽ |ω1 − ω2|. These translate in |τ | ⩾ 1 and |Re τ | ⩾ 1

2
.

If Im τ < 0, replacing (ω1, ω2) by (−ω1, ω2) makes Im τ > 0 while
preserving |Re τ | ⩾ 1

2
. Finally, if it happens that Re τ = −1

2
we pass to

ω1, ω1 + ω2. If |τ | = 1 and Re τ < 0 we replace τ by −τ−1, i.e. (ω1, ω2)
by (−ω2, ω1) finishing the required normalization. If τ ′ corresponding
to another basis is also in R, then a calculation based on Corollary
29.14 shows that

(29.11) τ ′ =
aτ + b

cτ + d
and Im τ ′ =

sign(ad− bc)Im τ

|cτ + d|2
=

Im τ

|cτ + d|2

since τ ′ ∈ R; this also implies ad − bc = 1 . We want to show τ ′ = τ
and in this τ and τ ′ play symmetric roles and we are free to assume
Im τ ′ ⩾ Im τ . By (29.11) this gives

(29.12) |cτ + d| ⩽ 1

Writing τ = α+ iβ we have α ∈ (−1/2, 1/2], β2 + α2 ⩾ 1. Eq. (29.12)
gives (αc + d)2 + β2c2 ⩽ 1. We must have |c| ⩽ 1 since |c| ⩾ 2 gives
|β| ⩽ 1

2
forcing |τ | < 1.

If c = 0, ad− bc = 1 implies ad = 1, hence a = d = 1 or a = d = −1.
From the first equality in (29.11) we then have τ ′ = τ ± b, hence
Im τ = Im τ ′, |b| = |Re τ − Re τ ′| < 1, and from Assumption 2, b = 0
implying τ = τ ′.

If |c| = 1, then |τ + d| ⩽ 1 or |τ − d| ⩽ 1 implies d < 2, hence d = 0
or d = ±1. If d = 0, since |τ | ⩾ 1 we must have |τ | = 1 and now
bc = −1 gives b/c = −1, hence τ ′ = ±a − 1/τ = ±a − τ implying
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1 > Re (τ + τ ′) = ±a, Hence a = 0 and τ ′ = −1/τ which is only
possible if τ = i and τ ′ = i.

If d = ±1 then |τ±1| ⩽ 1. The closest point to −1 inR is (−1
2
,
√
3
2
) /∈

R, hence d = −1 and |τ − 1| ⩽ 1. Proceeding as before, the closest
point to R is eiπ/3 = (1

2
,
√
3
2
) ∈ R, a point of minimal imaginary part,

and where |τ − 1| = 1. But by (29.11) Im τ ′ = Im τ , hence τ ′ = τ .
To classify all possible choices of bases we have to find the fixed

points in R of PSL(2,Z). The matrices −1 are identified and result in
τ → τ , but (−ω1,−ω2) is a different basis. The analysis above shows
that the only possible fixed points are τ = i and τ = eπi/3. These are
fixed points of τ 7→ 1/τ and τ 7→ (τ − 1)/τ .

Exercise 29.16. Find all z ∈ UHP for which there is some M ∈
PSL(2,Z) s.t. Mz = z

We denote the interior of a set A by A◦.

Corollary 29.17. If M ∈PSL(2,Z), then (MR)◦ ∩R◦ ̸= ∅ iff M = 1,
or equivalently, if A = MR and A′ = M ′R then A◦ ∩ (A′)◦ ̸= ∅ iff
M =M ′.

Proof. If τ ∈ (R)◦ ∩ (MR)◦ and M ̸= 1, then τ =Mτ ′, hence τ and τ ′
belong to the same lattice. By Theorem 29.15, we must have τ =Mτ .
Hence, if M ̸= 1 then τ ∈ (R)◦, contradiction.

Definition 29.18. A group G acts on a topological space X in a prop-
erly discontinuous way if for all x ∈ X and g ∈ G there is a neighbor-
hood N such that g(N ) ∩N ̸= ∅ ⇔ g = 1.

Exercise 29.19. Does PSL(2,Z) act in a properly discontinuous way
on the upper half plane?

29.3. The generators of the modular group.

Proposition 29.20. The modular group is generated by T =

(
0 −1
1 0

)
and S =

(
1 1
0 1

)
, or in terms of LFTs, σ = z 7→ −1/z and τ = z 7→

z + 1.

Proof. 4 Let F (z) = az+b
cz+d

. We distinguish three cases.
(1) a = 0. Then bc = −1 which can only happen if b = −c = ±1.

In this case, F (z) = ±1/(±z + d) = στ±d(z).

4Adapted and simplified from a post by rmdmc89
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Figure 18. Marked action of S,T

(2) |a| = 1. By projective equivalence, we may assume a = 1, and
then d − bc = 1. We bring this transformation back to case 1
by τ, σ:

τ cσ

(
z + b

cz + d

)
= τ c

−cz − d

z + b
=

−cz − d

z + b
+ c = − 1

z + b

indeed of type (1).
(3) |a| > 1 (it can’t be < 1!). If we show that we can strictly lower

|a|. Since a ∈ Z, it means we can eventually bring ourselves to
case (2). By Note 29.10 (a and c are coprime) we have |a| ̸= |c|.
By applying σ if necessary we can arrange |a| > |c|. We can
assume c ̸= 0 or else σ brings us to (1). Then

(29.13) τ±1F =
(a± c)z + (b− d)

cz + d

Exercise 29.21. * 1. Show that the modular group induces a tessel-
lation of the UHP, namely {(MR)◦ : M ∈ PSL(2,Z)}. One way is to
apply Corollary 29.17 and note that for any z ∈ R and x ∈ R+, xz is
in the closure of the tessellation by taking r = p/q ∈ Q+ and taking
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LFTs of the form (npz+ b)/(cz+ nq), n ∈ N, n→ ∞. This shows that
the strip {|Re z| ⩽ 1/2, Im z ⩾ 0} is in the closure of the tesselation.

2. Find the tesselations of the unit disk induced by conjugation of
PSL(2,Z) with the Cayley transform. Find the Poincaré metric on D
using the Cayley transform.

29.4. The hyperbolic plane. On the UHP define the metric tensor

(29.14) ds2 =
dx2 + dy2

y2
=
dzdz

y2

The metric is given by

(29.15) ρ(z1, z2) = 2 tanh−1

∣∣∣∣z1 − z2
z1 − z2

∣∣∣∣ = log
|z1 − z2|+ |z1 − z2|
|z1 − z2| − |z1 − z2|

Exercise 29.22. Check that the metric is invariant under LFT’s, hence
under SL(2,R). Check that the geodesics for this metric are circular
arcs ⊥ R and vertical lines ending on R.

The hyperbolic plane has constant negative curvature.

29.5. Schwarz reflection of domains about a circle. We have seen
in Theorem 21.90 that we can analytically continue functions from
the upper half plane into a symmetric domain in the lower half plane
provided they are continuous up to the real line and real-valued there.
Consider a domain D bounded by a curve and an arccircle C, and let
F be analytic in D and continuous up to C. At any point z ∈ C we
can decompose f(z) = f1 + f2 where the direction of f1 is tangent to
the circle and f2 is perpendicular to it. Assume that f2 = 0. Let M
be a Möbius transformation that takes C to a real interval J and D to
a domain D′ in the UHP. Then f ◦M−1 is analytic in D′, continuous
down to J and real valued on J . Then there is a function analytic F
in the domain D′ ∪D′′ ∪ J where D′′ is the reflection of D across J s.t.
F |D = f ◦M−1 and F ◦M−1 provides analytic continuation of f to
D ∪RD ∪ C where RD is the reflection of D across the arccircle C.

Exercise 29.23. Find the formula of the reflection of a point across
an circle, defined as in the construction above.

30. Some special biholomorphic transformations

. Note. We usually call biholomorphic transformations of domains
conformal maps.

Many elementary conformal maps are composed of Möbius maps,
ramifications: z 7→ zα, exponential and trig maps and some other sim-
ple maps such as the Joukowski map. We illustrate below a number of
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useful transformations; see the references, esp. [1], [11] for more exam-
ples. A good number of interesting domains can be mapped to the unit
disk using combinations of these transformations. Note that by Propo-
sition 27.114 it suffices to examine carefully the way the boundaries
are mapped to understand the action of a map on a whole domain.
1. Möbius transformations. We have discussed these in some

detail already. A very useful special case is the Cayley transform z − i

z + i
that maps conformally the UHP to D.
2. The map z 7→ z1/α. See Fig. 30.

UHP

Sαπ

00

Figure 19. The map z 7→ z1/α maps the open sector
of opening πα on the right bianalytically to the open
upper half plane and the boundary point zero to zero:
the upper boundary of the sector is rotated to −R.

3. Maps of the cut plane.

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

Figure 20. C with one, two, four and eight symmetric
cuts. More generally, the directions of the cuts could be
along the roots of unity, ω1, ..., ωk, k ∈ N.

Exercise 30.24. (1) Show that ϕ1(z) = 4z
(1+z)2

maps conformally
the unit disk to C \ [1,∞). Using Proposition 27.114 and this
map, verify that the upper and lower sides in C of (1,∞) are
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to be treated as separate parts of the boundary. We have used
this point already in the construction of Laurent series.

(2) Show that for any n ∈ N ϕn(z) = [ϕ1(z
n)]1/n maps conformally

D to C with symmetric cuts at ωk, k = 1, ..., n.

i

1−1 −2 0 2

z+1/z

4. The Joukovski transformation.
This is an interesting map which straightens the region in the upper

half plane above the unit circle (of course, by slight modifications, you
can choose other radii or centers along R+) to the upper half plane. It
is given by

(30.16) J(z) = z +
1

z

Exercise 30.25. Check that J indeed maps conformally the region in
the figure to the UHP (hint: follow the boundary). What is the effect
of J on the reflection across R of yellow region?
5. The exponential maps the region {z|0 < Im z < π} conformally

to the domain C \ (−∞, 0].
Exercise 30.26. Use some of the maps discussed above to conformally
map D to this strip and the UHP to the strip above.
5. The cosine maps the region {z|Im z > 0, 0 < x < π} conformally

to the UHP.
Exercise 30.27. Note that the cosine and the exponential are linked
via a Joukovski map. Can you explain the mapping of cos based on 5.
and J?
Note 30.28. Keep in mind that the conformal maps above are not tied
to the domains presented, except loosely through the fact that these
domains are often chosen to be some maximal region of conformality.
Often subdomains of a maximal domain are interesting in applications.
Application to fluid flow. Recall our notations: ⟨v, u⟩ = ∇ϕ,

where ϕ is the velocity potential and is a harmonic function, while v, u
are the vertical and horizontal velocities of the fluid particles. The
complex potential is ϕ+ iψ where ψ is the stream function.
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Figure 21. Velocity field lines in Joukovski’s domain

As a nice application of the Joukovski map, we can find the flow lines
of a river passing above a cylindrical obstacle. The problem becomes
2d, by symmetry, and we are dealing with the flow impeded by a circle.
Again by symmetry, we only need to understand the flow in the UHP,
impeded by a half-circle: exactly the Joukowski domain.

We map conformally the Joukowski domain to the UHP and solve the
problem there. Say the complex solution is F (z). Then our solution,
in the Joukowski domain, is F (J(z)).

In the UHP, the flow of a fluid would be horizontal with constant
horizontal velocity (say 1) ⟨v, u⟩ = ⟨0, 1⟩. This gives ϕ(x, y) = y +
C where we take C = 0. Up to an irrelevant constant, Ψ = −x,
and thus the relevant complexified solution is F (z) = y − ix = −iz.
(In particular, we have the no-penetration condition v = 0 along the
boudary, R.) Then −iJ(z) is the solution with the given boundary
conditions in the Joukowski domain.

The fluid flow lines are then given by J2(x1, y1) = const. plotted with
Maple in Fig 30.
Exercise 30.29. *

Find an explicit formula for flow lines in the previous example.
Other common conformal maps are depicted in the following figures.

The Cayley transform z−i
z+i

maps conformally the UHP to D. It plays
an important role in the theory of unbounded operators. Any other
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C \ R−

R = 1

i
1 + z

1− z

Re z > 0

z − i

z + i

function f that maps conformally the UHP to D must be the Cayley
transform composed to the left with an automorphism of he disk. Write
the general form of such a map.

z2

Exercise 30.30. ** (i) Check the transformation in the figures above.
(ii) Draw a similar picture for the mapping sin z from the upper half

strip bordered by the half-lines x = ±π/2, y > 0.
(iii) Find a conformal map of the quarter disk |z| < 1, arg(z) ∈

(0, π/2) onto the upper half plane.
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z
2

|z| < 1, y > 0 0 ̸= |z| < 1, z /∈ R+

−4

a+

a−

ϕ0

6

(iv) Find a conformal map of the half disk |z| < 1, arg(z) ∈ (0, π)
onto the half strip x < 0, y ∈ (0, π).

(iv) Find a conformal map of the right half plane (RHP) with a cut
along [0, 1] in the RHP .

Example 1 It is useful to remark that we can find linear fractional
transformations which map conformally a region between two circles
into a half plane (or disk) using very simple transformations. Let us
map the “moon crescent” M below into a half plane.

The equations of the circles are x2 + y2 = 16 and (x− 3)2 + y2 = 9.
Solving these equations for the intersection points a± we get a± =
8/3± 4i

√
5/3. The angle between the circles equals the angle between

a+ − 3 and a+ that is arg[(a+ − 3)/a+] = arctan(
√
5/2). The idea is

that if we map by an LFT one of the intersection points to infinity, the
arccircles become lines for which question is easier.
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If we map a− 7→ 0, 0 7→ 1 and a+ 7→ ∞ by a LFT, concretely

(30.17) a+
a−

z − a−
z − a+

then both arccircles become rays (since they end at ∞). The small arc
becomes R+ and the larger one a ray of angle ϕ0 (by conformality at
a−: check these statements).

To transform this sector of opening π0 to the upper half plane we
simply use a ramified transformation z 7→ zπ/ϕ0 .
Example 2 Solve ∆u = 0 in the region |z| < 1, arg(z) ∈ (0, π/2) such
that on the boundary we have: u = 1 on the arc and u = 0 otherwise.
Solution. Strategy: We find conformal map of this region into the
strip {z = x+ iy : y ∈ (0, 1)} such that the arc goes into y = 1 and the
segments into y = 0. The solution of the problem in this region is clear:
u = Im z. Then we map back this function through the transformations
made.

How to find the transformation? We are dealing with circles, strips,
etc so it is hopeful we can get the job done by composing elementary
transformations. There is no unique way to achieve that, but the end
result must be the same.

(1) The transformation z 7→ z2 opens up the quarter disk into a half
disk. On the boundary we still have: u = 1 on the arc and u = 0
otherwise.

(2) We can now open the half disk into a quarter plane, by sending
the point z = 1 to infinity, as in Example 1, by a linear fractional
transformation. We need to place a pole at z = 1 and a zero at z = −1.
Thus the second transformation is z 7→ i1+z

1−z . The segment starting at
−1 ending at 1 is transformed in a line too, and the line is clearly R+

since the application is real and positive on [0, 1) and 1 is a pole. What
about the half circle? It must become a ray since the image starts at
z = 0 and ends at infinity. Which line? The image of z = i is w = i.
Now we deal with the first quadrant with boundary condition u = 1
on iR+ and u = 0 on R+.

(3) We open up the quadrant onto the upper half plane by z 7→ z2.
(4) We now use a rescaled log to complete the transformation. The

composite transformation is

2

π
ln

(
1 + z2

1− z2

)
Exercise** The temperature distribution also satisfies Laplace’s

equation. (1) Map M onto a strip as in Example 2. What is the
distribution of temperature in the domainM if the temperature on the
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larger arc is 1 and 0 on the smaller one? What shape do the lines of
constant temperature have?

(2) What is the distribution of temperature in the domain and with
the boundary conditions described in example 2? Draw an approximate
picture of the lines of
Example. (These calculations need to be checked). In a region

free of charge, the electrostatic potential V is harmonic, and hence it
equals ReF where F = V + iW and W is a harmonic conjugate of V .
In electrostatics, the electric field is given by E = −∇V .

We approximate the electrically charged mast of a ship by a sector S
as in Fig. 30 with very small α and the other in the second quadrant,
and the air outside the mast is then a sector Sc of angle πβ, β ≈ 2, as
in Fig. 30 with the upper side rotated almost all the way around. The
map of Sc to the UHP is z1/β. This means the mast is like a knife’s
edge, rather than a pin. There is another unrealistic assumption,
that the density of charge is constant. In reality, charges accumu-
late at the tip, making the field stronger.

Now the LHP is electrically charged, and by symmetry, the charge
density is constant. Still by symmetry (or, more rigorously by Gauss’
law) the electric field in the UHP is constant and vertical. This gives
Ṽ (x, y) = cy (let’s take c = 1), and, as in the fluid flow problem, Ṽ +
iW̃ = −iz. Then, we have V + iW = −iz1/β ≈ f(z) = −iz1/2. Using
the Cauchy-Riemann equations, we have Ex(z) = ∂V

∂x
= Re (f ′(z)) and

Ey(z) = −∂V
∂y

= −Im (f ′(z)). We deduce that |E(z)| = |f ′(z)| ≈
1
2
|z|−1/2. The electric field blows up in this way when we approach the

tip of the mast. In practice E grows until it reaches the ionization
threshold of the air around it, upon which it keeps discharging in the
air. The current through air creates plasma, resulting in Saint Elmo’s
fire. (A local electric field of about 100 kV/m is required to begin a
discharge in moist air.)

31. The Riemann Mapping Theorem

Using elementary transformations we can conformally map a lim-
ited family of domains onto D; with the maps we used in the previous
section, the boundary is always very simple. The Schwarz-Christoffel
formulas in §32, generally nonelementary, provide conformal maps be-
tween any polygons and the upper half plane (which, as we saw can be
mapped onto the unit disk). For polygons with more than 4 sides, some
numerical calculations are needed. Conformally mapping more general
domains, even in a computer assisted fashion, is a difficult problem.
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In principle, however, any simply connected domain other than
C can be mapped onto D:
Theorem 31.1 (Riemann Mapping theorem). Given any simply con-
nected domain D other than C there is biholomorphic map f between
D and D.

Normalizing f by f(z0) = 0 and f ′(z0) ∈ R+, for some z0 ∈ D, such
a map is unique.

The Riemann mapping theorem was stated by Riemann in 1851 for
domains with piecewise regular boundary, and he provided a proof
based on solving a Dirichlet problem for the Laplacian. The method
used, the Dirichlet’s principle was not quite right. Weierstrass found
that indeed this can happen for the Dirichlet functional.

The next two pages are taken from an article (see top of the pages)
describing Riemann’s proof in detail. The first rigorous proof along
these lines, in full generality, was given by Caratheodory in 1912.
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holomorphic function F on the set with F ′ = f . We shall say then that U is holomorphi-
cally simply connected.

It is easy to show that topological simple connectivity as defined implies the holomor-
phic antiderivative property just described. The theorem itself in the following form will 
show among other things the converse, namely, that the holomorphic simple connectiv-
ity implies topological simple connectivity.

Theorem 1.1  (Riemann) Suppose that U is a connected open subset of C with U �= C. If 
U is holomorphically simply connected, then U is biholomorphic to the unit disc, i.e., there 
is a one-to-one holomorphic function from U onto the unit disc D = {z ∈ C : |z| < 1}.

In the proof of this result, it will be useful to be able to assume that U is bounded. For 
this, we recall the familiar fact that such a U as in the theorem is always biholomor-
phic to a bounded open set. The proof of this in summary form goes like this. Since 
U �= C , we can replace U by a translate to suppose that 0 /∈ U . The function 1 / z is then 
holomorphic on U and hence has an antiderivative L(z), say. Changing L by an additive 
constant will arrange that exp(L(z)) = z (this is the usual process for finding complex 
logarithms). Then exp(L(z)/2) is one-to-one on U. Choose an open disc in the image of 
exp(L(z)/2). The negative of this disc is disjoint from the image of exp(L(z)/2). So the 
image of exp(L(z)/2), which is biholomorphic to U, is itself biholomorphic to a bounded 
open subset of C, via a linear fractional transformation.

Note that it is not clear by definition that the holomorphic simple connectivity is pre-
served by a biholomorphic mapping since the meaning of taking the derivative is dif-
ferent when the coordinates change; but by the complex chain rule this is a matter of a 
holomorphic factor which can be assimilated into the original function. Checking the 
details of this is left to the reader as an exercise.

So now we can assume without loss of generality that the open set U is bounded. And 
by translation we can now assume 0 ∈ U . We shall look for a biholomorphic mapping 
from U to the unit disc D which takes 0 to 0. Of course, if there is a biholomorphic map 
from U to the unit disc at all, there is one that takes 0 to 0 since a linear fractional trans-
formation taking the unit disc D to itself will take any given point to the origin, and in 
particular the image of 0 to begin with can be moved to the origin.

Now if H :U → D is biholomorphic and has H(0) = 0, then H(z) / z has a removable 
singularity at 0. Hence, H can be written as zh(z), where h is holomorphic on U and 
h(0) �= 0. That h(0) �= 0 follows because H is supposed to be one-to-one and hence must 
have derivative vanishing nowhere. Of course, h(z) is also nonzero for every other z ∈ U 
because 0 is the only point of U with H(z) = 0.

Now there is an antiderivative L of h′/h on U. The product h(z) exp(−L(z)) is constant 
since it has derivative identically equal to 0 and U is connected. Changing L by an addi-
tive constant, we can assume h(z) exp(−L(z)) = 1 for all z ∈ U . (This familiar argument 
will occur several times here).

The essential point of Riemann’s method was to consider the harmonic function 
Re L(z). This is of course equal to ln |h(z)|. Since the “boundary values” of |H(z)| have 
to be 1, it must be that the boundary value of |h| at a boundary point z0 of U has to be 
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1/|z0|. In particular, the harmonic function ln |h| has to have boundary value at z0 equal 
to − ln |z0|.

At this point, Riemann appealed to what he referred to as the Dirichlet Principle. The 
Euler–Lagrange equation for the variational problem of minimizing the so-called Dir-
ichlet (energy) integral for a real-valued function f(x, y), namely minimizing this integral

under the condition that f = g on the boundary ∂U  of U, is easily computed to satisfy 
�f = 0 (§18 of [10, 11]).

So Riemann proposed that the harmonic function with the boundary values − ln |z0| 
at each boundary point z0 could be found by minimization of the Dirichlet integral. And 
Riemann was well aware of how to construct h and hence H from knowing ln |h(z)|. Rie-
mann actually expressed this all in terms of ln |H | and the idea of Green’s function, a 
function with boundary value 0 and a specified singularity at (in our case) the point 0, 
namely the function had to be of the form ln |z| + u(z) with u harmonic near the point 
0. This is equivalent for open sets in C to our discussion, though the Green’s function 
notion is useful when one tries to extend the Riemann Mapping Theorem to the uni-
formization problem where there is no a priori global z-coordinate.

The main difficulty is that there is no particular reason to suppose that there is in fact 
any minimum for the Dirichlet integral in this situation. There is also a less serious dif-
ficulty of explaining why the resulting function is one-to-one and onto—intuitively this 
is just a matter of winding numbers if one can approximate U from inside by domains 
with smooth or piecewise-smooth closed curve boundaries. One supposes that Rie-
mann may have taken this part for obvious, though it is actually quite subtle if one does 
not appeal to any pre-existing topological intuitions. We shall give a precise argument 
later on. Riemann apparently considers only domains, the boundary of which is smooth 
in some sense. Osgood made the major forward step treating simply connected open 
sets in general, thus proving what we call today the Riemann Mapping Theorem. The 
Osgood proof is acknowledged directly by Carathéodory [2] where the ideas involved in 
the usual proof of today, via normal families, are presented. See the footnote (**) of page 
108 of [2]. But, for some reason, Osgood’s proof fell from favor or even recognition for 
the history of the Theorem in [9]; there is a reference to Osgood’s paper but no comment 
on it, no acknowledgment that this is in fact the reasonably complete first proof of the 
general result.

2 � The application of the Perron method
Even simply connected bounded open sets in C can have complicated boundaries. The 
boundary of the Koch snowflake, for example, has Hausdorff dimension greater than 1 
[15]. And Osgood [6] already gave an example with boundary having positive (2-dimen-
sional) measure. Thus, it is appropriate to introduce carefully what is to be meant by 
finding functions with specified boundary values. For this purpose, let U be a bounded 
open set in C and ∂U  be its boundary, that is the complement of U within the closure 
cl(U) of U in C, or equivalently the intersection of cl(U) with C− U . Suppose that 
b:∂U → R is a continuous function. Then we say that a harmonic function h:U → R is 

∫

U

[

(∂f

∂x

)2
+

(∂f

∂y

)2
]

dxdy
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*
The usual proof of this major theorem involves concepts and results

that are very important and useful of their own. We will study these
in detail.

31.1. Equicontinuity. We look at functions f : M 7→ M ′ where
M,M ′ are metric spaces. We recall that if the metrics are d and d′, a
function is uniformly continuous if

(31.1) ∀δ ∃ε
(
∀(z, z0) ∈M2, d(z, z0) < ε⇒ d′(f(z), f(z0)) < δ

)
We can assume that the metric d′ is a bounded function, for we
can always replace it by d′′ = d′/(1 + d′) (check that d′′ is a metric,
topologically equivalent to d′ 5).
Definition. An equicontinuous family F is a collection of continuous
functions with the same continuity parameters at every point:
(31.2)

∀x∃δ(x)s.t.∀ε > 0,∀y&∀f ∈ F , d(x, y) < δ ⇒ d′(f(x), f(y) < ε

Definition 31.2 (Normal Families). LetM,M ′ be a complete metric
spaces. Then a collection of continuous functions F from M to M ′

is a normal family if it is pre-compact in the topology of uniform
convergence.

Exhaustion by compact sets. We note that if the metric spaceM is
σ−compact, then, by definition we can cover M by a countable nested
family of compact sets. This is the case of is C, Rn where

(31.3) M =
∪
n∈N

Kn, Kn = {x ∈M : |x| ⩽ n}

Metrizability of the topology of uniform convergence on
compact sets On each Kn in (31.3) we define the distance between
two functions f and g in a manner analogous to the L∞ distance:
(31.4) δn(f, g) = sup

x∈Kn

d′′(f(x), g(x))

and we create a distance on the whole of M which takes advantage of
the compact sets exhaustion:

(31.5) ρ(f, g) =
∞∑
n=1

2−nδn(f, g)

(recall that d′′ ⩽ 1).
5In separable spaces, i.e. ones which contain a countable dense set, equivalence

holds iff convergence in one metric is equivalent to convergence in the other.
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Exercise 31.3. Let M be a σ− compact metric space. Check that ρ in
(31.5) is a metric on C(M). Check that convergence with respect to ρ
is equivalent to uniform convergence on compact sets. Check that F is
a complete metric space if M ′ is a complete metric space.

The following is immediate.

Proposition 31.4. A family F is normal iff its completion F with
respect to ρ is compact.

31.1.1. The Ascoli-Arzelà Theorem.

Theorem 31.5 (Ascoli-Arzelà). A family F of continuous functions
in the region Ω ⊂ C with values in a metric space M ′ is normal in Ω
iff the following conditions are both satisfied:

(i) F is equicontinuous at any x ∈ Ω.
(ii) F is equibounded: ∀z ∈ Ω there is a compact set M ′ K1 =

K1(z) ⊂M ′ such that ∀f ∈ F , f(z) ∈ K1.

This is a standard theorem. We leave the proof for the Appendix,
§50.3.
Proposition 31.6. Let now M ′ ⊂ C and F be a normal family from
Ω to M ′. Let K ⊂ Ω be compact. Then F is bounded on K:

(31.6) sup
z∈K,f∈F

|f(z)| = m <∞

Proof. Since F is a normal family, by Theorem 31.5, using equiconti-
nuity, it follows that for any point a we can find δ(a) such that

(31.7) ∀z, ∀f ∈ F , |a− b| < δ(a) ⇒ |f(a)− f(z)| < 1

Extract a finite covering of K from the balls Dδ(a)(a), let aj be the
centers of the balls and δ0 be the smallest δ in the finite cover. We
denote mj = sup{|f(aj)| : f ∈ F} and m = 1 + maxj{mj}. Then, for
any x ∈ K there is an aj such that |x − aj| < δ0. Therefore, by the
choice of m and aj (31.7) we have, for any f ∈ F ,

(31.8) |f(x)| ⩽ |f(x)− f(aj)|+ |f(aj)| = 1 +mj ⩽ m □
Theorem 31.7 (Montel). Consider a domain D ⊂ C and assume
F is a family of analytic functions D such that for every compact set
K ⊂ D we have sup{|f(z)| : z ∈ K, f ∈ F} = m(K) < ∞. Then the
family is normal.

Proof. The family is clearly equibounded. We show that the derivatives
are also equibounded from which equicontinuity is immediate.
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Let K be a compact set in D ⊂ C, take an r < dist(K, ∂D) and a
finite cover of K, O = ∪mj=1Dr(aj) and let r′ =dist(∂O,K). We have
O ⊂ D and

(31.9) |f ′(z)| ⩽ 1

2π

∣∣∣∣∮
∂O

f(s)

(s− z)2
ds

∣∣∣∣ ⩽ 2m

r′

proving the result.

31.2. The Riemann Mapping Theorem.

Definition 31.8. (i) D and D′ will be called conformally equivalent
if there is a map which is analytic together with its inverse (biholomor-
phism) from D onto D′. (ii) An injective analytic function is called
univalent (or schlicht).

Theorem 31.9 (Riemann mapping theorem). Given any nonempty
simply connected domain Ω ⊂ C other than C itself, a point z0 ∈ Ω
and the normalization conditions φ(z0) = 0, φ′(z0) ∈ R+ there exists a
unique biholomorphism φ(z) between Ω and D.

Note 31.10. The fact that C must be an exception follows from the
fact that an entire bounded function is constant.

Note 31.11. Equivalently, any two nonempty simply connected do-
mains different from C are conformally equivalent. (cf. Exercise 28.9).

Proof of the Riemann Mapping Theorem
Uniqueness. This part is easier. If φ1 and φ2 are two functions with
the stated properties, then S := φ1(φ2)

−1 is an automorphism of D
and S(0) = 0. By Schwarz’s lemma S(z) = zeiθ for some θ. S ′(0) > 0
implies θ = 0.
Existence.

Note 31.12. Clearly, in the proof we can replace the arbitrary domain
D with any set conformally equivalent to it. Therefore, we first simplify
the domain by elementary transformations.

Note 31.13. By assumption there is a point in C\Ω, which, by trans-
lation if needed, we can assume to be 0.

Note 31.14. (1) We can always replace Ω by a conformally equiv-
alent Ω′ which is bounded. Indeed, since 0 /∈ Ω, the map
f = z 7→ 1/z is bounded on Ω. f(Ω) is conformally equiva-
lent to Ω and it is bounded. Indeed:

Lemma 31.15. Assume Ω ⊂ D is nonempty and 0 /∈ Ω. Then,
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(i) There is a biholomorphic branch of the log (log z =
∫ z
1
s−1ds)

between Ω and L = log(Ω) (with exp as its inverse, of course).
(ii) L ∩ (L+ 2πi) = ∅
(iii) There is a branch of the square root such that

√
Ω ∩

(−
√
Ω) = ∅.

(iv) L omits an open set.

Proof. (i) In one direction, log is analytic in Ω by the way we
normalized the domain. Now, if log z1 = log z2, by taking the
exponential we see that z1 = z2.

(ii) If w and w + 2πi were both in L, then w = log z1 and
w + 2πi = log z2. But then |z1| = |z2| in the defining integral
and arg z1 = arg z2 + 2πi which means the path of integration
between z1 and z2 is closed and surrounds 0. Then this closed
curve is not contractible to a point (0 /∈ Ω), violating simple-
connectedness.

(iii) follows from (i) and (ii).
(iv) If w0 ∈ L together with a disk Dε(w0), then (recall the

open mapping theorem), then Dε(w0) ∩ (2πi + Dε(w0)) = ∅.
2πi+ Dε(w0) is the ommitted disk

If w1 is the center of an omitted disk, then the map w 7→ 1
z−w1

is bounded in L.
(2) We can assume that Ω ⊂ D. Indeed, this is simply achieved by

rescaling.

Lemma 31.16. Assume Ω ⊂ D is nonempty and 0 /∈ Ω. Then,
(i) C \ log(Ω) contains an open disk.
(ii) Let z0 ∈ Ω. There is a biholomorphism g between Ω and g(Ω) ⊂ D

with g(z0) = 0, g′(z0) > 0.

Proof. (i) L is also bounded.
(ii) As seen in Note 31.14 2 we can assume that Ω ⊂ D. An auto-

morphism ϕ of the disk maps Ω to Ω′ ⊂ D and z0 to zero. ϕ′ can be
changed by multiplication by eiθ to make ϕ′(z0) = 0.

We can thus assume wlog that Ω ⊂ D and z0 = 0.
Preview of the rest of the proof.

Note 31.17. (1) Let ϕ be any bijection between Ω and S ⊂ D. We
want to see how ϕ′(z0) is correlated to the size of S, in the sense
of set inclusion. Assume for a moment we knew the Riemann
mapping theorem is true. Let ϕ1 : Ω → S1 and ϕ2 : Ω → S2 ⊋
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S1. Assume for simplicity that z0 = 0. Consider the chains
below where all the maps are biholomorphisms.

(31.10) D ψ→Ω
ϕ2→S2

χ→D
We can normalize them so that χ ◦ ϕ2 ◦ ψ vanishes at zero and
has positive derivative there. It is an automorphism of the disk,
and the normalization above makes it into the identity.

(31.11) D ψ→Ω
ϕ1→S2

χ→ S̃1 ⊊ D
The strict inclusion is due to the fact that S1 ⊊ S2. By the
chain rule, we get that ϕ′

1(0) < ϕ′
2(0).

Hence, returning to our problem, we are aiming at maximiz-
ing ϕ′(z0).

(2) We take the supM of these ϕ′(z0) and find a subsequence ϕn →
ϕ which converges and ϕ′(z0) =M . We then show that ϕ(Ω) =
D: otherwise we can find a ϕ1 with ϕ′

1(z0) > M by taking
appropriate square roots, a contradiction.

Since, in D, 0 < |x| < 1 we have 1 >
√
|x| > |x|: √ is an expansive

map. If Ω ̸= D, we should be able to select a point not in ϕ(Ω), define
a branch of the √ and expand ϕ(Ω) by taking an appropriate square
root.

Definition 31.18. Let F be the set of biholomorphic maps between Ω
and a subset of D, which vanish at zero and have positive derivative
there.
Proposition 31.19. (i) M := sup{f ′(z0)|f ∈ F} is attained by an F
in F .
(ii) If F (Ω) ̸= D, then there is an F1 ∈ F with F ′

1(z0) > M (a
contradiction which finishes the proof of the theorem).
Proof. (i) For any f ∈ F , by assumption, |f(z)| < 1 ∀z ∈ Ω. By
Montel’s Theorem 31.6 F is a normal family, thus if fn ∈ F and
f ′
n(z0) = mn → M then {fn}n∈N has a convergent subsequence to a
function F . By Weierstrass’s theorem (8.39) f ′(z0) = M . By Hur-
witz’s theorem (18.80) is a biholomorphism. To see that, note that
the limit F cannot be a constant since F ′(z0) = M ̸= 0. Take any
z1 ∈ Ω and consider the region Ω∗ = Ω \ {z1}. Since fn are bijections,
fn(z)− fn(z1) ̸= 0 in Ω∗. Hence F (z)− F (z1) ̸= 0 in Ω∗.

(ii) Assume there is an a ∈ D\F (Ω). First we use an automorphism
of D to map Ω to a set in D \ {0}:

(31.12) f1(z) =
F (z)− a

1− aF (z)
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Since f1(Ω) ⊂ D \ {0}, there is a branch of the square root in f1(Ω).
Now we can define
(31.13) f2(z) =

√
f1(z), ∀z ∈ Ω

Note that, by Lemma 31.15, f2 is a biholomorphism and that f2(Ω) ⊂
D. We see that f2(z0) =

√
−a := b ̸= 0. We now move b to zero and

change the phase of the derivative to zero through another automor-
phism of the disk:

(31.14) F1(z) =
f2(z)− b

1− bf2(z)

|f ′
2(z0)|
f ′
2(z0)

, ∀z ∈ Ω

A straightforward calculation shows that

(31.15) F ′
1(z0) =

1 + |a|
2
√

|a|
F ′(z0) > F ′(z0) =M

This is not a constructive approach to the actual conformal map.
There is no prescription on how to choose the convergent sequence
whose derivatives at zero approach M . We could attempt to apply the
square root trick in (ii), but the function sequence may not converge,
nor is it guaranteed that the derivatives at zero (clearly increasing)
would approach M .

32. Boundary behavior.

It is known, but would take us some time to prove, that if D and
D′ are Jordan regions (domains bounded by Jordan curves), then the
conformal map between D and D′ extends to a homeomorphism between
D and D′.

32.1. Behavior at the boundary of biholomorphisms: a general
but weaker result. We derive an easy but useful result [3]: if D is a
simply connected domain and φ maps it conformally onto D, then φ(z)
approaches ∂D as z approaches ∂D, in a sense defined below (which
does not necessarily imply that φ(z) converges).

Let D be a domain. Informally, a sequence or an arc approaches the
boundary if eventually recedes away from any point in the region. The
precise definition is:

Definition 32.1. A sequence zn → ∂D as n → ∞ if for any compact
set K ⊂ D there exists n0 such that for all n > n0 we have zn ̸∈
K. Similarly, for an arc γ : [0, 1] → D, γ(t) → ∂D if ∀K ∃t0 ∈
(0, 1) s.t. γ(t) /∈ K if t > t0.
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Theorem 32.2. If φ : D → D′ is a domain biholomorphism and
zn → ∂D, as n→ ∞ then φ(zn) → ∂D′ as n→ ∞.

Proof. We prove the statement for sequences; the one for arcs is al-
most identical. Since φ is biholomorphic, any compact covering of D
generates a compact covering of D′ and vice-versa. Let zn → ∂D and
let K ′ ⊂ D′ be any compact set and K = ϕ−1(K ′). By definition,

zn → ∂D ⇒ ∃n0 s.t.∀n > n0 zn ̸∈ K

Since φ is one to one, for any n > n0, φ(zn) ̸∈ K ′ either.

Corollary 32.3. If φ : D → D is a biholomorphism, then |φ(z)| → 1
as z → ∂D.

32.2. A reflection principle for harmonic functions. Let Du be
a domain in the UHP such that ∂Du ⊃ I := [a, b] ∈ R. We denote by
Dl the reflection of Du across I.

Theorem 32.4. Assume v is harmonic in Du and continuous in Du∪I
and v = 0 on I. Then v extends to a harmonic function on D =
Du ∪ I ∪ Dl.

Note 32.5. Note that we cannot simply use the Schwarz reflection
principle to prove this theorem, which is stronger. Nothing is know
apriori about the continuity of u the harmonic conjugate of v. In fact,
the Schwarz reflection principle follows from Theorem 32.4, see Exercise
32.6.

Proof. [9] As in the Schwarz reflection principle, the extension of v is
defined through V (z) = v(z) for z ∈ Du

(32.1) V (z) := −v(z) ∀z ∈ Dl

and V (z) = 0 on I. The property of a function being harmonic is a
local one, so it is enough to check that V is harmonic in any disk in
D = Du∪I∪Dl for some family of disks covering D. For disks in Du this
is so by assumption while for disks ⊂ Dl it follows directly from (32.1).
Consider now a disk Dε containing part of I as its diameter. Laplace’s
equation ∆v = 0 with continuous boundary condition V (z), z ∈ ∂Dε

has a unique solution v1. We have V (z) = −V (z) on ∂Dε, and thus
v2(z) = −v1(z) is another solution of Laplace’s equation with the same
boundary condition, hence v1 = v2. It follows in particular that v1 = 0
on I. But now V and v1 satisfy Laplace’s equation with the same
boundary condition on Dε ∩ Du and on Dε ∩ Dl, hence they are equal
in [Dε ∩ Du] ∪ [Dε ∩ Dl] ∪ I (the latter because they both vanish on I.
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Figure 22. Boundary behavior across line segments.

Exercise 32.6. Show that if f = u + iv is analytic in a domain Du

as in the theorem and v is zero on I, then u is continuous at I. In
particular, for the Schwarz reflection principle for analytic functions f
in a domain D in the UHP whose closure contains a real segment I, we
only need to show that Im f is continuous and vanishes on I.

Exercise 32.7. Assume that D is a simply connected domain in the
UHP such that D ⊃ I ⊂ R. Let ϕ be the conformal map from D to
D. Consider a half disk strictly contained in D with diameter on I
as in the figure. The arccircle is the image of an analytic curve in D
bounding a domain D′ in D. Show that Imϕ(z) → 0 as z → ∂D ∩ D′

and apply Theorem 32.4 and Exercise 32.6 to show that ϕ has analytic
continuation to the reflection of D through I. In particular ϕ−1 extends
continuously to I, and ϕ maps part of ∂D to I.

Note 32.8. The following interesting construction is given in [3], p.27.
If f is an analytic function, then so is f ∗, where f ∗(z) = f(z). We have

(32.2) 2u(x, y) = f(x+ iy) + f(x− iy) = f(z) + f ∗(z)

for all x, y for which the rhs makes sense. Assuming also that the
expression u(z/2, z/2i) makes sense, we have (check!):

(32.3)
2u(z/2, z/2i) = f(z)+ f ∗(0) = f(z)+C ⇒ f(z) = 2u(z/2, z/2i)−C

(⇒ v(z) = Im (2u(z/2, z/2i)− C))

In particular, no integration is needed to get f or v from u. This
certainly works by the principle of permanence of relations for ratio-
nal functions, or other simple functions. Can you make this work in
general?

32.3. Analytic arcs.
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Γ
~
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Definition 32.9. Let I = [0, 1]. A proper analytic arc is the image of
I under a function γ which is analytic and injective in a neighborhood
of I.

An equivalent definition of a proper analytic arc is that γ extends to
an isomorphism between some neighborhood of I and its image.
32.4. An extension of the Schwarz reflection principle. Infor-
mally this states that if f is analytic in a domain D which contains an
analytic arc γ, if f is continuous up to γ and if the image of γ is an
analytic arc, then f extends analytically beyond γ.
Definition 32.10 (Various definitions). Let γ be a proper analytic
arc bounding a domain D. Then γ : I → C, I = [a, b] is a one-
sided boundary of D if for any z0 ∈ γ(I) there is a disk Dε(z0) such
that γ−1(Dε(z0) ∩ D) is either completely contained in the UHP or
else completely contained in the LHP independently of z0 6 In this
case, we also say that D lies on one side of γ. As usual, by analytic
continuation of a function f across a curve, we mean that there is an
analytic function f̂ in a neighborhood of the curve which coincides with
f wherever they are both defined. Note that the analytic continuation
is unique.
Definitions The theorem below is the “conformally mapped” Schwarz
reflection principle.
Theorem 32.11 (Analytic reflection across arcs). Let D be a domain
and assume that D lies on one side of the proper analytic arc γ. Let f
be analytic in D and continuous on D∪γ, assume that f(γ) ⊂ γ̃ where
γ̃ is a proper analytic arc, and finally that f(D) lies on one side of γ̃.
Then f extends analytically across γ.
Proof. By assumption γ and γ̃ are images of the closed intervals I and
Ĩ under isomorphisms, Γ, Γ̃ respectively, f is analytic and continuous
up to γ and Γ, Γ̃ are biholomorphic in a neighborhood of I, Ĩ resp. We
have f(Γ(I)) = Γ̃(Ĩ), and we can assume w.l.o.g. that I is approached
from above. This means ψ := Γ̃−1 ◦ f ◦Γ is analytic in a domain in the

6Recall that γ extends to an isomorphism in a neighborhood of I.
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UHP, continuous down to I and real valued on I; the usual Schwarz
reflection principle applies to ψ. The desired analytic continuation of
f is Γ−1 ◦ψ ◦ Γ̃−1 where we still denoted by ψ the analytic continuation
of ψ.

Exercise 32.12. Let D be a simply connected nonempty domain with
nonempty complement and let ϕ be the conformal map of D to D
assumed continuous up to the boundary. Show that ϕ has analytic
continuation through an arc of ∂D iff the image of the arc is an analytic
arc in ∂D.
Theorem 32.13. Let v be harmonic in a domain D, and let γ ⊂ ∂D
be a proper analytic arc such that D lies on one side of γ. Assume
that v is continuous up to γ and vanishes on γ. Then v extends to a
harmonic function in an open set containing D ∪ γ.
Proof. Exercise: use Theorem 32.4 and the strategy in Theorem 32.11.

Theorem 32.14. Let D ⊊ C,D ̸= ∅ be a simply connected domain
and φ a conformal map between D and D. If ∂D contains a proper
analytic arc γ and lies on one side of γ, then

(i) φ extends analytically across γ.
(ii) if zn → z0 ∈ γ, then φ(zn) → φ(z0) ∈ γ.
(iii) Furthermore, this extension is one-to-one on γ, thus in a neigh-

borhood of D ∪ (D ∩ γ).
Note 32.15. Applying a linear fractional transformation we see that
a similar statement holds if D is replaced by a half-plane.

In particular, if the boundary of D is piecewise analytic then φ ex-
tends analytically to a domain D′ ⊃ D. (It is also biholomorphic in
some domain D′′ ⊃ D.)
Proof. (i) Follows from Theorem 32.11.

(ii) follows immediately from (i).
(iii) Let v = log |φ|; by (ii) |φ| → 1 as ∂D is approached, v is well

defined close to ∂D and
lim
z→∂D

v(z) = 0

By Theorem 32.13 v extends to a harmonic function on an open set
D′ containing γ ∪D. Since v is harmonic, there is an analytic function
g s.t. v = Re g. In D, this g coincides up to a constant with φ, and
choosing the constant to be zero, we get g = logφ; hence logφ has
analytic continuation across γ and in particular it is continuous up to



92

γ. Hence φ = exp(logφ) also extends analytically across γ and maps γ
into an arccircle. If φ were not injective on an open subsegment of γ,
then that part of γ would be mapped to a closed curve, violating the
continuity of φ (why? think of the behavior near the endpoints of that
segment of γ).

32.4.1. Discussion: Tilings with parallelograms. An application of the
Schwarz reflection principle to conformal mapping. Consider a confor-
mal map φ : P → UHP where P is one of the rectangles in the figure
(properly normalized, φ =sn, the elliptic sine function, one of the Ja-
cobi elliptic functions). Theorem 32.11 shows that φ admits analytic
continuation through any side of the rectangle, to the adjacent one.
We can check that any point in the plane can be reached from one
rectangle by successive reflections, and, by an easy count that, while
the same point can be reached by different reflections, the number of
reflections is either odd or even, regardless of the reflections’ paths.
We achieved a single-valued continuation of φ to the whole of C ex-
cept at the corners. It is a meromorphic continuation since the point
at infinity must be mapped to a point on the boundary of the rectan-
gle. Since two successive reflections across R return the point to its
original value, the function thus obtained is doubly periodic. At the
corners, since they have to be straightened, the function is of the form
a+(z−z0)2(1+o(1)) and since the function is single-valued in a neigh-
borhood of the corners and bounded at the corners, it is analytic there.
We’ll prove later that, more precisely, for k ∈ [0, 1], sn(z, k) gives a
conformal map of the closed rectangle [−K,K]× [0, K ′] onto the UHP,
with 0,±K,±K+iK ′, iK ′ mapping to 0,±1,±k−2,∞ respectively; iK ′

is a simple pole.

32.5. Behavior at the boundary, a stronger result.
Definition 32.16. A point ζ ∈ ∂D is called accessible if there is a
sequence {zn}n∈N ⊂ D s.t. limn→∞ zn = ζ and a continuous function
γ : [0, 1] → D which passes through all zn: t0 = 0 < t1 < · · · < tn < 1,
limn→∞ tn = 1, γ(tn) = zn and γ(1) = ζ.

Theorem 32.17 (Boundary behavior). Let D be a bounded domain.
(i) If z0 is an accessible point of ∂D then the biholomorphism φ with the
unit disk has a limit (call it φ(z0)) as z → z0, z ∈ D and φ(z0) ∈ ∂D.

(ii) If z1 and z2 are accessible points of ∂D then φ(z1) ̸= φ(z2).

We recall that a Jordan curve in C is a continuous map γ defined
(say) on [0, 1] with values in C which is injective, that is γ(t1) = γ(t2)
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Figure 23. Tilings with rectangles
https://upload.wikimedia.org/wikipedia/commons/3/33/Stacked_bond.png

only if t1 = t2 or t1 = 0 and t2 = 1 where in the latter case it is a
closed Jordan curve. We also recall that a closed Jordan curve divides
C into exactly two regions, one bounded and one unbounded. The
bounded region is called the interior of the curve. A Jordan domain
is the interior of a Jordan curve. It follows from Theorem 32.17 above
that if D is the interior of a simple, closed Jordan curve, then the map
φ extends to a continuous injective function in D.

For space limitations we do not prove this interesting result; a proof,
essentially based on the first proofs by Lindelöf and Koebe, is found in
[9]. We shall not use conformal maps of this generality. In §33 we will
find that for polygons, φ can be expressed by quadratures.

32.5.1. A negative result. The following is a standard example of an
inaccessible point [11] shows that, in full generality, continuity of the
conformal mapping cannot be expected. Such is the case of the inac-
cessible point below. Take D to be an open horizontal rectangle with
a vertex at zero from which vertical line segments of length, say, 1/2
have been removed, see Fig. 24 (check that 0 is inaccessible!). The im-
age of 0 on ∂D (which wlog can be taken as z = 1) must be a point of
discontinuity of the conformal map φ into the unit disk, for φ−1(1) = 0
and in any neighborhood of 1 there are infinitely many points where
φ−1 is 1/2.
Illustration of nonanalytic behavior at all points the confor-

mal image of the unit disk. Figure 25 shows the conformal image
of the unit disk under the map F defined by the functional equation
G(z2) = λ−1 G(z)2

1−G(z)
,∀z ∈ D, G′(0) = 1 for λ = 0.5i. The interior J of
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Figure 24. The origin is inaccessible

Figure 25. The conformal map of the unit disk through F

the curve corresponds to the points in z ∈ C for which the solution of
the one step recurrence xn+1 = λxn(1− xn); x0 = z converges to zero.
J is the Julia set for the iteration of the quadratic map z 7→ λz(1− z).
The unit circle is a natural boundary of G. An (incomplete) argument
goes as follows. By continuity, G(1) = λ

1+λ
. Differentiating we see

that, if G′(1) = 0, then G′ = 0 at all binary rational angles. If it is
not zero we can divide by it and get G(1) = 1± (1 + 2λ)−1/2 which is
inconsistent. Hence G′ = 0 at all binary rationals, or it does not exist
at binary rationals. See [6].
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Figure 26. Schwarz-Christoffel transformations: a
closed polygon.

33. Conformal mappings of polygons and the
Schwarz-Christoffel formulas

For polygonal regions, the conformal map to the unit circle (or to
Hu obviously) can be done by quadratures. The transformation is still
usually nonelementary, but the integral representation gives us enough
control to describe the transformation quite well.

33.1. Heuristics. If ψ is biholomorphic at z0, the angle between the
tangent of a curve γ through z0 and the tangent to its image through
ψ is argψ′(z0); we write this in differential form, dw = ψ′(z)dz. We
want to map Hu to the interior of a polygon. We then choose the
positive orientation when traversing ∂Hu (which leaves the domain to
its left): this means traversing the boundary from R− to R+. For later
convenience we denote by παi the interior angles of the polygon.

We place without loss of generality a vertex at zero, and rotate the
polygon so that one side is in R+. The red arrow indicates the positive
orientation of the polygon. Suppose that we want to map 0 to 0 and
the segment in blue on ∂Hu to the blue segment on the polygon, see
Fig. 27. We see that, to the left of z = 0, dw is rotated by −π(1− α)
with respect to dz, while to the right of z = 0 (red arrow) dz and dw
are parallel. A transformation that behaves like this on the boundary
is ψ′(z) = z−(1−α). We see that indeed the argument of ψ′ (Im lnψ′

which exists locally for z ̸= 0 since ψ′ ̸= 0) does not change except at
the singularity, z = 0:

(33.1) (lnψ′)′ =
α− 1

z
∈ R (since z ∈ R) ⇒ d argψ′ = 0 for z ̸= 0
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πα

π(1 − α)

Hu

f

dw = f ′(z)dz

dz dw

Figure 27. Schwarz-Christoffel transformations: two
adjacent sides of the polygon.

Also, note that by Schwarz reflection, ψ is analytic at points z which
are not mapped to vertices of the polygon.

Proposition 33.1. Any transformation ψ of a one-sided neighborhood
N in Hu of a segment I = [−a, b]; a, b > 0 which maps 0 to the vertex
w = 0 of the polygon and is continuous up to the boundary has the
property ψ(z) = zα−1h(z) where h is holomorphic in N ∪ I ∪ N . In
particular, ψ′(z) = zα−1

∑∞
k=0 hkz

k where h(0) ̸= 0 and the sum is
convergent.

Definition 33.2. We will call functions which are (locally) of the form
(z − z0)

aH(z) with H holomorphic, ramified-analytic.

Proof. Let H =
∫
z−(α−1)ψ′. Note that dH = z−(α−1)ψ′dz maps the

blue vector on the left side of the polygon N into a vector parallel
to the red one, is continuous down to I. The image of I through
H =

∫
z−(α−1)ψ′ will, by construction, be an interval in R. Schwarz’s

reflection principle and the continuity of H ensure that H has analytic
continuation in N ∪I∪N . Thus H ′ is analytic too. Since the transfor-
mation h is one-to one (H(z) is strictly monotonic in z ∈ I, implying
H ′ = h ̸= 0.
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More generally, a transformation of the form

(33.2) ψ′ =
n−1∏
i=1

(z − ai)
αi−1

satisfies

(33.3) (lnψ′)′ =
n−1∑
i=1

αi − 1

z − ai
∈ R ⇒ d argψ′ = 0 for z ̸= ai

and argψ′ changes by π(1− αi) upon traversing ai. The points Ai :=
ψ(ai) on the polygon are the only ones where argψ′ changes, and it
changes by +π(1− ai) (check the signs!). If the polygon P is a closed
curve, then infinity must be mapped into one of the vertices of P ,
and, since ψ is conformal (to be proven later) it cannot be one of the
{Aj, j = 1..n − 1} so it must be An. Recall that the sum of exterior
angles of a closed polygon is 2π, and thus B =

∑n−1
1 βi = 1 + αn,

βi := ai − 1. Note also that 1− ai/z is analytic at infinity: as z → ∞
we have
(33.4)

ψ′ = zB
n−1∏
i=1

(1− ai/z)
βi = ζ−Bg(ζ); g(ζ) =

n−1∏
i=1

(1− aiζ)
βi , ζ = 1/z

If |ζ| < ε < max{1/|ai|, i = 1, ..., n− 1}, g is analytic and Re g(ζ) > 0,
implying that ln g is well defined. If z traverses ∂DR from +R to
−R where R = 1/ε in a positive direction the change in argψ′ comes
solely from zB and it equals πB, the same change in argument that
(z − A)1−αn would produce. This “closes the polygon” with the last
vertex An = limz→∞ f(z). See figure. In the case of a closed polygon
we see that ψ is bounded on R. In the case of an open polygonal line,
the arguments are similar.

Theorem 33.3. (i) Let P be any polygon (closed or open) with n
vertices A1, ..., An and interior angles πα1, ..., παn. There is a choice
of a1, ..., an ∈ R and C,C ′ ∈ C such that the function

(33.5) ψ = z 7→ C

∫ z

0

n∏
k=1

(s− ak)
αk−1ds+ C ′

maps Hu into P (and ψ(ai) = Ai).
(ii) The function mapping D conformally into P is given by

(33.6) ψ = z 7→ C

∫ z

0

n∏
k=1

(bk − s)αi−1ds+ C ′
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for a choice of b1, ...bn, C, C ′. (iii) Moreover, all transformations
between Hu or D and polygons are of this form.

(iv) One of the points ak can be chosen to be ∞. In this case the
transformation is

(33.7) ψ = z 7→ C

∫ z

0

n−1∏
k=1

(s− a′k)
αk−1ds+ C ′

(simply the point an is omitted). (v) The map from D to ext(P ) taking
0 to ∞ is

(33.8) ψ = z 7→ C

∫ z

0

s−2

n−1∏
k=1

(s− a′k)
αk−1ds

Note 33.4. (i) The formulas (33.5) and (33.6) are the same, up to
constants: (33.5) is invariant under a Cayley transform since the sum
of exterior angles of a closed polygon is 2π. Do the calculation.

(ii) One may ask what kind a conformal map is that in (v)? The
answer is best seen if we think of the Riemann sphere as the target.

Remark 33.5. (i) It is important to note what freedom we have in
such transformations. Suppose we want to map a triangle ∆. All
triangles with same angles are similar, and a mapping between two
similar triangles reduces to scaling, rotation and translation. Thus we
need to understand one triangle with given angles αi. We take say
a1 = 0 and a2 = 1, use the α’s, and see what triangle ∆1 is obtained.
Then, we can choose C and C ′ so that we remap ∆1 to ∆. Thus we are
able to map any triangle to Hu, prescribing the position of the images
of the vertices at will. See §33.2.

(ii) For n > 3, we can still place three points at will but the position
of the fourth one etc cannot be chosen arbitrarily. We see that we have
the freedom of n − 1 real constants, the a′is, and of two complex ones
C and C ′, a total of n + 3 real constants, whereas an arbitrary closed
polygon has 2n real constants as degrees of freedom (the position of its
vertices); 2n > n + 3 if n > 3. The ak for k ⩾ 4 are called accessory
parameters, and they are determined by the polygon and the values of
a1, ..., a3; except for very symmetric cases (such as regular polygons),
these parameters cannot be determined in closed form.

Given the disparity in the number of available parameters versus
the degrees of freedom of the problem, it is not a priori clear that the
Schwarz-Chrsistoffel transformation should always work (but it does).



99

First proof of the Schwarz-Christoffel formula. We analyze closed poly-
gons, open ones being similar. Once we prove the formula for the UHP,
the formula for D follows through a simple calculation applying the
Cayley transform.

We can first arrange that one vertex is at zero and a second one
at 1. Indeed, we can transform P by translation and multiplications
by a constant (changing C, C ′ in the Theorem) into one geometrically
similar to it, P̃ that has these properties. By composition to the right
with az+b we can arrange that 0 and 1 inHu are mapped into 0 and 1 in
P̃ . Note that by Proposition 33.1 the function F (z) = ψ′(z)

∏n−1
i=1 (z −

ai)
1−αi is analytic in Hu, does not change its phase except perhaps at

ai. But at every ai, F is real and positive. Thus F is real on the real
line and extends to an entire function. For the behavior at ∞ note
that the transformation ζ = −1/z, ψ(z) = G(ζ). z 7→ −1/z is an
automorphism of Hu which maps ∞ to 0. Traversing R+ in z from
0 to ∞, returning to −∞ on a “large” circle and moving in (−∞, 0)
to the right corresponds to ζ traversing (−∞,∞) from negative to
positive values. To straighten the angle at an (= 0 in ζ) we need, as
in Proposition 33.1 to multiply G′(ζ) by ζ1−αn : ζ1−αn dG

dζ
= H(1/z)

where H is analytic in particular bounded. Since d
dζ
G = ζ−2ψ′(−1/ζ)

it follows that z1+αnψ′ is analytic at infinity.
Now, 1−α1+ ...+1−αn = 2 implying 1−α1+ ...+1−αn−1 = 1+αn

and thus
(33.9) (z − a1)

1−α1 · · · (z − αn−1)
1−αn−1ψ′ ∼ const.z1+αnψ′ as z → ∞

is entire and bounded, thus constant and hence
(33.10) (z − a1)

1−α1 · · · (z − αn−1)
1−αn−1ψ′ = C

Corollary 33.6 (Analytic structure of ψ). The function ψ is ramified-
analytic (cf. Definition 33.2). In a neighborhood of aj we have
(33.11) ψ = C1jx

αjHj + C2j

where Hj is holomorphic.

Proof. This follows by straightforward integration of (33.10).

“Geometric” proof of the Schwarz-Christoffel formula. This proof is largely
based on [11]. A slightly different argument is used in [3]. We prove
the statement for a closed polygon, the one for open ones being very
similar. We use the notations in Fig. 28 and will assume first that
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Hu

P

P1

P2

P3

Figure 28. Successive reflections.

none of the points ai is infinity (infinity must however go somewhere
on ∂P ).

Let ψ be the conformal map between the UHP and P . The figure
shows various successive reflections of a polygon P across its sides.
Since ψ transforms an interval I of R+ into the line segment ℓ bounding
P and P1, it has analytic continuation across I, and in fact the image
of the UHP is P and that of the LHP is P1. This continuation can be
reflected back, and we obtain P2. By simple geometry, the polygons
P and P2 are Euclidian transformations of each-other, of the form
P2 = aP +c for some constants a and c with |a| = 1, whereas P and P1

are related by a flip. We note also that ψ is analytic at all points except
for a1, ..., an, where it is singular. Indeed, at ai ψ is not conformal: it
maps two collinear successive intervals of R into two segments forming
an angle παi. However, consider the auxiliary function

h(z) = [ψ(z)− ψ(ai)]
1/αi

Then, h maps the two successive intervals into a straight line (clearly
an analytic arc), and by Schwarz reflection, it is analytic at ai. Hence,

(33.12) ψ(z) = ψ(ai) + [h(z)]αi

Since h(ai) = 0, ai is a branch point of ψ. Consider the function

g(z) = ψ′′(z)/ψ′(z)
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Using (33.12) we see that g has a simple pole of residue 1 − αi at ai.
Since ai are the only singularities of g, g is single valued and extends
to a meromorphic function in C. Thus,

(33.13) G(z) = g(z) +
n−1∑
j=0

1− αj
z − aj

is entire. Since ψ(∞) ∈ ∂P but is different from a1, ..., an, by the
Schwarz reflection principle, ψ is analytic at infinity (what that means
is best understood if we map the UHP conformally to D: ∞ corresponds
to some point on ∂D, other than the images of the ai). Hence, in a
neighborhood of z = ∞ we have ψ(z) =

∑∞
k=0 ckz

−k, where c0 = ψ(∞)
whence g(z) ∼ const./z for large z and in particular it vanishes at ∞.
Then G is an entire function that vanishes at infinity implying G = 0
and we have

(33.14) g(z) = −
n−1∑
j=0

1− αi
z − ak

meaning

(33.15) ψ′′(z)

ψ′(z)
=

n−1∑
j=0

αk − 1

z − ak

Integrating 33.15, we get

ψ(z) = c1 + c

∫ z

0

n∏
k=1

(t− ak)
αk−1dt

and Theorem 33.3 (i) and (iii) follow, and, as discussed, a composition
with the Cayley transform proves (ii). To make one of the ak = ∞ we
use an LFT substitution: z = ak − 1/z1, and the rest of the proof of
(iv) is a simple calculation.

Finally, for the mapping of the exterior of the polygon, which con-
tains the point at infinity, making g unbounded there, the formula
has to be reworked. Assume that ∞ = ψ(0). Thus ψ is unbounded,
but must be conformal at zero, and the only possibility is a first order
pole: ψ(z) = ψ1(z)/z where ψ1 is regular at 0 and ψ1(0) ̸= 0. Now
ψ′′(z)/ψ′(z) + 2/z is regular and a calculation shows that

ψ′′(z)

ψ′(z)
−

n∑
i=1

(
1− αi
z − ai

+
1− αi
ai

)
+

2

z

is entire, bounded in C and zero at zero, hence it vanishes identically,
and (v) follows.
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Note 33.7. The second order linear ODE obtained after multiplying
(33.15) by f ′ is a Fuchsian equation: it has only regular singularities
in Ĉ [4].

33.2. Conformal map of the UHP onto the interior of a triangle
of angles πα, πβ, πγ. We choose for convenience a1 = 0, a2 = 1, a3 =
∞ resp. Theorem 33.3 (iv) gives

(33.16) ψ(z) = A

∫ z

0

zα−1(1− z)β−1dz +B

We choose A = 1. From the choice above, we know that the length of
the first side is∫ 1

0

|ψ′(s)|ds =
∫ 1

0

sα−1(1− s)β−1ds =
Γ(α)Γ(β)

Γ(α + β)

The lengths of the other sides can be most easily determined from the
relation

a

sin πα
=

b

sin πβ
=

c

sin πγ

We note that ψ(z) = Bz(α, β), the incomplete Beta function, which,
for α, β ̸∈ −N satisfies

Bz(α, β) = Γ(α)zα 2F1(α, 1− β;α + 1; z)

where 2F1 is the hypergeometric function.

33.3. Schwarz triangle functions and hypergeometric functions.
We can attempt the reflection-continuation procedure of §36.1. We now
imagine the reflections having a common vertex. To insure a single
valued function upon successive reflections about the sides, we must
return to the starting triangle with no overlap or gap. If the rotations
preserve one vertex, for this to happen we need αi = 1/ni, ni ∈ N.
The constraints are thus:

(33.17) α + β + γ = 1; 1/α, 1/β, 1/γ positive integers

Check that the only solutions are: (1
3
, 1
3
, 1
3
) (equilateral triangle) (1

2
, 1
3
, 1
6
)

(half of an equilateral triangle) and (1
2
, 1
4
, 1
4
) (isosceles right triangle).

Then the reflected images cover the whole plane and the mapping func-
tions are restrictions of meromorphic functions. These are special cases
of the Schwarz triangle functions. The group of reflections is a special
case of an infinite Coxeter group.

Each triangle function corresponds to an elliptic function. We will
return to this topic later.
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Differential equation. We can derive an equation with polynomial
coefficients for ψ as follows. In ψ′ = zα−1(z− 1)β−1 we write ψ = zαψ1

and get, after dividing by zα−1,
(33.18)
zψ′

1 + αψ1 − (1− z)β−1 = 0 ⇒ z

(1− z)β−1
ψ′
1 +

α

(1− z)β−1
ψ1 − 1 = 0

which we differentiate one more time to eliminate the constant 1 and
we get
(33.19) z(1− z)ψ′′

1 + [α + 1− (2− β − α)z]ψ′
1 + α(β − 1)ψ1 = 0

The differential equation for the hypergeometric function 2F1(a, b; c; z)
is the Riemann equation
(33.20) z(1− z)h′′ + [c− (a+ b+ 1)z]h′ − abh = 0

From the way we went from (33.18) to (33.19) (or by direct verification)
we see that one solution is z−α. Comparing with (33.20) the second
one is
(33.21) 2F1(α, 1− β;α + 1; z) ⇒ ψ = zα · 2F1(α, 1− β, α + 1, z)

That is, in this case, the Schwarz-Christoffel transformation is a ratio
of two independent solutions of the special hypergeometric equation
(33.19).

34. Optional material: curvilinear triangles

In general, the map from Hu into a curvilinear triangle, one whose
sides are arccircles is given by the ratio of two independent solutions
of (33.20), where the angles α, β, γ are related to a, b, c by (cf. [11])
(34.22) a = 1

2
(1 + β − α− γ), b = 1

2
(1− α− β − γ), c = 1− α

Note 34.8. To see qualitatively why that is, before we work out the
mathematical details, since the sought-for function f transforms seg-
ments into arccircles, Möbius transforms of f map real segments into
real segments. Möbius transforms are conformal wherever defined, so
they preserve angles, and thus f should be ramified analytic at three
points, say {0, 1,∞}.

Secondly, note that any function which is real-analytic (with real
values) on some interval I and such that f ′ ̸= 0 on I conformally maps
a neighborhood of I into a neighborhood of f(I) (where, of course, f(I)
is an interval in R).

Finally, this approach would apply to any curvilinear polygon, and
the final ODE that we construct will still be second order linear, but
the solutions are generally quite complicated.
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To find an f as in Note 34.8, a natural candidate would be a ratio
of two solutions of a real-valued linear second order ODE with ana-
lytic coefficients, whose solutions have only ramified singularities, at in
{0, 1,∞}. Such an ODE will have two linearly independent solutions,
f1 and f2 7. Define S = {a1f1 + a2f2|A1,2 ∈ C} (this of course is the
space of all solutions). Then,

(1) f1,2 are analytic in C∗ \ {0, 1,∞} while at the points 0, 1,∞
they are ramified-analytic;

(2) on each interval (−∞, 0), (0, 1) and (1,∞) there are two positive
linearly independent functions in S;

(3) S is invariant under Schwarz reflections 8. This is because any
analytic continuation of a solution is a solution, by permanence
of relations.

(4) (f1/f2)
′ ̸= 0 ∀x ∈ R. 9

Then some ratio F1/F2 of two linearly independent F1,2 ∈ S maps the
upper half plane into a curvilinear triangle, that is, one whose sides
are line segments or arccircles (a line segment is a limiting case of an
arccircle, so we will call arccircle too). Indeed, take F1 and F2 in S
linearly independent, choose one of the intervals in (2) above, and let
F̃1 and F̃2 the functions which are real valued on the interval I. We
choose F̃1 and F̃2 such that F̃1/F̃2 is bounded at zero. By assumption,
F1,2 = A1,2F̃1 +B1,2F̃2 and

(34.23) F1

F2

=
1 + aF̃1/F̃2

b+ cF̃1/F̃2

Now, F̃1/F̃2 is real-valued and one-to-one, and thus the right side of
(34.23) is a Möbius transformation of a line segment: an arccircle.
The image of R through F1/F2 consists of three arccircles, a general
curvilinear triangle, provided that the singularities are such that F1/F2

are continuous on R.
We now show that (33.20) is such an equation, for a, b, c satisfying

(34.22). The following integral representation due to Euler can be

7Meaning that A,B ∈ C and Af1 +Bf2 = 0 ⇒ A = B = 0.
8Equivalently, the space generated by f1,2, S := {C1f1 + C2f2 : C1, C2 ∈ C} is

closed under continuations at the branch points (e.g., f1(ze2πi) = C1f1(z)+C2(z)).
9This in fact is implied by linear independence. Check this by first showing

that two functions are linearly independent iff their Wronskian W (f1, f2) := f ′
1f2−

f ′
2f1 ̸= 0.
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Figure 29. Hypergeometric contours

checked to solve (33.20):

(34.24) 2F1(a, b; c; z) = K

∫ 1

0

H(z, x)dx,

where H(z, x) = xb−1(1− x)c−b−1(1− zx)−a assuming c > b > 0

The standard choice of K, immaterial here, is K−1 = B(b, c− b) with
B the Beta function 10. For the integral to exist, we need
(34.25) b− 1 > −1, c− b− 1 > −1,−a > −1

which are satisfied if α + β + γ < 1, α, β, γ ∈ R+, which is the case
for a hyperbolic triangle (with concave sides) as can be verified from
(34.22). Under this same condition, we have
(34.26) (b−1)+c−b−1−a < −1 ⇒ H(x, z) ∼ s−p, p > 1 as x→ ∞
Singularities of 2F1 For general a, b, c the behavior of h in (33.20) at
the singular points of the ODE, 0, 1,∞ 11 follows general results about
regular singular points of ODEs (Frobenius theory, cf. [4]); we will not
assume this here however. We will find the behavior of the solutions in
three different way, to illustrate various approaches.

10The formula is valid under the more general condition Re (c) > Re (b) > 0, but
here we only need real a, b, c.

11Writing the equation in the form h′′ + Q(x)h + R(x) = 0, {0, 1} are singular
points of P,Q. Ditto after the change of variable z = 1/t, y(z) = t−cY (t) at t = 0.
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Directly from the integral representation, the behavior can be calcu-
lated in the following way.

Clearly, (34.24) and Corollary ?? imply that 2F1 is analytic except
possibly on R+. If z → a ∈ R+\ /∈ {1} then we can use the analyticity
of the integrand at a to first homotopically deform the contour as shown
in Fig. 29. The new integral (of course, equal to the original one) is
manifestly analytic in z near a. Thus the only possible singularity is at
1 (since the integrand is manifestly analytic for small z, cf. Corollary
??).

At z = 0 we get

(34.27) 2F1(a, b; c; z)

K
=

∫ 1

0

xb−1(1− x)c−b−1dx > 0

To find the type of behavior at z = 1 it is convenient to take z = 1−ε
and change the variable to x = 1− s in the integral:

(34.28) K
∫ 1

0

h(z, (1− s))ds = K

∫ 1

0

(1− s)b−1sc−b−1(ε+ s− εs)−ads

By (34.26) We can then push the contour up toward +i∞,
(34.29)∫ 1

0

h(z, (1−s))ds =
(∫ +i∞

0

−
∫ +i∞

1

)
(1−s)b−1sc−b−1(ε+s−εs)−ads

The second integral is analytic in ε by the same Corollary ??.
In the first one, we change variable to s = εu, to get

(34.30) − εc−b−1−a+1

∫ +i∞

0

(1− εu)b−1uc−b−1(1 + u− εu)−ads

= −εc−b−a
∫ −∞

0

(1− εu)b−1uc−b−1(1 + u− εu)−ads

where the contour change is justified by (34.26).

Exercise 34.9. What is the phase of the last integral in (34.30)?

The integral in (34.30) is analytic in ε and thus
(34.31) 2F1(a, b; c; z) = A1 + A2(1− z)γ where A1,2 are analytic at 1

and A2(1) =
∫ +∞
1

uc−b−1(1 + u)−ads > 0. A second solution of (33.20)
is obtained, cf. [11], by noticing that the substitution h(z) = g(1− z)
leads to the equation (33.20) with c replaced by C = a+ b+1− c. The
integral representation (34.24) still holds with c replaced by C = 1−γ,
and converges under the same conditions on α, β, γ as (34.24). The
behavior of the integrand at infinity is still of the form in (34.26).
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Thus the same analysis applies, to show that there is a second solution
which is analytic at z = 1 and has a singularity at zero, with c− b− a
replaced by 1 − c = α. This also suggests making the substitution
h1 = z1−ch = zαh directly into (33.20); we get an equation of the form
(33.20), with A,B,C replaced by
(34.32) A = a+ 1− c, B = b+ 1− c, C = c− 2

which has an integral representation of the form (34.24) valid under
the same conditions on α, β, γ. Thus, near z = 0 we have two linearly
independent solutions, A1 analytic and A2 of the form zαA(z) with A
analytic and A(0) ̸= 0. These are clearly linearly independent since
the second solution is not analytic at zero. In the same way, there are
two solutions, one analytic and positive at z = 1 and another one of
the form zγA(z), A analytic and positive for z < 1.

From the ODE. Here we are assuming knowledge of basic properties
of linear ODEs: a linear combination (with constant coefficients) of so-
lutions is a solution (this can be checked directly) and the fact that the
space of solutions of a second order linear equation is two-dimensional
(i.e., there are exactly two free constants, or, in other words, there are
two linearly independent solutions which form a basis in the space of
all solutions).

With F01 given by (34.24), we notice as before that F is analytic
near zero and F (0) > 0. We look for a second solution in the form
F02 = F01g. The equation for g is
(34.33)
g′′

g′
= −2

F ′

F
+ q(x);

(
q(x) :=

(a+ b+ c)x− c

x(1− x)

)
= −2

F ′

F
− c

x
+A(x)

⇒ g′ = − c

x
A1(x) ⇒ F01(x) = x−c+1A2(x) = xαA2(x);

with A,A1, A2 analytic (check the conclusions above). Since F is real-
valued for real z ∈ (0, 1), g is also real-valued, and it is an independent
solution (it has a manifestly different behavior at zero). At x = 1 we
make the substitution z = 1− y and we get
(34.34)
y(1− y)h′′ + [C − (a+ b+ 1)y]h′ − abh = 0, C = a+ b+ c− 1 = 1− γ

In the same way as above we get two independent real valued solutions
for y real, F10(y) analytic and a second one F11 of the form yγA1 with
A1 analytic. They are in general different from the solutions F00(y)
and F00(y).

Finally the substitution h(z) = zaH(1/z) z = 1/Z in (33.20) results
in an equation of the same type as (33.20). The ratio of two solutions
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behaves like z−β for large z. Now, any transformation of the type F1/F2

where F1 and F2 are real maps the interval (0, 1) into an interval. A
different choice f1/f2 is a Möbius transformation of F1/F2, and thus
it maps the interval (0, 1) into an arccircle. Keeping one combination
F1/F2 chosen so that F1/F2 → 0 as z → ∞ will then map R into a
curvilinear triangle, of angles α, β, γ.

Note 34.10. In the simplest nondegenerate case, Frobenius theory
allows to determine the behavior of solutions of linear meromorphic
ODEs, Lf , with regular singularities, say at z0 by a very simple method:
take L(z − z0)

r and keep only the lowest power of (z − z0). This gives
a quadratic equation for r. If the solutions r1,2 do not differ by an
integer, then Lf = 0 has two linearly independent solutions in the
form (z − z0)

r
1,2A1,2(z), A analytic at z0.

Note 34.11. The equation satisfied by f1/f2, a ratio of solutions of
the hypergeometric equation is

(34.35) {w, z} =
1− α2

2z2
+

1− γ2

2(z − 1)2
+
α2 + γ2 − β2 − 1

2z(z − 1)
= 0

where {w, z} is the important Schwarzian derivative [11]:

(34.36) {w, z} =

(
w′′

w′

)′

− 1

2

(
w′′

w′

)2 (
w′ =

dw

dz

)

The Schwarzian derivative is invariant under any Möbius transforma-
tions of w as expected from our discussion and can be checked by
straightforward calculation.

35. Two other important examples of
Schwarz-Christoffel transformations

35.1. Another look at the sine function. Problem. Map the strip
indicated into Hu preserving the points marked with circles and the
positive orientation.
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π−π −1            1

Solution The α’s at −π and π are both 1/2. We note that Theorem
33.3 still applies, by passing the angles to this limit. We apply formula
(33.5) with a1 = −1, a2 = 1 and the integrand is then (s2−1)−1/2. Eq.
(33.5) therefore gives, for two arbitrary constants,
(35.37) ψ = C arcsin z + C ′

and therefore our map f = ψ−1 has the general form
(35.38) ψ−1(w) = sin(cw + c′)

We have now to choose c and c′ to match the prescribed points. We
must have sin(−πc+ c′) = −1 and sin(cπ + c′) = −1; the choice c′ = 0
and c = 1/2 matches these conditions. We get
(35.39) f(w) = sin(w/2)

36. Mapping of a rectangle: Elliptic functions

Placing one of the ai at infinity, and choosing the remaining three
to be 0, 1, ρ where ρ > 0, we get the Schwarz-Christoffel formula for a
rectangle in the form

(36.1) F (z) =

∫ z

0

ds√
s(s− 1)(s− ρ)

The double symmetry of the rectangle suggests a symmetric choice of
ai:

(36.2) ψ(z, k) =

∫ z

0

ds√
(1− s2)(1− k2s2)
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(0, iK ′)

(0, 0) (K, 0)

Figure 30. The fundamental rectangle.

Here k ∈ (0, 1). We have ψ(z, k) = F (arcsin z, k) where F is the
incomplete elliptic integral of the first kind.

The branch of the square root is taken to be positive for z ∈ (0, 1) and
otherwise it is obtained by analytic continuation in the UHP, passing
to the limit Im z → 0+ for z ∈ R. Thus, as z grazes R+, the square root
is first in R+, then changes to iR+ at 1 and then to R− after 1/k. Also,
since the square root is even for small z, by analyticity this property
is preserved along R, and , for k ∈ R, ψ(z, k) = −ψ(−z, k). ψ(Hu) it
is a rectangle with vertices

(36.3) (−K, 0), (K, 0), (K, iK ′) and (−K, iK)

where

K =

∫ 1

0

ds√
(1− s2)(1− k2s2)

(36.4)

iK ′ =

∫ 1/k

1

ds√
(1− s2)(1− k2s2)

(36.5)

Traversing R gives

(36.6)
∫ ∞

−∞

ds√
(1− s2)(1− k2s2)

= 0

(by symmetry, or since the contour can be pushed up to i∞). Observe
that for s > 1/k we note that the square root is real and negative and
we have

(36.7)
√

(1− s2)(1− k2s2) = −ks2
√

(1− s−2)(1− (ks)−2)

(where the square roots on the right side are positive) and that the
function

√
1− ζ ζ = 1/s2 is analytic for |ζ| < 1. Thus ψ(z, k) is

analytic at infinity and for z > 1/k, writing
∫ z
0
=
∫∞
0

−
∫∞
z

we get the
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expansion at infinity

(36.8) ψ(k, z) = iK ′ −
∫ ∞

z

− 1

ks2
−
(
k−1 + k−3

2s4
+ · · ·

)
ds

= iK ′ +
1

kz
+
k−1 + k−3

6z3
· · ·

The value iK ′ is gotten by the symmetry of the function: when z → ∞,
exactly half of the rectangle has been traversed.

Exercise 36.1. ** Find changes of variables that connect (36.6) to
(36.1)

36.1. Continuation to the whole of C. Double periodicity. As
mentioned, after an even number of Schwarz reflections of ψ the func-
tion returns to its original value. Recall that an even number of suc-
cessive Schwarz reflections results in ψ returning to its original value.
This is due to the symmetry of the rectangle and would not hold for
a general polygon; see the discussion in §32.4.1 The inverse function
sn = ψ−1 is, by this a doubly periodic function:

(36.9) sn(z) = sn(z + 2K) = sn(z + 2iK ′)

0

iK’

RR

R
R

R

R

R
R R

00

01
11

10

1−1
0−1

−1−1

−10

−11

−K K

37. Entire and Meromorphic functions

Analytic and meromorphic functions share with polynomials and ra-
tional functions a number of very useful properties, such as decompo-
sition by partial fractions and root-factorization. These notions have
to be carefully analyzed though, since questions of convergence arise.
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37.1. A historical context. Finding the exact value of the sum

(37.1) S :=
∞∑
n=1

1

n2

known as the “Basel problem” had been open for almost a century,
in spite of efforts by great mathematicians of the time (the Bernoulli
brothers, Leibniz, Goldbach, Stirling, Moivre and others) before Euler
solved it in 1735 whe he was 28; because the problem stumped so many
brilliant minds, this attracted a lot of attention. Euler’s solution, well
before there was any systematic theory of complex functions proceeds
(roughly) as follows. Take the function

(37.2) f(x) =
sinx

x

This has a Taylor series which converges for all x ∈ C. If f were a
polynomial with roots at z = ai, then we would be able to write

(37.3) f(x) = A
∏

(x− ai)

Assuming the same were true for an “infinite order polynomial” and
noting that the roots of sin(x)/x are at nπ, n ∈ Z \ {0} we get

(37.4) sinx

x
=
∏
n⩾1

(
1− x

nπ

)(
1 +

x

nπ

)
=
∏
n⩾1

(
1− x2

(nπ)2

)
(here the free constant must be 1, comparing the values at 0) Expanding
out and collecting the coefficient of x2 we get sinx

x
= 1 − cx2 + O(x4)

where

(37.5) c =
1

π2
+

1

4π2
+ · · · = 1

π2
S

On the other hand from the Maclaurin expansion of f(x) we have
c = 1

3!
. Thus

(37.6) S =
π2

6

In fact, Euler went further and calculated
∑

1
n2k for k ⩾ 1, in for all

even k. This was mostly fine by the standards of the day, though it
led to some criticisms that prompted more rigorous proofs later by
Euler. Weierstrass was apparently inspired by this solution when he
developed the theory of decomposition of entire functions as products.
For a rigorous proof of (37.5) see §38.2
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37.2. Partial fraction decompositions. First let R = P0/Q = P1+
P/Q be a rational function. where Pi and Q are polynomials and
deg(P ) < deg(Q). We aim at a partial fraction decomposition of R;
if deg(Q) = 0 there is nothing further to do. Otherwise let z1, ..., zn,
n ⩾ 1, be the zeros of Q, where we don’t count the multiplicities, and
let mj be the multiplicities of these roots. Let’s look at the singular
part of the Laurent expansion of P/Q at zj:

(37.7) P

Q
=

mj∑
k=1

cjk
(z − zj)k

+ analytic at zj

We claim that

(37.8) P

Q
=

n∑
j=1

mj∑
k=1

cjk
(z − zj)k

Indeed,

(37.9) E(z) :=
P

Q
−

n∑
j=1

mj∑
k=1

cjk
(z − zj)k

is an entire function. By assumption, P/Q → 0 as z → ∞ and the
rhs of (37.8) also, clearly, goes to zero as z → ∞. Thus E(z) → 0 as
z → ∞ and therefore E ≡ 0.

Second example. We examine in detail an example that has some of
the features of the general case. The function

(37.10) π2

sin2 πz

has poles for zi = k, k ∈ Z, and the singular part of the Laurent series
at z = k is, as it can be quickly checked

(37.11) 1

(z − k)2

We first note that

g(z) =
∑
k∈Z

1

(z − k)2
; z ∈ C \ Z

converges uniformly and absolutely on compact sets in C \ Z to an
analytic function: take z0 s.t. dist (z,Z) > ε and the disk Dε/2(z0). By
translation symmetry we may assume that ⌊x0⌋ = α ∈ [0, 1). We can
write

g(z) =
∑
|k|⩽1

1

(z − k)2
+
∑
|k|⩾2

1

(z − k)2
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The second sum is bounded in absolute value by
∑

|k|⩾1
1
k2
, while the

finite sum is a manifestly analytic function. Next we note that

(37.12) π2

sin2 πz
− g(z)

extended by continuity at the integers is entire. This can be immedi-
ately checked by noting that the only singularities of h(z) = π2

sin2 πz
are

z = k ∈ Z, and calculating the Laurent series of h at z = k.
Proposition 37.1. We have

(37.13) π2

sin2 πz
=
∑
k∈Z

1

(z − k)2
; z /∈ Z

Proof. In the notations introduced above the proposition, we saw that,
after extending it by continuity at the removable singularities, the func-
tion h− g is entire. This function is clearly periodic of period 1, and it
is clearly bounded in any compact subset of the strip Re z ∈ [0, 1]. By
dominated convergence g(z) → 0 as Im z → ∞. Now, with z = x+ iy
we have

| sin(x+ iy)2| = 1

2

(
cosh(2y)− cos(2x)

)
⩾ 1

2
(cosh(2y)− 1)

It follows that h−z is entire and vanishes at infinity, thus it is identically
zero.

Exercise 37.2. By integrating (37.13) show that

cot(x) =
1

x
+

∞∑
n=1

2x

n2π2 − x2

By one more integration, show the product formula Euler used. (See
also Lemma 38.5 below.
37.3. TheMittag-Leffler theorem. As such, the procedure in Propo-
sition 37.1 does not extend in general. For instance, for the function
Γ′/Γ the poles are located at the negative integers and have residue
1, and the partial fraction decomposition would not converge without
some modifications. Furthermore, even when it does converge, a func-
tion can be determined by a sum over its poles only up to an entire
function. For a general theorem, we need to address these issues.

The theorem below shows that for any sequence of one-sided Laurent
series centered at the points {bn}n∈N ∈ C with no accumulation point,
there is a meromorphic function with exactly that singular behavior
and analytic elsewhere. Conversely, any meromorphic function can be
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decomposed as a sum of its negative powers-part of its Laurent series
at the poles and an entire function. More precisely,
Theorem 37.3 (Mittag-Leffler). (i) Let {bn}n∈N be a sequence of com-
plex numbers with no accumulation point (cf. Note 37.4) in C and let
{Pn}n∈N be a sequence of polynomials without constant term. Then
there are meromorphic functions f in C whose only poles are at z = bn
and having singular part Pn((z − bn)

−1) at z = bn.
(ii) Conversely let f be meromorphic in C whose poles are {bn}n∈N

and singular part of the Laurent expansion Pn((z−bn)−1) at bn, n ∈ N.
Then there exists a sequence of polynomials {pn}n∈N and an entire
function g such that

(37.14) f =
∑
n∈N

[
Pn

(
1

z − bn

)
− pn(z)

]
+ g(z) := S(z) + g(z)

where the series converges uniformly on compact sets in C \ {bn}n∈N.
Note 37.4. The condition that {bn}n∈N has no accumulation point in
C automatically implies that |bn| → ∞ as n→ ∞.
Note 37.5 (Idea of the construction). The possible divergence of the
infinite series

∑
n∈N Pn((z − bn)

−1) is due to the behavior for large n
of the terms of the series. We fix z and take n large enough so that
|z/bn| < 1 For large n, 1

z−bn roughly behaves like −b−1
n . If we subtract

out −1/bn, the behavior is roughly −zb−2
n . Continuing in this way, and

keeping in mind that |bn| → ∞ as n → ∞, we obtain for each n a
bound |z|mn−1|bn|−mn ultimately achieving convergence.
Proof. We start by proving (i). We can assume without loss of gen-
erality that bn ̸= 0 for if say b1 = 0 then we can prove the theorem
for f̃ = f − P1(1/z). Note first that the series at infinity in 1/bn of
Pn(z − bn)

−1 and its series in z at zero coincide.
Let pn be a Maclaurin polynomial of Pn such that

(37.15)
∣∣Pn((z − bn)

−1)− pn(z)
∣∣ ⩽ 2−n; ∀z s.t. |z| < |bn/4|

Now we look at the series

(37.16) f1 =
∞∑
n=1

[
Pn((z − bn)

−1)− pn(z)
]

and fix an R and analyze the series for z ∈ DR. We split the sum
(37.15) into two parts:
(37.17)
f1 =

∑
n:|bn|⩽4R

[
Pn((z−bn)−1)−pn(z)

]
+

∑
n:|bn|>4R

[
Pn((z−bn)−1)−pn(z)

]
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The first sum is finite, while for the second one we have |z| < |bn/4|
and the estimate (37.15) applies. Thus (37.16) is convergent away from
the poles uniformly on compact sets.

(ii) Clearly, f − f1 is entire.

37.4. Further examples. We write the result in Exercise 37.2 in the
form

(37.18) π cot πz =
1

z
+

∑
n∈N\{0}

2z

z2 − n2

We can now use this identity to calculate easily some familiar sums.
Note that the lhs of (37.18) has the Laurent expansion at z = 0

(37.19) π cotπz =
1

z
− π2z

3
− π4z3

45
− 2π6z5

945
− · · ·

Since the series on the rhs of (37.18) converges uniformly near z = 0,
by Weierstrass’s theorem it converges together with all derivatives. On
the other hand we have

(37.20) 2z

z2 − n2
= −2

(
z

n2
+
z3

n4
+
z5

n6
+ · · ·

)
and we get immediately,

(37.21)
∑
n⩾1

1

n2
=
π2

6
,
∑
n⩾1

1

n4
=
π4

90
,
∑
n⩾1

1

n6
=

π6

945
· · ·

Exercise 37.6. * The definition of the Bernoulli numbers Bk is

(37.22) 1

ez − 1
=

1

z
− 1

2
+

∞∑
k=1

(−1)k−1 Bk

(2k)!
z2k−1

Show that

(37.23)
∞∑
n=1

1

n2k
= 22k−1 Bk

(2k)!
π2k

38. Infinite products

An infinite product is the limit

(38.1)
∞∏
n=1

pn := lim
k→∞

k∏
n=1

pn = lim
k→∞

Πk

We wish to express entire functions as infinite products. Then the
following conventions are natural:

1. Only finitely many pj are nonzero.
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Hence there exists an n0 such that pk ̸= 0 for any k ⩾ n0 and we
require:

2.
n∏

k=n0

pk → ℓ ̸= 0 as n→ ∞

In issues of convergence we ignore the zero terms, so in the following
we assume they simply do not exist. Write now pn = Pn/Pn−1, with
P0 = 1 we see that the limit of Πk is the same as the limit of the Pk,
and since Pk → ℓ ̸= 0 we have Pk+1/Pk → 1 as k → ∞. Thus pn → 1 is
a necessary condition of convergence of the infinite product. We should
then better write the products as

(38.2)
∞∏
n=1

(1 + an)

and then a necessary condition of convergence is an → 0.

Theorem 38.1. The infinite product (38.2) converges iff

(38.3)
∞∑
n=1

ln(1 + an)

converges. We omit, as before, the terms with an = −1. The log is
defined with a cut along (−∞, 0], extended by continuity on the upper
side of the cut.

Proof. If the sum (38.3) converges, then Πn converges, since the expo-
nential of a finite sum is a finite product.

In the opposite direction, a word of caution. We know that in the
complex domain, ln ab is not always ln a + ln b. The limit of the sum
will not, in general, be the log of the infinite product. So the reason-
ing is not that obvious. We write (1 + an) = ρne

iϕn and note that∏
ρn is convergent, hence the real part of (3.19) converges. Since

(1 + an+1)/(1 + an) → 1 we can inductively choose a multiple of 2πi in
arg(1 + an) so that
(38.4) ϕn+1 − ϕn → 0 as n→ ∞

With this choice, we see that
∑

k ϕk must converge. Otherwise, there
are two possibilities. If Sn =

∑n
k=1 ϕk is unbounded, then, by (38.4),

dist({Sn}n∈N, 2Z+ 1) =dist({Sn}n∈N, 2Z) = 0 entailing infinite oscilla-
tion and divergence of the product. If instead {Sn}n∈N is confined to a
compact set and has a ̸= b as accumulation points, then the conclusion
is the same. Hence, the imaginary part of (3.19) converges as well.
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Absolute convergence is easier to control in terms of series. An infi-
nite product is absolutely convergent, by definition, iff

(38.5)
∞∑
n=1

| ln(1 + an)|

is convergent.

Theorem 38.2. The sum (38.5) is absolutely convergent iff
∑
ak is

absolutely convergent.

Proof. Assume
∑
ak converges absolutely. Then in particular an → 0.

Also, if
∑∞

n=1 ln(1 + an) converges absolutely then ln(1 + an) → 0 and
an → 0. But (eliminating all the irrelevant zero terms which are zero)
we have, as n→ ∞ limn→∞ |an|−1 ln(1+ |an|) = 1, and the rest follows
from the limit ratio theorem.

Note 38.3. Conditional (not absolute) convergence of
∑
an and of∏

(1 + an) are unrelated notions. (Consider, e.g., the product
∏
(1 −

(−1)nn−1/2). Is the associated series
∑

(−1)nn−1/2 convergent? Is the
product convergent?)

38.1. Uniform convergence of products.

Exercise 38.4. Assume that pn(z) are analytic in the domain D. Show
that f(z) =

∏
n⩾1 pn(z) converges absolutely and uniformly on every

compact set in the domain D iff

(38.6) f ′(z) =
∞∑
k=1

∞∏
n=1

p′k
pk
pn

converges absolutely and uniformly on every compact set in the do-
main D (if some pk are zero, the terms are understood in the sense of
removable singularities).

38.2. Example: the sin function. Let us prove directly Euler’s prod-
uct formula for the sin function. A good product formula candidate is
indeed

(38.7) Cπ sin πz
?
= z

∏
n>0

(
1− z2

n2

)
The constant C can only be 1/π2 if we look at the behavior near z = 0.
Thus,

(38.8) sin πz

π
?
= z

∏
n>0

(
1− z2

n2

)
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This equality of course needs to be proved, but this is not difficult.
First we note that the product on the rhs of (38.8) is absolutely

and uniformly convergent on any compact z set; this can be easily
checked. It thus defines an entire function g(z). Motivated by the
way we obtained this possible identity, let us look at the expression
f ′/f − g′/g where πf(z) = sin πz. We get, using Exercise 38.4,

(38.9) f ′/f − g′/g = π cotπz − 1

z
+

∑
n∈N\{0}

2z

z2 − n2
= 0

This means that

(38.10) f ′g − fg′

fg
= 0

in C \ Z or, equivalently,

(38.11) f ′g − fg′

g2
= 0 =

(
f

g

)′

or f/g = const; we already calculated the constant based on the be-
havior at zero, it is one. Thus indeed,

(38.12) sinπz

πz
=
∏
n>0

(
1− z2

n2

)
proving (37.5). More generally, we have the following:

Lemma 38.5. Assume that {fn} are analytic and nonzero in a domain
D containing zero, that fn(0) = 1 and that

∑n
k=1 f

′
k/fk converges uni-

formly on compact sets in D. Then {
∏n

k=1 fk}n∈N converges uniformly
on compact sets in D, to a function analytic in D.

Proof. Under these assumptions, hn(z) =
∫ z
0

∑n
k=1 f

′
k(s)/fk(s)ds also

converges uniformly on compact sets inD. Defining g(z) = e−hn(z)
∏n

k=1 fk
and using Exercise 38.4 we have g′n(z) = 0 and g(0) = 1. The rest is
immediate.

38.3. Canonical products. The simplest possible case is that in which
we have a function with no zeros.

Theorem 38.6. Assume f is entire and f ̸= 0 in C Then f is of the
form

(38.13) f = eg

where g is also entire.
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Proof. Since f ′/f is entire and C is simply connected, h(z) =
∫ z
0
f ′(s)/f(s)ds

is well defined and also entire. Now we note that (fe−h)′ = 0 in C and
thus f = exp(h+C) proving the result. Another proof is by using the
monodromy theorem and the fact that log f has no singularities in C.

Assume now that f has finitely many zeros, a zero of order m ⩾ 0
at the origin, and the nonzero ones, possibly repeated are a1, ...an.

Then

f = zm
n∏
k=1

(
1− z

an

)
eg(z)

where g is entire.
This is clear, since if we divide f by the prefactor of eg we get an

entire function with no zeros.
We cannot expect, in general, such a simple formula to hold if there

are infinitely many zeros. Again we have to take care of convergence
problems. This is done in a manner similar to that used in the Mittag-
Leffler construction.

Theorem 38.7 (Weierstrass). (i) If {an}n∈N is a sequence with no
accumulation points, and {mn}n∈N ⊂ N is a set of multiplicities then
there exists an entire function with zeros at an of multiplicities mn and
no other zeros.

(ii) Assume f is an entire function with zeros at an of multiplicities
mn. Then there exist polynomials qn, and an entire function g(z) such
that

(38.14) f(z) = eg(z)zm
∏
n∈N

[(
1− z

an

)mn

eqn
]

Proof. This is a consequence of Mittag-Leffler. For the proof, we may
assume that f(0) ̸= 0, for otherwise, if f has a zero of order m at 0 we
prove the theorem first for f̃(z) = f(z)z−m understood as usual after
removing the singularity at zero.

Take a meromorphic function h with simple poles at an of residues
mn as provided by Mittag-Leffler:

(38.15) h(z) =
∑
n∈N

(
mn

z − an
− pn

)
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We claim that e
∫ z
0 h(s)ds understood by analytic continuation from a

neighborhood of zero has the desired properties. Indeed, in a neigh-
borhood of 0we write

(38.16) mn

z − an
=
f ′
n(z)

fn(z)
where fn(z) =

(
1− z

an

)
we choose any branch of log(1− z/an) (a multiple of 2πi will not mat-
ter); the natural choice is that given by the power series. We choose a
disk of radius r Dr and choose Nr so that for n ⩾ Nr an /∈ Dr. In Dr

we have
(38.17)∫ z

0

h(s)ds =
∑

n⩽N(r)

mn log(1−z/an)−
∫ z

0

pn(s)ds+

∫
n⩾N(r)

(
mn

z − an
− pn

)
Once more, the integral is understood as being well defined near zero,
and analytically continued to Dr. In Dr we have

(38.18) e
∫ z
0 h(s)ds =

∏
n⩽N(r)

(1− z/an)
mne

∫
n⩾N(r)(

mn
s−an

−pn(s))ds

where the exponential on the right side of (38.18) is analytic. For (ii)
we note that if f is entire with the prescribed zeros and multiplicities
and H is as in (i), then f/H is entire with no zeros and the result
follows from Theorem 38.6.

Note 38.8. Historically, Weierstrass’ factorization theorem came first.
Gösta Mittag-Leffler was inspired by Weierstrass and found his decom-
position theorem.
Corollary 38.9. Any meromorphic function is a ratio of entire func-
tions.
Proof. Let F be meromorphic with poles at bn of order mn. Let G be
any entire function with zeros at bn of order mn. Then FG has only
removable singularities.

38.4. Counting zeros of analytic functions. Jensen’s formula.
The rate of growth of an analytic function is closely related to the
density of zeros. A quite effective counting theorem is due to Jensen.
Theorem 38.10 (Jensen). Assume f ̸≡ 0 is analytic in the closed disk
Dr and f(z) = czmg(z) with m ⩾ 0 and g(0) = 1. Let ai be the nonzero
roots of f in Dr, repeated according to their multiplicity. Then

(38.19) ln |c| = −m ln r −
n∑
i=1

ln

(
r

|ai|

)
+

1

2π

∫ 2π

0

ln |f(reiθ)|dθ
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Proof. The proof will follow quite easily from the case when f ̸= 0 in
Dr. In this case we can define a consistent branch of ln f in Dr (see also
the second proof of Theorem 38.6), and Re ln f = ln |f | is harmonic in
Dr. For r′ < r, by the mean value theorem for harmonic functions, we
have

(38.20) ln |f(0)| = 1

2π

∫ 2π

0

ln |f(r′eiθ)|dθ

Since f is analytic in the closed disk and ln |x| is in L1(R), it is easy to
see by dominated convergence (check) that (38.20) holds in the limit
r = r′ too, even if there are zeros on the circle of radius r:

(38.21) ln |f(0)| = 1

2π

∫ 2π

0

ln |f(reiθ)|dθ

Assume now f has zeros, with the convention in the statement of the
theorem. We then build a function which has no zeros inside Dr and
has the same absolute value for |z| = r. Such a function is

(38.22) h(z) =
rm

zm
f(z)

n∏
i=1

r2 − aiz

r(ai − z)

(understood as usual with the removable singularities removed). Then

(38.23) ln |h(0)| = 1

2π

∫ 2π

0

ln |h(reiθ)|dθ = 1

2π

∫ 2π

0

ln |f(reiθ)|dθ

We have h(0) = rmc
∏n

i=1
r
ai

and the formula follows from the case with
no roots.

Corollary 38.11. Assume f is analytic in the closed disk of radius R
and f(0) ̸= 0. Let ν(r) denote the number of zeros of f in the disk of
radius r ⩽ R. Then

(38.24)
∫ R

0

ν(x)

x
dx ⩽ lnmax

|z|=R
|f(z)| − ln |f(0)|

(Note that for some ε > 0, ν(x) = 0 for x < ε.) Clearly, ν(x) is an
increasing (discontinuous) function of x.
Proof. Note that

ln(R/|ai|) =
∫ R

|ai|

dx

x
=

∫ R

0

χ([|ai|, x])
dx

x

Thus
n∑
i=1

ln

(
R

|ai|

)
=

∫ R

0

n∑
i=1

χ([|ai|, x])
dx

x
=

∫ R

0

ν(x)

x
dx
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The rest follows immediately from (38.19).

38.5. Entire functions of finite order. Let f be an entire function.
We denote

∥f∥R = sup
|z|⩽R

|f(z)| = sup
|z|=R

|f(z)

A function is of order ⩽ ρ if for all R large enough we have
(38.25) ∀ε > 0 ∃cε s.t. ∥f∥R ⩽ exp(cεR

ρ+ε)

or equivalently
(38.26) ∀ε > 0 ln ∥f∥R = O(Rρ+ε)

Note 38.12. We can always check the condition for R ∈ N large enough
since (N + 1)ρ = O(Nρ).

The function f has strict order ⩽ ρ if there is some c > 0 such that
for all R large enough we have
(38.27) ∥f∥R ⩽ exp(cRρ)

A function has order equal ρ if
ρ = inf{ρ′ : ∀ε > 0 ∃cε s.t. ∥f∥R ⩽ exp(cεR

ρ′+ε)}
A function has strict order equal ρ if

ρ = inf{ρ′ : ∀R > 0, ∥f∥R ⩽ exp(cRρ′)}

Exercise 38.13. * Check that cosh z1/2 has strict order 1/2 and cos z1/4+
cosh z1/4 has strict order 1/4. Variations of this construction lets you
find entire functions of any rational order. But can you find an entire
function of exact order π?

Proposition 38.14. Assume f(z) is entire, and for large |z| there are
positive constants C, c and ρ such that |f(z)| ⩽ Cec|z|

ρ. Then, for
R > 0 there is a c2 > 0 such that
(38.28) ν(R) ⩽ c2R

ρ

Indeed, the zeros at zero do not change the shape of the inequality, and
we can thus assume f(0) ̸= 0. Then,

(38.29) c|R|ρ ⩾
∫ R

0

ν(x)

x
dx ⩾

∫ R

R/2

ν(x)

x
dx ⩾ ν(R/2)

R

R

2

and the rest is immediate. The constants in the inequality can be
optimized by choosing R/τ , τ > 1 instead of R/2 and finding the best
τ .
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Theorem 38.15. Let f be entire of strict order ⩽ ρ and let {zn} be
its nonzero zeros, repeated according to their multiplicity and ordered
increasingly by their absolute value. Then for any ε > 0, {|zn|−1}n∈N ∈
ℓρ+ε(N), i.e., the series

(38.30)
∞∑
n=1

1

|zn|ρ+ε

is convergent.

Proof. We can obviously discard the roots with |zi| ⩽ 1 which are in
finite number. Without loss of generality we assume there are none.
We have, with N ∈ N and estimating the sum by annuli,

(38.31)
∑

|zn|⩽N

1

|z|ρ+ε
⩽

N∑
k=1

ν(k + 1)− ν(k)

kρ+ε

we can now use the method of Abel summation by parts. We write

(38.32)
ν(k + 1)− ν(k)

kρ+ε
= ν(k+1)

(
1

kρ+ε
− 1

(k + 1)ρ+ε

)
+

(
ν(k + 1)

(k + 1)ρ+ε
− ν(k)

kρ+ε

)

and note that by summation, the terms in the last parenthesis cancel
out to

ν(N + 1)

(N + 1)ρ+ε
− ν(1)

Note that by the mean value theorem we have for some γ = γ(k)

(38.33) ν(k + 1)

kρ+ε
− ν(k + 1)

(k + 1)ρ+ε
=

(ρ+ ε)ν(k + 1)

(k + γ)ρ+ε+1
⩽ Ckρ(ρ+ ε)

kρ+ε+1

and the sum converges.

38.6. Estimating analytic functions by their real part.

Theorem 38.16 (Borel-Carathéodory). Let R > 0 and assume f =
u + iv is analytic DR. Let AR = max|z|=R u(z). Then for r < R we
have

(38.34) max
|z|⩽r

|f(z)| ⩽ 2rAR
R− r

+
R + r

R− r
|f(0)|
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Note that if f is entire and nonconstant, then ∥f∥R → ∞ as R → ∞.
Then, since |u| ⩽ |f |, the theorem above shows that

(38.35) lim
R→∞

max|z|⩽R u(z)

max|z|⩽R |f(z)|
⩾ 1

2

Proof. Assume first that f(0) = 0. Then u(0) = 0 and by the mean
value theorem AR ⩾ 0. If AR = 0 then by the same argument u ≡ 0
on ∂DR and by Poisson’s formula u ≡ 0 in DR. Then v ≡ const = 0
since f(0) = 0, thus f ≡ 0 and the formula holds trivially.

We now assume AR > 0. Since the maximum of a harmonic function
is reached on the boundary, we have 2AR − u ⩾ u in DR and the
inequality is strict in the interior. Also note that if at some point
u < 0, then again 2AR − u = 2AR + |u| ⩾ |u|. In DR we have

(38.36) |2AR − f | =
√
(2AR − u)2 + v2 >

√
u2 + v2 = |f |

Hence the function

(38.37) g(z) =
1

2AR − f(z)

f(z)

z

is holomorphic in DR and we have, by passing to the limit |z| → R,

(38.38) |g(z)| =
∣∣∣∣ 1

2AR − f(z)

f(z)

z

∣∣∣∣ ⩽ 1

R

hence

(38.39)
∣∣∣∣f(z)z

∣∣∣∣ ⩽ 1

R
|2AR − f(z)| ⩽ 1

R
(2AR + |f(z)|)

Solving for |f(z)| we get

(38.40) |f(z)| ⩽ 2|z|AR
R− |z|

as claimed. The general case is obtained by applying this inequality to
f(z)− f(0) (exercise).

Corollary 38.17. Assume ρ ⩾ 0, f = u+ iv is entire and as |z| → ∞
we have
(38.41) |u(z)| ⩽ C|z|ρ

Then f is a polynomial of degree at most ρ.

Proof. From (38.35), for any ε > 0 we have, for large R |f(z)| ⩽
(2C + ε)|z|ρ and the rest is a simple exercise.
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39. Hadamard’s theorem

Let ρ > 0 and let kρ be the smallest integer strictly greater than ρ,
kρ = ⌊ρ⌋+1. We consider again the truncates of the series of− ln(1−z),
namely, with k = kρ,

(39.1) Pk(z) = z +
z2

2
+ · · ·+ zk−1

k − 1

Theorem 39.1 (Hadamard). Let f be entire of order ρ, let zn be its
nonzero zeros and let k = kρ. Then, with m ⩾ 0 the order of the zero
of f at zero, there is a polynomial h of degree ⩽ ρ such that

(39.2) f(z) = eh(z)zm
∞∏
n=1

[(
1− z

zn

)
ePk(z/zn)

]
= eh(z)E(z)

The proof of this important theorem requires a number of interme-
diate results, notably the minimum modulus theorem proved in the
following section, a very useful result in its own right.
Lemma 39.2. Let ε be such that λ := ρ + ε < kρ := k. There is a
c > 0 such that
(39.3) |(1− ζ) expPk(ζ)| ⩽ exp(c|ζ|λ)
Proof. For |ζ| ⩽ 1/2 we have

ln(1− ζ) + Pk(ζ) =
∞∑
n=k

ζn

n
= ζkCk; |Ck| ⩽

∞∑
n=k

2−n ⩽ 2(39.4)

⇒ (1− ζ)ePk(ζ) ⩽ e2|ζ|
k ⩽ e2|ζ|

λ(39.5)
For |ζ| ∈ [1/2, 1] we have

(39.6) |(1− ζ) expPk(ζ)| ⩽
1

2
exp

[
|ζ|k

(
1

|ζ|k−1
+ · · ·+ 1

|ζ|(k − 1)

)]
⩽ 1

2
exp(2k|ζ|k) ⩽ 1

2
exp(2k|ζ|λ)

For |ζ| > 1 we have

(39.7)

|(1− ζ) expPk(ζ)| ⩽ |(1− ζ)| exp
[
|ζ|k−1

(
1

k − 1
+ · · ·+ 1

|ζ|k−2

)]
⩽ exp

(
k|ζ|k−1 + ln |1 + |ζ||

)
⩽ exp

(
k|ζ|λ + ln |1 + |ζ||

)
⩽ exp

(
C2|ζ|λ

)
for some C2 independent of ζ, |ζ| > 1. This is because t−λ ln(1 + t) is
continuous on [1,∞) and goes to zero at infinity (fill in the details).
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39.1. Canonical products. Take any sequence {zn}n where the terms
are ordered by absolute value, with the property that for some ρ > 0
and any ε > 0 we have

(39.8)
∞∑
n=1

1

|zn|ρ+ε
<∞

Definition 39.3. The canonical product determined by the sequence
{zn}, denoted by E(k)(z, {zn}) or simply E(z) is defined by

(39.9) E(z) =
∞∏
n=1

(
1− z

zn

)
exp[Pk(z/zn)]

Theorem 39.4. E(z) is an entire function of order ⩽ ρ.

Proof. Take again any ε be such that λ := ρ + ε < kρ. Then, by
Lemma 39.2 we have
(39.10)

|E(z)| ⩽
∞∏
n=1

exp(c|z/zn|λ) = exp

(
c|z|λ

∞∑
k=1

|zn|−λ
)

⩽ exp
(
c1|z|λ

)
proving, in the process, uniform convergence of the product.

40. The minimum modulus theorem; end of proof of
Theorem 39.1

This important theorem tells us, roughly, that if a function does not
grow too fast it cannot decrease too quickly either, aside from zeros.
More precisely we have

Theorem 40.1 (Minimum modulus theorem). Let f be an entire func-
tion of order ⩽ ρ. As before, let {zn} be its zeros with |zi| > 1, repeated
according to their multiplicity and let ε > 0. At every root, remove a
disk Drn(zn) with rn = |zn|−ρ−ε U = C \ ∪nDrn(zn). Then, there is a
constant c such that for all z ∈ U we have

(40.1) |f(z)| ⩾ exp(−c|z|ρ+ε) or 1

|f(z)|
= O(exp(|z|ρ+ε))

Proof. We start with the case when the entire function is a canonical
product. We take |z| = r and write

(40.2) E(z) =
∏

|zn|<2r

Ek(z, zn)
∏

|zn|⩾2r

Ek(z, zn)
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and estimate the two terms separately. We note that in the second
product, all ratios ζ =: ζn = z/zn have the property |ζ| ⩽ 1/2. Taking
one term of the product, we have to estimate below

(40.3) E(ζ) = (1− ζ)eP (ζ)

Since |ζ| ⩽ 1/2, ln(1−ζ) exists; we take the principal branch and write

(40.4)
∣∣(1− ζ)eP (ζ)

∣∣ = ∣∣eln(1−ζ)+P (ζ)
∣∣ = ∣∣∣∣∣exp

(
−

∞∑
n=k

ζn

n

)∣∣∣∣∣
= exp

(
−Re

∞∑
n=k

ζn

n

)
⩾ exp

(
−

∣∣∣∣∣
∞∑
n=k

ζn

n

∣∣∣∣∣
)

⩾ exp

(
−

∞∑
n=k

|ζ|n

n

)

⩾ exp

(
−|ζ|k

∞∑
n=0

(1/2)n

n+ k

)
⩾ e−2|ζ|k ⩾ e−2|ζ|ρ+ε

Thus for the second product in (40.2) we have

(40.5)
∏

|zn|⩾2r

Ek(z, zn) ⩾ exp

−2|z|ρ+ε
∑

|zn|⩾2r

1

|zn|ρ+ε

 ⩾ e−c|z|
ρ+ε

since the infinite sum converges by Theorem 38.15.
We split the remaining region into zk ∈ [1, r] and zk ∈ (r, 2r). Here

the factors (1 − z/zk) have to be bounded from below, and it is here
that we use the conditions on the removed disks. We have, on [1, r],

(40.6)∏
|zn|⩽r

|1− z/zn| =
|z − zn|
|zn|

⩾
∏

|zn|⩽r
|zn|−ρ−ε−1 ⩾

∏
|zn|⩽r

r−ρ−ε−1 =

(
r−ρ−ε−1

)ν(r) ≳ e−r
ρ+ε ln r(ρ+ε+1) ⩾ e−c1r

ρ+ε′

for some C1 and ε′ > ε, since (rε−ε′ ln r → 0 as r → ∞.
On (r, 2r) we have

(40.7) |1− z/zn| =
|z − zn|
|zn|

⩾ |zn|−ρ−ε−1 ⩾ (2r)−ρ−ε−1

and thus
(40.8)∏

|zn|<2r

|1− z/zn| ⩾ [(2r)−ρ−ε−1]ν(2r) = e−ν(2r)(ρ+ε+1) ln(2r) ⩾ e−c6r
ρ+ε′

for any ε′ > ε if r is large enough.
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We now examine the convergence improving factors, for |zn| < 2r.

(40.9)

∣∣∣∣∣∣
∑

|zn|<2r

Pk(z/zn)

∣∣∣∣∣∣ ⩽
∣∣∣∣∣∣
∑

r<|zn|<2r

Pk(z/zn)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
|zn|⩽r

Pk(z/zn)

∣∣∣∣∣∣
For the first term on the right we note that when |z/zn| = |ζn| =: |ζ| <
1 and we have

(40.10)
∣∣∣∣∣
k−1∑
n=1

ζn

n

∣∣∣∣∣ ⩽
k−1∑
n=1

1

n
=: c1

and thus
(40.11)

∑
r<|zn|<2r

|Pk(z/zn)| ⩽ ν(2r)c1 ⩽ c2r
ρ+ε

For the second term on the right of (40.9) we note that |z/zn| ⩾ 1 and
thus, with ζ = z/zn we have

(40.12)
∣∣∣∣∣
k−1∑
n=1

ζn

n

∣∣∣∣∣ ⩽ |ζ|k−1

k−1∑
n=1

1

n
=: c1|ζ|k−1 = c1r

k−1|zn|−k+1

We use Abel summation by parts (we are careful that r is not neces-
sarily an integer)

(40.13)
∑
|zn|⩽r

|zn|−k+1 ⩽
∑
m⩽r

ν(m+ 1)− ν(m)

mk−1

=
∑
m⩽r

ν(m+ 1)

(
1

mk−1
− 1

(m+ 1)k−1

)
+
ν(r + 1)

rk−1
− ν(1)

⩽
∑
m⩽r

ν(m+ 1)

(
1

mk−1
− 1

(m+ 1)k−1

)
+
ν(r + 1)

rk−1

⩽
∑
m⩽r

kCmρ+ε

mk
+ c3r

ρ+ε−k+1

⩽ C1

∑
m⩽r

mρ+ε−k + c3r
ρ+ε−k+1 ⩽ C3r

ρ+ε−k+1

where we majorized the sum by an integral in the usual way. Multi-
plying by c1rk−1 we get that the second term on the right of (40.9) is
bounded by
(40.14) C4r

ρ+ε

We now finish the proof of Theorem 39.1.
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Proof. We take ε > 0 and s = ρ+ε. We order the roots nondecreasingly
by |zn|. For each root zn we consider the annulus An = {z : |z| ∈
[|zn| − 2|zn|−s, |zn|+2|zn|−s] (for the purpose of this argument, we can
as well assume that all roots are on R+, since the angular position
is irrelevant). Consider J c := R+ \ J where J is the union of all
intersections of the An with R+. Since the Lebesgue measure of J does
not exceed 4

∑
n |zn|−s < ∞, there exist arbitrarily large numbers in

the complement J c. Take r be any number in J c and consider the
circle ∂Dr. Consider the function g = f/E. g is clearly an entire
function with no zeros. Then, by Theorem 38.6, g = eh with h entire.
Since Reh ⩽ (Cf + CE)r

ρ+ε for some Cf + CE independent of r in
Dr for arbitrarily large r (check), we have by Corollary 38.17 that h
is a polynomial of degree at most ρ + ε. Since ε is arbitrary, h is a
polynomial of degree at most ρ.

To finish the proof of the minimummodulus principle, we use Hadamard’s
theorem and the fact that e−h satisfies the required bounds. (Exercise:
fill in the details.)

Example 40.2. Let us show that f(z) = ez − z has infinitely many
roots in C. Indeed, first note that f(z) has order 1 since |z| ⩽ e|z| for
all z. Suppose f had finitely many zeros. Then
(40.15) ez − z = P (z)eh(z)

where P (z) is a polynomial and h(z) is a polynomial of degree one,
and without loss of generality we can take h(z) = cz, c = α + iβ. As
z = t→ +∞ we have
(40.16) P (t)e(c−1)t = 1− te−t → 1

In particular |P (t)|e(α−1)t → 1 which is only possible if α = 1. But
then |P (t)| → 1 which is only possible if P (t) = const = eiϕ. We are
then left with
(40.17) ei(ϕ+tβ) = cos(tβ + ϕ) + i sin(tβ + ϕ) → 1 as t→ +∞
which clearly implies β = 0. Then eiϕ = 1. We are left with the identity
(40.18) ez − z = ez ∀z
which is obviously false.

Exercise 40.3. * Let P ̸≡ 0 be a polynomial. Show that the equation
ez = P (z) has infinitely many roots in C.

Exercise 40.4. ** (i) Rederive formula (38.12) using Hadamard’s
theorem.
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(ii) Write down a product formula of the function

f(z) = sin z + 3 sin(3z) + 5 sin(5z) + 7 sin(7z)

The final formula should be explicit except for arcsins of roots of a cubic
polynomial.

40.1. Some applications.

Corollary 40.5 (Borel). Assume that ρ is not an integer and f has
strict order ρ. Then f takes every value in C infinitely many times.

Proof. It suffices to show that such a function has infinitely many zeros,
since f and f − z0 have the same strict order. Assume to get a con-
tradiction f had finitely many zeros. Then g(z) = f(z)

∏n
i=1(z − zi)

−1

would be entire, with no zeros, and as it is easy to check, of strict
order ρ. Then g = eh with h a polynomial whose degree can only be
an integer.

Definition 40.6. Let expn be the exponential composed with itself n
times.

Corollary 40.7 (A weak form of Picard’s theorem). A nonconstant
entire function which is bounded by expn(C|z|) for some n and large z
takes every value with at most one exception.

Proof. We prove this by induction on n. We first show that a non-
constant entire function of finite order takes every value with at most
one exception. Assume a is an exceptional (lacunary) value. Then
f(z) − a is entire with no zeros, thus of the form eh with h a poly-
nomial, f = eh − a. If the degree of h is zero, then f is a constant.
Otherwise, we must show that eh− a takes all values with at most one
exception (−a of course), or, which is the same, eh takes all values with
at most one exception. The equation eh = b, b ̸= 0 is solved if h− ln b
has roots, which is true by the fundamental theorem of algebra.

Assume now the property holds for n ⩽ k−1 and we wish to prove it
for n = k. Let f be an entire function bounded by exp(n)(C|z|) which
avoids the value a. Then f − a is entire with no zeros, f − a = eh with
h entire. It is easy to show that h is bounded by exp(n−1)(C|z|). Thus
it avoids at most one value, by the induction hypothesis. The equation
eh− a = b, for b ̸= −a always has a solution. Indeed, if ln(b+ a) is not
an avoided value of h this is obvious. On the other hand, if ln(b+ a) is
avoided by h, then again by the induction hypothesis ln(b+ a)+ 2πi is
not avoided.
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Exercise 40.8. ** Show that the equation

(40.19) cos(z) = z4 + 5z2 + 13

has infinitely many roots in C.

Exercise 40.9. ** (Bonus) Show that the error function

(40.20) erf(x) = 2√
π

∫ x

0

e−t
2

dt

takes every complex value infinitely many times. (Hint: using L’Hospital
show that erf(is)/(es2/s) → const. as s→ +∞.)

We will return to the error function later and use asymptotic methods
to locate, for large x, these special points.

41. The Phragmén-Lindelöf Theorem

Theorem 41.1 (Phragmén-Lindelöf). Let U be the open sector between
two rays from the origin, forming an angle π/β, β > 1

2
. Assume f is

analytic in U , and continuous in U , and for some C1, C2,M > 0 and
α ∈ (0, β) it satisfies the estimates

(41.1) |f(z)| ⩽ C1e
C2|z|α ; z ∈ U ; |f(z)| ⩽M ; z ∈ ∂U

Then

(41.2) |f(z)| ⩽M ; z ∈ U

Proof. By a rotation we can make U = {z : 2| arg z| < π/β}. Making
a cut in the complement of U we can define an analytic branch of the
log in U and, with it, an analytic branch of zβ. By taking g = f(z1/β),
we can assume without loss of generality that β = 1 and α ∈ (0, 1) and
then U = {z : | arg z| < π/2}. Let α′ ∈ (α, 1), ε > 0 and consider the
analytic function

(41.3) h(z) = e−εz
α′

f(z)

Since |e−εzα
′
| < 1 in U (check) and |e−εzα

′
+C2zα| → 0 as |z| → ∞ on

the half circle |z| = R,Re z ⩾ 0 (check), the usual maximum modulus
principle shows that |h| < M in U . The proof is completed by taking
ε→ 0.
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41.1. An application to Laplace transforms. We will study Laplace
and inverse Laplace transforms in more detail later. For now let F ∈
L1(R). Then by Fubini and dominated convergence, the Laplace trans-
form

(41.4) LF :=

∫ ∞

0

e−pxF (p)dp

is well defined and continuous in x in the closed H+ and analytic in
the open RHP. (Obviously, we could allow Fe−|α|p ∈ L1 and then LF
would be defined for Re x > |α|.) F is uniquely defined by its Laplace
transform, as seen below.

Lemma 41.2 (Uniqueness). Assume F ∈ L1(R+) and LF = 0 for a
set of x with an accumulation point in H+. Then F = 0 a.e. on [0,∞).

Proof. By analyticity, LF = 0 in the open RHP and by continuity,
for s ∈ R, LF (is) = 0 = F̂F where F̂F is the Fourier transform
of F (extended by zero for negative values of p). Since F ∈ L1 and
0 = F̂F ∈ L1, by the known Fourier inversion formula [7], F = 0 a.e.

More however can be said. We can draw interesting conclusions
about F just from the rate of decay of LF .

Proposition 41.3 (Lower bound on decay rates of Laplace trans-
forms). Assume F ∈ L1(R+) and for some ε > 0 we have
(41.5) LF (x) = O(e−εx) as x→ +∞
Then F = 0 a.e. on [0, ε].

Proof. We write

(41.6)
∫ ∞

0

e−pxF (p)dp =

∫ ε

0

e−pxF (p)dp+

∫ ∞

ε

e−pxF (p)dp

we note that

(41.7)
∣∣∣ ∫ ∞

ε

e−pxF (p)dp
∣∣∣ ⩽ e−εx

∫ ∞

ε

|F (p)|dp ⩽ e−pε∥F∥1 = O(e−εx)

Therefore

(41.8) g(x) =

∫ ε

0

e−pxF (p)dp = O(e−εx) as x→ +∞

The function g is entire. Let h(x) = eεxg(x). Then by assumption h
is entire and uniformly bounded for x ∈ R (since by assumption, for
some x0 and all x > x0 we have h ⩽ C and by continuity max |h| <∞
on [0, x0]). The function is also manifestly bounded for x ∈ iR (by
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∥F∥1). By Phragmén-Lindelöf (first applied in the first quadrant and
then in the fourth quadrant, with β = 2, α = 1) h is bounded in the
closed RHP. Now, for x = −s < 0 we have

(41.9) e−sε
∫ ε

0

espF (p)dp ⩽
∫ ε

0

|F (p)| ⩽ ∥F∥1

Again by Phragmén-Lindelöf (again applied twice) h is bounded in the
closed Hl thus bounded in C, and it is therefore a constant. But, by
the Riemann-Lebesgue lemma, h→ 0 for x = is when s→ +∞. Thus
h ≡ 0. But then, with χA the characteristic function of A,

(41.10)
∫ ε

0

F (p)e−ispdp = F̂(χ[0,ε]F ) = 0

for all s ∈ R entailing the conclusion.

Corollary 41.4. Assume F ∈ L1 and LF = O(e−Ax) as x→ +∞ for
all A > 0. Then F = 0.

Proof. This is straightforward.

As we see, uniqueness of the Laplace transform can be reduced to
estimates. Also, no two different L1(R+) functions, real–analytic on
(0,∞), can have Laplace transforms within exponentially small correc-
tions of each–other. This will play an important role later on.

41.2. A Laplace inversion formula.

Theorem 41.5. Assume c ⩾ 0, f(z) is analytic in the closed half plane
Hc := {z : Re z ⩾ c}. Assume further that supc′⩾c |f(c′ + it)| ⩽ g(t)
with g(t) ∈ L1(R). Let

(41.11) F (p) =
1

2πi

∫ c+i∞

c−i∞
epxf(x)dx =: (L−1F )(p)

Then for any x ∈ {z : Re z > c} we have

(41.12) LF =

∫ ∞

0

e−pxF (p)dp = f(x)

Proof. Note that for any x′ = x′1 + iy′1 ∈ {z : Re z > c}

(41.13)∫ ∞

0

dp

∫ c+i∞

c−i∞

∣∣∣ep(s−x′)f(s)∣∣∣ d|s| ⩽
∫ ∞

0

dpep(c−x
′
1)∥g∥1 ⩽ ∥g∥1

x′1 − c
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and thus, by Fubini we can interchange the orders of integration:

(41.14) U(x′) =

∫ ∞

0

e−px
′ 1

2πi

∫ c+i∞

c−i∞
epxf(x)dx

=
1

2πi

∫ c+i∞

c−i∞
dxf(x)

∫ ∞

0

dpe−px
′+px =

1

2πi

∫ c+i∞

c−i∞

f(x)

x′ − x
dx

Since g ∈ L1 there must exist subsequences τn,−τ ′n tending to ∞ such
that |g(τn)| → 0. Let x′ > Rex = x1 and consider the box Bn = {z :
Re z ∈ [x1, x

′], Im z ∈ [−τ ′n, τn]} with positive orientation. We have

(41.15)
∫
Bn

f(s)

x′ − s
ds = −f(x′)

while, by construction,

(41.16) lim
n→∞

∫
Bn

f(s)

x′ − s
ds =

∫ x′+i∞

x′−i∞

f(s)

x′ − s
ds−

∫ c+i∞

c−i∞

f(s)

x′ − s
dx

On the other hand, by dominated convergence, we have

(41.17)
∫ x′+i∞

x′−i∞

f(s)

x′ − s
ds→ 0 as x′ → ∞

41.3. Abstract Stokes phenomena. This theorem shows that if an
analytic function decays rapidly along some direction, then it increases
“correspondingly” rapidly along a complementary direction. The fol-
lowing is reminiscent of a theorem by Carlson [12].

Theorem 41.6. Assume f ̸≡ 0 is analytic in the closed H+ and that
for all a > 0 we have f(t) = O(e−at) for t ∈ R+, t→ ∞. Then, for all
b > 0 the function
(41.18) e−bzf(z)

is unbounded in the closed H+.

Proof. Assume that for some b > 0 we had |e−bzf(z)| < M in the closed
RHP. Then, the function

(41.19) ψ(z) =
e−bzf(z)

(z + 1)2

satisfies the assumptions of Theorem 41.5. But then ψ(z) = LL−1ψ(z)
satisfies the assumptions of Corollary (41.4) and ψ ≡ 0.

Let α > 2.
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Corollary 41.7. Assume f ̸≡ 0 is analytic in the closed sector S =
{z : 2| arg z| ⩽ π/α}, α > 1

2
and that f(t) ⩽ Ce−t

β with β > α for
t ∈ R+. Then for any β′ < β there exists a subsequence zn ∈ S such
that

(41.20)
∣∣∣f(zn)e−zβ′n

∣∣∣→ ∞ as n→ ∞

Proof. This follows from Theorem 41.6 by simple changes of variables.

Exercise 41.8. * Carry out the details of the preceding proof.

42. Elliptic functions

This material is based on [3] and [11], with some simplifications and
additions.

Elliptic functions are doubly periodic function, and play an impor-
tant role in analysis, algebra, and number theory. We have already
encountered an example of an elliptic function, sn, in §36.1.

42.1. The period module. We have already established (see §29.1)
that, for a function f to have two distinct periods ω1 and ω2, we must
have ω1/ω2 /∈ R. If ω1 and ω2 are periods of f , so is, as you can check,
any element of Λ = Λω1,ω2 , and this lattice is called the period module
of f .

We will only analyze doubly periodic functions which are meromor-
phic.

42.2. General properties of elliptic functions. In general, we will
not necessarily assume that Λ contains all the periods of f . The equiva-
lence relation z1 = z2 mod Λ means, naturally, that z1−z2 ∈ Λ. Since
the values of f only depend on congruence classes, we can regard it as a
function defined on these congruence classes. One way to do that is to
restrict f to a parallelogram Pa with vertices a, a+ω1, a+ω2, a+ω1+ω2

for some a. To represent all the values of f , we need to include part
of the boundary of the parallelogram in Pa, for instance, two adjacent
sides. The exact choice of a is immaterial, but it is convenient to choose
an a such that f has no poles on the boundary.

Theorem 42.9. An elliptic function without poles is a constant.

Proof. Such a function is entire and, by double periodicity, bounded.
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By definition, poles of an analytic function are isolated, and thus
there are only finitely many in a fundamental parallelogram. When
we count poles or zeros of elliptic functions, we only count those in a
fundamental parallelogram.

Theorem 42.10. The sum of the residues of an elliptic function is
zero.

Proof. We choose as discussed a fundamental parallelogram Pa such
that no poles lie on ∂Pa. The sum of the residues is given by

(42.21) 1

2πi

∫
∂Pa

f(s)ds

This integral is zero since the integrals on opposite sides cancel each-
other.

Theorem 42.11. If f is a non-constant elliptic function, then the
number of poles equals the number of zeros of f .

Proof. The function g = f ′/f is also meromorphic and doubly periodic,
with poles of residue −1 for each pole of f and +1 for each zero. Now
Theorem 42.11 follows from Theorem 42.10.

Note 42.12. The three theorems above are due to Liouville.

Corollary 42.13. Any value of f is assumed equally many times.

Proof. If c ∈ C, then f − c is elliptic, and has the same poles as f .

Theorem 42.14. Let a1, ..., an be the zeros of the elliptic function f and
b1, ..., bn its poles in the period parallelogram. Then

∑n
i=1 ai =

∑n
i=1 bi

mod Λ.

Proof. Take a parallelogram as in Theorem 42.10 and note that

(42.22)
n∑
i=1

ai −
n∑
i=1

bi =
1

2πi

∫
∂Pa

sf ′(s)

f(s)
ds

Note also that the values of s, and thus of the integrand, on opposite
sides of the parallelogram differ by the corresponding period, ωi of f ,
yielding
(42.23)
1

2πi

(∫ a+ω1

a

+

∫ a+ω2

a+ω1+ω2

)
sf ′(s)

f(s)
ds = − ω2

2πi

∫ a+ω1

a

f ′(s)

f(s)
ds = − ω2

2πi
N1
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where N1, an integer, is the winding number of 0 w.r.t. the closed curve
f([a, a+ ω1]). Repeating with the other sides, we see that

(42.24)
n∑
i=1

ai −
n∑
i=1

bi = n1ω1 + n2ω2, for some n1, n2 ∈ Z

42.3. The Weierstrass ellipic functions. The starting point of the
Weierstrass theory are elliptic functions with one double pole per par-
allelogram, that we convene to place at the origin. Since multiplication
by a constant does not change the theory of such functions, we choose
the singular part to be just z−2. The function f must be even. In-
deed, f(z)− f(−z) is elliptic without poles, thus a constant, and since
f(ω1/2) = f(−ω1/2) the constant is zero. Since adding a constant to f
is also irrelevant, we choose it so that the constant term in the Laurent
expansion is zero. With this choice, we have f = ℘, the Weierstrass
elliptic function:

(42.25) ℘(z) = z−2 +
∑
k⩾1

akz
2k

However, all of the above is contingent on the existence of such a func-
tion which we must prove:

Theorem 42.15. The function

(42.26) ℘(z) =
1

z2
+

∑
0̸=ω∈Λω1,ω2

(
1

(z − ω)2
− 1

ω2

)
is doubly periodic and has a Laurent expansion of the form (42.25) at
the origin.

Proof. Until we finish the proof, we write f(z) for the sum on the right
side of (42.26). Let us first check convergence of the sum on compact
sets away from Λ. We note that |n1ω1 + n2ω2| = |ω1||n1 + n2τ |. Since
τ /∈ R, for fixed z and large |n1| + |n2| we have, for some constants
C ′, C

(42.27)
∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ ⩽ C ′|z|
|ω|3

⩽ C|z|
(n2

1 + n2
2)

3/2

Uniform and absolute convergence now follows from the integral test
since ∫

r⩾R

∫ 2π

0

1

r3
rdrdϕ
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converges. Next we check periodicity. Due to the correction terms
−ω−2 needed to ensure convergence, it is tedious to check this directly.
Instead, we can differentiate term by term in (42.26) and get

(42.28) f ′(z) = −2
∑
ω∈Λ

1

(z − ω)3

Clearly f ′ is doubly periodic; it follows that f(z + ω1)− f(z) = c1 and
f(z + ω2) − f(z) = c2 for some constants c1 and c2. Recall that f is
even. Because of that, choosing z1 = −ω1/2 and z2 = −ω2/2 we see
that c1 = c2 = 0. It is easy to check that the Laurent expansion at 0
of f is of the form (42.25).

42.3.1. The Weierstrass zeta function. Since ℘ has zero residues, its
antiderivative is also a meromorphic function. We choose the anti-
derivative −ζ(z) which is odd. Explicitly,

(42.29) ζ(z) =
1

z
+
∑
ω ̸=0

(
1

z − ω
+

1

ω
+

z

ω2

)
The Maclaurin series in z of the term in parenthesis, equal to the
expansion in ω−1 as ω → ∞, is

(42.30) 1

z − ω
+

1

ω
+

z

ω2
= −ω−1

∑
k⩾2

(z/ω)k

from which convergence and parity follow. Summing over periods we
get

(42.31) ζ(z) =
1

z
−
∑
k⩾2

Gkz
2k−1

where

(42.32) Gk =
∑
ω ̸=0

1

ω2k

Since ℘ is doubly periodic, we must have ζ(z+ωi)−ζ(z) = ηi, i = 1, 2,
where ηi are constants. Since ζ has one simple pole of residue one per
parallelogram, we have

(42.33) 1

2πi

∫
∂Pa

ζ(s)ds = 2πi

By adding the contributions of the opposite sides of the parallelogram,
using the relation ζ(z+ωi)− ζ(z) = ηi and comparing with (42.33) we
get Legendre’s relation
(42.34) η1ω2 − η2ω1 = 2πi
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42.3.2. The differential equation of ℘. Using the definition −ζ ′ = ℘
and (42.31) (or simply the definition of ℘) we get

(42.35) ℘(z) =
1

z2
+

∞∑
k=2

(2k − 1)Gkz
2k−2

From here, a calculation shows that the singular part of the combina-
tion f = (℘′)2 − 4℘3 + 60G2℘ vanishes. Since f is a doubly periodic
function, it must be a constant, equal to f(0) which the same calcula-
tion shows it equals −140G3. Writing +60G2 = g2 and 140G3 = g3 we
get the separable ODE
(42.36) ℘′(z)2 = 4℘3 − g2℘− g3

with solution

(42.37) z − z0 =

∫ ℘(z)

℘(z0)

ds√
4s3 − g2s− g3

along a path which avoids the zeros of the denominator.
We note that the roots of the cubic are distinct. We can see this in

two ways. One is to note that the integral is elementary if two or three
roots coincide. If three coincide, we get ℘(s) = 4(s + C)−2 + 1 whose
inverse is not periodic, and if only two coincide, we get an elementary
simply periodic function. But there is a more consequential way to
show and use that.

42.4. The modular function λ. Let e1, e2, e3 be the roots of ℘ and
write its differential equation in the form
(42.38) ℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

We see that the roots of ℘ are zeros of ℘′. Since ℘ is periodic and
even, for any period ω of ℘ we have ℘(ω − z) = ℘(z) which implies
℘′(ω − z) = −℘′(z) implying that ℘′(ω/2) = 0. If we take for ω the
values ω1, ω2, ω1 + ω2 we get the three roots of ℘′ which lie in the
fundamental parallelogram and are distinct,
(42.39) e1 = ℘(ω1/2), e2 = ℘(ω2/2), e3 = ℘(1

2
(ω1 + ω2))

If, say, e1 = e2 then we would have ℘(ω1/2) = ℘(ω2/2); since ω1/2
is distinct from ω2/2 and ℘ takes each value exactly twice, this is a
contradiction (otherwise (℘′)2 cannot be of order 6).

Calculating e1 from (42.26), we see that the ei are homogeneous
of degree −2 in ω1, ω2, that is, replacing ω1, ω2 by λω1, λω2 we have
ei 7→ λ−2ei. Based on this, we conclude that the λ function,

(42.40) λ(τ) =
e3 − e2
e1 − e2
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depends only on τ = ω2/ω1 as indicated.
We next note, again from (42.26) that

(42.41) ω2
1e1 = 4 +

∑
ω ̸=0

(
1

(1
2
− n1 − n2τ)2

− 1

(n1 + n2τ)2

)
which is analytic for Im τ > 0 (and also for Im τ < 0). The same
conclusion is reached for e2, e3. Since e1 ̸= e2 and e2 ̸= e3, λ is analytic
in the UHP and does not take the values 0 or 1.

42.5. The action of the PSL(2,Z) on λ. Recall that PSL(2,Z) is
an automorphism of Λ, and since ℘ is periodic with any ω ∈ Λ, if we
take

M =

(
a b
c d

)
∈ PSL(2,Z)

and change basis to

(42.42)
(
ω′
2

ω′
1

)
=M

(
ω2

ω1

)
the roots of ℘ cannot change; they can only be permuted. Recall also
that PSL(2,Z) is generated by M1 =

(
1 1
0 1

)
, M2 =

(
0 −1
1 0

)
corre-

sponding to τ 7→ τ + 1 and τ 7→ −1/τ resp. Choosing M = M1 in
(42.42) has the effect 1

2
ω′
2 = 1

2
(ω1 + ω2) and ω′

1 = ω1. This means e2
is fixed and and e3 and e1 are interchanged. Choosing M = M2 we
get ω′

2/2 = −ω1/2 and ω′
1/2 = −ω2/2, in which case e1 and e2 are

interchanged and e3 is fixed. It follows that λ satisfies the functional
equations

(42.43) λ(τ + 1) =
λ(τ)

λ(τ)− 1
; λ(−1/τ) = 1− λ(τ)

Both transformations on the right side are involutions. It follows that
λ(τ + 2) = λ(τ). In turn, this implies that λ is an analytic function of
eiπτ .

Now, if the matrix M ∈ PL(2,Z) is of the form

(42.44) M :=

(
a b
c d

)
=

(
1 0
0 1

)
mod 2

then
λ

(
aτ + b

cτ + d

)
= λ(τ)

This is simply because ω′
1/2 = ω1/2 + ω̃1 and ω′

2/2 = ω2/2 + ω̃2 where
ω̃1,2 ∈ Λ. Hence, if M2 ≡ M2 mod 2, then the modular transforma-
tions induced on λ by M1 and M2 are identical.
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The subgroup of PSL(2,Z) defined by the equivalence mod 2 is called
the congruence subgroup mod 2.

Exercise 42.16. Using (42.43), check that

(42.45)

λ

(
aτ + b

cτ + d

)
=



λ(τ), (a, b, c, d) ≡ (1, 0, 0, 1) (mod 2)

1− λ(τ), (a, b, c, d) ≡ (0, 1, 1, 0) (mod 2)
1

λ(τ)
, (a, b, c, d) ≡ (1, 0, 1, 1) (mod 2)

1
1−λ(τ) , (a, b, c, d) ≡ (0, 1, 1, 1) (mod 2)
λ(τ)−1
λ(τ)

, (a, b, c, d) ≡ (1, 1, 1, 0) (mod 2)
λ(τ)
λ(τ)−1

, (a, b, c, d) ≡ (1, 1, 0, 1) (mod 2)

;

τ ∈ H and

(
a b
c d

)
∈ SL(2,Z)

We note that the transformations above generate the so-called anhar-
monic group: {

λ, 1− λ,
1

λ
,

1

1− λ

λ− 1

λ
,

λ

λ− 1

}
Recall that by the definition of e1, e2, e3 and the double periodicity of ℘
any transformation as in (42.45) can only permute the ei. The table
above can also be obtained based on this observation.

42.6. The conformal mapping of λ. We can without loss of gener-
ality normalize ω1 = 1, ω2 = τ . In this case we have

e3 − e2 =
∑
m,n∈Z

[
1

(m− 1
2
+ (n+ 1

2
)τ)2

− 1

(m+ (n− 1
2
)τ)2

]
(42.46)

e1 − e2 =
∑
m,n∈Z

[
1

(m− 1
2
+ nτ)2

− 1

(m+ (n− 1
2
)τ)2

]
As discussed, these functions are analytic in the UHP. Note also that
the sums are even, implying that both of them are real on iR+. Propo-
sition 37.1 gives

π2

sin2 πz
=
∑
m∈Z

1

(z −m)2
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and we see that

e3 − e2 = π2
∑
n∈Z

(
1

cos2 π(n− 1
2
)τ

− 1

sin2 π(n− 1
2
)τ

)
(42.47)

e1 − e2 = π2
∑
n∈Z

(
1

cos2 πnτ
− 1

sin2 π(n− 1
2
)τ

)
which converge uniformly in {z : Im z ⩾ δ > 0}. This implies that λ is
real on iR+.

Theorem 42.17. The function λ is a conformal map between the do-
main Ω bounded by the lines i[0,∞), the circle of radius 1

2
centered at

1
2
and the line 1 + i[0,∞) and the UHP.

Proof. We first follow the mapping of the boundary of Ω and then
apply the argument principle. Dominated convergence shows that, as
Im τ → ∞, e3 − e2 → 0 and e1 − e2 → π2 (the latter due to the term
with n = 0). We have λ(τ) → 0 as Im τ → ∞ uniformly in Re τ . More
precisely, from (42.47) we see that

(42.48) e3 − e2 = 2π2

[
4eπiτ

(1 + eπiτ )2
+

4eπiτ

(1− eπiτ )2

]
(1 + h(τ))

where h→ 0 as Im τ → ∞. Hence
(42.49) λ(τ)e−iπτ → 16 as Im τ → +∞
From (42.43), λ(−1/τ) = 1− λ(τ), we see that λ → 1 as τ → 0 along
iR+; hence 0 is mapped to 1.

The map τ
τ+1

∈ Aut(Hu) and takes i[0,∞) to the half circle in Fig.
31.

We have λ( τ
τ+1

) = 1
λ(τ)

. This implies that 0 is mapped to 1, as before
and, as τ → i∞ we have τ

τ+1
→ 1, hence 1 is mapped to +∞. Finally,

we have

(42.50) λ(1 + it) =
λ(it)

λ(it)− 1
= − 1

λ( i
t
)

This means that 1 + i0+ is mapped to −∞ and 1 + i∞ is mapped to
0. Hence the boundary of Ω is mapped to R.

Now we use the argument principle and Note 18.74. By (42.50) λ
takes any small value only once. Indeed, we cannot have λ→ 0 inside
Ω since λ ≠ 0. Near infinity λ is clearly injective, and the only point
on ∂Ω where 0 is taken is at ∞. Hence, by Note 18.74 every value
in the UHP is taken exactly once. The same reasoning shows that λ
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0 1

Ω

Figure 31. The domain Ω

takes no value in the LHP: Indeed, small values can only be taken if
Im τ → +∞ but there λ is in the UHP.

43. The uniformization theorem

Theorem 43.18. Every simply connected Riemann surface M is con-
formally equivalent to one of three Riemann surfaces: D, C, or Ĉ.

(see [8]). Recall the hyperbolic plane. Since the UHP is conformally
equivalent through a Cayley transform to D, D also has a metric of
constant negative curvature. The conformal map in Theorem 43.18
induces a constant curvature metric on any simply connected Riemann
surface M .

If M is compact, then its universal cover is D iff it is a hyperbolic
surface of genus greater than 1 with non-abelian fundamental group;
its universal cover is C iff it has genus 1: the complex tori and the
elliptic curves with fundamental group Z2; the universal cover is the
Riemann sphere iff M has genus zero, meaning M is the Riemann
sphere itself, with trivial fundamental group. Recall also that the only



145

functions analytic on Ĉ are rational functions. For a rational function
to be injective, it has to be a LFT, and these belong to Aut(Ĉ).

If M is not simply connected , we have the following generalization
(see [5], with a proof in [8])

Theorem 43.19. Let M be a non-simply connected Riemann surface.
Then, the following is a complete list of isomorphic classes:

(A) M is conformally isomorphic to the punctured plane, or compact
and of genus 1, and isomorphic to C/Λ1,τ , with Im τ > 0.

(B) M is conformally isomorphic to D/G where G ∈ Aut(D) acts
freely and properly discontinuously on D and apart from the identity
no LFT in G has fixed points in D; furthermore, G is isomorphic to
π1(M) as groups.

Exercise 43.20 (Ahlfors). Show that the Klein j−invariant

j(τ) = 256
(1− x)3

x2

where x = λ(1− λ) is invariant under the modular group.

43.1. An example: M , the universal cover of Ĉ\{0, 1,∞}. We use
the function λ to illustrate the uniformization of this Riemann surface
on the upper half plane; of course, composition with a Cayley transform
achieves uniformization on D. The fundamental group π1(M) is the
free group with two generators, a0, a1. We think of M in terms of
equivalence classes of curves over C \ {0, 1}, winding around 0, 1 in the
way prescribed by the associated word, e.g. a0a1a−1

0 a1, ...

Exercise 43.21. Show that a Schwarz reflection of a line in a circle is
a line or a circle. Show that reflecting Ω successively across boundary
arcs as shown in Fig. 33 covers the UHP.

First we note that each domain obtained by Schwarz reflections as
shown in Fig. 33 is mapped by λ conformally, alternatively, to the
UHP and LHP. Since the 1+ iR+ is mapped to (−∞, 0), it means that
a reflection of Ω itself across its right boundary is a reflection of the
UHP across the segment (−∞, 0). Likewise, a reflection across the left
boundary corresponds to reflecting the UHP across (0, 1) and reflection
across the circle is a reflection of the UHP across (1,∞). Clearly,
all these are analytic arcs, and it means that ψ = λ−1 has analytic
continuation through these arcs. Continuing all these reflections, we
see that ψ has analytic continuation along any curve in the universal
cover, and has singularities only at {0, 1,∞}. Hence:

Proposition 43.22. ψ has analytic continuation on M .
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Figure 32. Successive reflections

Furthermore, the word abc... corresponds uniquely to a set of succes-
sive reflections in the intervals (−∞, 0), (0, 1) and (1,∞). Indeed, we
see that two different words abcd, ... and abcD... correspond to reflec-
tions across distinct arcs in the figure (here the difference is in the fact
that d and D correspond to reflections across different arcs). Hence,
two different points on M are mapped by ψ to different points in the
upper half plane. Using the result in Exercise 43.21 we see that
Proposition 43.23. ψ a conformal map from M to the UHP.
Exercise 43.24. Clearly, λ is conformal from the UHP to M . Show
that R is a natural boundary for λ. Use Exercises 42.16 and 29.21 to
give a different proof of this fact.

44. The little Picard theorem

Theorem 44.25 (Little Picard theorem). If f : C → C is entire and
there are two points a ̸= b which are not in the range of f , then f is a
constant.

Points that are not in the range of f are called lacunary values.
Proof. Assume that f is entire and has two lacunary values. Without
loss of generality, we can assume that these are 0 and 1. Let h = C◦ψ◦f
where C is the Cayley transform and ψ is as in Proposition 43.23. Since
the only singularities of ψ are at 0 and 1, ψ takesM to the UHP and C
is analytic in the UHP, h is entire with values in D, meaning h, hence
f are constants.
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Figure 33. A winding curve in Ĉ \ {0, 1,∞} becomes
an open curve in the UHP.

Theorem 44.26 (Montel’s fundamental normality test). Let D be a
domain in C, let α and β be two distinct complex numbers, and let F
be the set of holomorphic functions in D whose range omits the two
values α and β. Then F is a normal family in Ĉ.

A stronger version, using the uniformization theorem is ([5])

Theorem 44.27. Let M be a Riemann surface and let F be the set of
holomorphic functions on M with values in Ĉ whose range omits the
three values α β and γ. Then F is a normal family in Ĉ.

Proof of Theorem 44.26. We first arrange the following: α = 0, β = 1,
and, since normality is a local property, that D = D.

With ψ = λ−1, let η = C ◦ ψ where C is the Cayley transform;
the function η is a conformal map from M , the universal cover of Ĉ \
{0, 1,∞} to D.

Let f ∈ F and a ∈ D and choose any branch of η(f(a)). We note,
as in the uniformization proof, that for that branch, f̃ = η ◦ f defined
by analytic continuation from a to D is analytic in D.

To construct a convergent subsequence of a given sequence {fn ∈
F}n∈N we first note that for any a ∈ D, there is a subsequence of
{fn(a)} which converges in Ĉ, which, by passing to this subsequence,
we can assume is {fn(a)}n∈N itself. If for all a and any subsequence
the limit is infinity, then fn converges to the constant ∞ ∈ C proving
the result. Otherwise, there is a point, say a = 0 s.t. a subsequence of
{fn(0)}n∈N converges to ℓ ∈ C. We assume first that ℓ /∈ {0, 1}.
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Note now that f̃n, n ∈ N have range in D, hence they are a normal
family and by Theorem 31.7, they have a convergent subsequence, that
by passing again to a subsequence, we can assume is {f̃n}n∈N; let the
limit be g. If g is a constant, then g = η(ℓ) ∈ D. Otherwise, since
ran(g) ⊂ D, by the open mapping theorem, ran(g) ⊂ D. Now we note
that η−1 ◦ g is well-defined, and that limn→∞ fn = limn→∞ η−1f̃n =
η−1 ◦ g, which finishes the proof it ℓ /∈ {0, 1}.

The remaining case is ℓ = 1 since, if ℓ = 0, then we can take the
family 1 − f, f ∈ F . Since fn ̸= 0, there is a holomorphic branch of
the square root such that hn =

√
fn → −1. A holomorphic branch of

the square root cannot take both values 1 and −1, so hn also avoid
1 and −1. For hn the proof above applies to extract a convergent
subsequence, which by squaring gives the desired subsequence of fn.

Note 44.28. The fundamental normality test plays an important role
in complex dynamics, see [5].

We are now going to prove the celebrated Great Picard’s theorem:

Theorem 44.29. If an analytic function f has an essential singularity
at a point z0, then on any punctured neighborhood of z0, f takes on
all possible complex values, with at most a single exception, infinitely
often.

Proof. Without loss of generality, we take z0 = 0, assume that f is
analytic in D∗ = D \ {0} and assume, to get a contradiction, that f
omits the values 0 and 1. Let {zn}n∈N be any sequence converging
to 0 and fn(z) = f(znz). By Theorem 44.26 the family {fn}n∈N is
normal. Hence we can extract a subsequence {fnk

}k∈N convergent on
compact sets in Dr \ {0} to, say g which is analytic in Dr \ {0} with
values in Ĉ. Assume that g is not the constant ∞ ∈ Ĉ. Note that,
for s in the annulus between the circle of radius 12|znk

| and the circle
of radius 1

4
|zn|, we have f(s) − g(s′) → 0 as n → ∞ and s′ is in the

annulus between the circle of radius 1
2
and the circle of radius 1

4
. Hence

f is bounded along any sequence converging to zero, contradiction. If
g = ∞ then 1/f has a removable singularity at 0, thus f has a pole at
zero, again a contradiction.

45. Riemann-Hilbert problems: an introduction

An impressive number of problems coming from integrable world
can be reduced to so-called Riemann Hilbert problems, and for many
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of them the only known way to get a closed form solution is via the
associated Riemann-Hilbert problem.

Problems which can be solved with R-H techniques include
(1) integrable models such as the transcendental Painlevé equations

e.g. y′′ = 6y2 + x (PI) and many others;
(2) integrable PDEs s.a. nonlinear initial value problem for the KdV

(Korteweg–deVries) equation
(45.1)
ut+uxxx+uux = 0; u(x, 0) = u0(x), u→ 0 as |x| → ∞ (x ∈ R, t ∈ R+)

(3) inverse scattering problems: find, from the scattering data the
potential q(x) in the time–independent Schrödinger equation

(45.2) − ψxx + (k2 + q(x))ψ = 0

(4) questions in orthogonal polynomials, random matrices, and com-
binatorial probability;

(5) integral equations of the type

(45.3) f(t) +

∫ ∞

0

α(t− t′)f(t′)dt′ = β(t)

(under suitable integrability conditions);
(6) finding the inverse Radon transform, a transform which is mea-

sured in tomography.

45.1. A simple Riemann-Hilbert problem. Perhaps the simplest
R-H problem is: given a simple smooth contour C and f(t) a suitably
regular function on C, find analytic functions Φ+,Φ−, defined to the
left and right of C such that the limits of Φ± on C exist and satisfy
(45.4) Φ+(z)− Φ−(z) = f(z)

Note 45.1. Φ is clearly determined up to an entire function. To hope
for a unique solution one needs to impose more conditions on Φ, such
as behavior at infinity and other special points.

46. Cauchy type integrals

We recall that a function is Hölder continuous of order β on a smooth
curve C if

(46.1) ∃ β > 0 and C > 0 s.t. ∀x, y ∈ C, |f(x)− f(y)| ⩽ C|x− y|β

The condition implies continuity if β > 0 and it is nontrivial if β ⩽ 1
(if β > 1 then df/ds = 0).
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Figure 34. Analyticity of Φ when ϕ is analytic in a
neighborhood of C.

Let C for now be a compact smooth curve and ϕ be Hölder continuous
on C. Then the function

(46.2) Φ(z) =
1

2πi

∫
C

ϕ(s)

s− z
ds

is manifestly analytic for z /∈ C (you can check this by Morera’s theorem
using Fubini, and in a good number of other ways).

Revisit §10.2 and Definition 32.10.

46.1. Asymptotic behavior of Φ(z) for large z.

Exercise 46.1. Assume C is compact. Show that Φ(z) is analytic at
infinity in z and that

(46.3) Φ(z) = −
(

1

2πi

∫
C
ϕ(s)ds

)
1

z
(1 + g(1/z)) as z → ∞

as where g(1/z) → 0 as z → ∞.

46.2. Regularity and singularities. Let us first take a simple ex-
ample, in which ϕ is analytic in a neighborhood N of (0, 1) (note that
this does not exclude multi-valued functions singular at zero and one
s.a. ln z(1− z)).
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Then Φ has analytic continuation from Hu and Hl through C \{ci} in
N , where ci are endpoints of C (if any). (These analytic continuations
are in general different.) Indeed, to perform analytic continuation in
z ∈ Hu∪(N \{ci}), we can first deform the contour as shown in deform
as shown in Fig. 34. To calculate the values of Φ on C, we can use
Exercise 10.49 to see that A(a) = ±1

2
ϕ(a) + 1

2πi
PV

∫ 1

0
ϕ(s)(s− t)−1ds.

The same, interestingly, holds more generally:

Theorem 46.2 (Plemelj’s formulas). Assume ϕ is Hölder continuous
of exponent β on the simple smooth curve C. let t be an interior point
of C. Then,

(i)

(46.4) PV

∫
ϕ(s)

s− t
ds

(cf. Definition 10.50) exists.
(ii) Let {zn}n∈N be a sequence approaching t from the left (right). If

C is not bounded, assume also that ϕ ∈ L1(C). Then, with the ± sign
being + for left limit and − for right limit,
(46.5) lim

n→∞
Φ(zn) = Φ±(t)

where

(46.6) Φ±(t) = ±1

2
ϕ(t) +

1

2πi
PV

∫
ϕ(s)

s− t
ds

and

Note 46.3. (i) The properties in the theorem are local; it is enough to
prove them for compact pieces of C.

(ii) A similar statement can be obviously made when t is approached
along a curve, since all limits along subsequences coincide.

We leave it as an exercise to extend the proof from the case when C
is a piece of R, say [a, b] with t = 0 ∈ (a, b), approached from above, to
a more general smooth bounded curve (open or not): parametrize the
curve.

Proof. We can assume without loss of generality that 0 ∈ [a, b], t = 0
and |a| > |b|.

(i) We write ϕ(s) = (ϕ(s) − ϕ(0)) + ϕ(0) and show that both PV
integrals exist. By symmetry,

(46.7) PV

∫ b

−b
s−1ϕ(0)ds = 0
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implying

(46.8) PV

∫ b

a

ϕ(0)

s
ds =

∫ −b

a

ϕ(0)

s
ds

We then note that |ϕ(s) − ϕ(0)|/|s| = (|ϕ(s) − ϕ(0)|s|−β)|s|β−1 ∈
L1([a, b]), hence

(46.9) PV

∫ b

a

ϕ(s)− ϕ(0)

s
ds =

∫ b

a

ϕ(s)− ϕ(0)

s
ds

(ii) Take ε > 0 small enough, n large enough, and 0 < c ∈ (a, b),
change variable to u = s−xn and break the interval of integration into
[a− xn,−c], [−c, c] and [c, b− xn].

(46.10) lim
n→∞

(∫ −c

a−xn
+

∫ b−xn

c

)
ϕ(u+ xn)du

u− iyn
=

(∫ −c

a

+

∫ b

c

)
ϕ(u)du

u

We decompose the integral on [−c, c] into

(46.11)
∫ c

−c

ϕ(u+ xn)− ϕ(xn)

|u|β
|u|βdu
u− iyn

+ ϕ(xn)

∫
C

du

u

where in the last integral we homotopically deformed the contour into
a half-circle of radius c in the LHP centered at zero. For all n, the
integrand in the first integral is bounded in absolute value, up to a
constant, by |u|β−1 ∈ L1([−c, c]) while the second integral evaluates to
πi. The result now follows by using dominated convergence and the
symmetry argument in (i).

The following result follows immediately.

Theorem 46.4 (Existence). Under the conditions of Theorem 46.2,
the function in (46.2) solves the Riemann-Hilbert problem in §45.1.

Note 46.5. The Hölder condition can be replaced with the weaker Dini
condition, with the same proof.

Note 46.6. (a) The function defined by the Cauchy type integral (46.2)
is called sectionally analytic. With the convention about the sides
of the curve mentioned before, functions that are boundary values of
Cauchy type integrals are sometimes denoted ⊕ and ⊖ functions. re-
spectively.

(b) Branch jumps of analytic functions are an essential ingredient in
Sato’s theory of hyperfunctions.

46.3. Examples.
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46.3.1. A very simple example. Find a function Φ analytic in C \ ∂D
such that along ∂D we have

(46.12) Φ+(t)− Φ−(t) = 1

Note that for this problem the set of analyticity of Φ is a union of two
disjoint domains. Since Φ is discontinuous across ∂D, we are dealing
with two separate analytic functions. Plemelj’s formula reads

(46.13) Φ(z) =
1

2πi

∫
∂D

1

s− z
ds

Clearly, if z ∈ D (which is to the left of ∂D oriented positively), we
have

(46.14) Φin(z) =
1

2πi

∫
∂D

1

s− z
ds = 1

Likewise, if z is outside D we have

(46.15) Φout(z) =
1

2πi

∫
∂D

1

s− z
ds = 0

Both Φin and Φout are analytic, but not analytic continuations of each-
other, so in this case our sectionally analytic function is really a pair of
distinct analytic functions. We leave the question of uniqueness to the
next subsection when the contour is open and which leads to a more
interesting discussion.

46.3.2. Another simple example. Find a function Φ analytic in C \
[−1, 1] such the upper and lower limits across [−1, 1] satisfy

(46.16) Φ+(z)− Φ−(z) = 1

46.3.3. A solution. According to Plemelj’s formulas a function satisfy-
ing (46.16) is given by

(46.17) Φ(z) =
1

2πi

∫ 1

−1

1

s− z
ds

This formula shows Φ is analytic on the universal cover of Ĉ \ {−1, 1}
(Φ is analytic at infinity). We get explicitly

(46.18) Φ(z) = − 1

2πi
(ln(z − 1)− ln(z + 1))

where the log is determined by the condition Φ(z) < 0 for z > 1. It is
useful to check directly on (46.18) that Φ+ − Φ− = 1 on (−1, 1)
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z = −1 z = 1

Figure 35. Contour used for applying Morera’s theorem.

46.3.4. Calculating principal value integrals. Plemelj’s formulas help us
calculate principal values integrals as well, sometimes in a simpler way.
Let C be a simple smooth closed curve and assume that f(z) is analytic
in Int(C) and Hölder continuous in the closure of Int(C). Then,

(46.19) 1

2πi
PV

∫
C

f(s)

s− t
ds =

1

2
f(t)

a “limiting case” of a Cauchy formula.
46.3.5. Uniqueness issues. What obvious freedoms do we have in solv-
ing the problem in §46.3.2? As mentioned, we can add to Φ any en-
tire function. More generally, we can add any function analytic in
C \ {−1, 1} (note that this means single-valued). The following theo-
rem shows that these are all the freedoms.
Theorem 46.7 (Uniqueness). Consider the problem in §45.1 with the
following further conditions:

(1) Φ(z) → 0 as |z| → ∞;

(2) (1∓ z)Φ(z) → 0 as z → ±1

Then the solution is unique, namely (46.2).
Proof. The Φ in (46.2) satisfies this condition, as it is easy to verify.
Assume Φ1 is another solution with the same properties. Then f =
Φ − Φ1 is analytic in C \ [−1, 1] and continuous on (−1, 1), entailing
continuity in C \ {−1, 1}. Show that the contour integral of Φ−Φ1 on
a circle of radius ε around 1 and −1 is zero, hence it vanishes on any
closed contour in C (see Fig. 35) implying, by Morera, that Φ− Φ1 is
entire. Since limz→∞(Φ(z)− Φ1(z)) = 0, Φ− Φ1 = 0.

Exercise 46.8. Check using Plemelj’s formulas that any simple smooth
curve C in C is the natural boundary of a large class analytic of func-
tions, and furthermore the limit of such functions on C can be as smooth
as we want, short of analytic. Use the Riemann mapping theorem to
show that any simple Jordan curve is a natural boundary of a large
class of analytic functions.
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We see from

46.3.6. Degree of a function at infinity. By definition Φ has degree k
at infinity if for some C ̸= 0 we have

(46.20) Φ(z) = Czk +O(zk−1) as z → ∞

The function Φ has finite degree at infinity if Φ = o(zm) for some m.

47. More general scalar R-H problems

47.1. Scalar homogeneous R-H problems.

47.1.1. Scalar homogeneous R-H problems. This is a problem of the
type

(47.1) Φ+ = gΦ− on C

where C is a smooth simple closed contour, g nonzero on C and satis-
fying a Hölder condition on C. We are looking for solutions of degree
m at infinity.
Solution to (47.1) First we note that if Φ is a solution and H is

entire, then by homogeneity ΦH is also a solution.
Assume that the index of g w.r.t. C is k. Without loss of generality

we assume 0 ∈Int(C). We can rewrite the problem as

(47.2) Φ+(t) = (t−kg(t))(tkΦ−) on C

Formally for now, taking the log of both sides, we get

(47.3) lnΦ+(t) = ln(t−kg(t)) + ln(tkΦ−) on C

or finally, with obvious notation,

(47.4) Γ+(t) = f(t) + Γ−(t) on C

The reason we formed the combination t−kg(t), where we choose k to be
the index of ϕ w.r.t C, is to ensure Hölder continuity of f . Otherwise,
since arg ϕ changes by 2kπ upon traversing C, f would have a jump
discontinuity somewhere on C.

A solution to (47.4) is given by Plemelj’s formulas:

(47.5) Γ(z) =
1

2πi

∫
C

f(s)

s− z
ds

The exterior of C corresponds to the negative sign and we have Γ− =
O(z−1) for large z, and thus exp(Γ−) = zkΦ− = 1 + o(1) for large z,
hence Φ− = z−k + o(z−k). We finally get a solution of degree m at
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infinity by multiplying by Pm+k, a polynomial of degree m + k. The
solution of (47.1) is then

(47.6) Φ =

{
Pm+k(z) exp(Γ(z)), z inside C
z−kPm+k(z) exp(Γ(z)), z outside C

We will not, for reasons of space, discuss uniqueness issues here.

47.1.2. Ingomogeneous R-H problems. These are equations of the form
(47.7) Φ+ = gΦ− + f

Where f and g are Hölder continuous. These can be brought to
Plemelj’s formulas in the following way. We first solve the homoge-
neous problem
(47.8) Ψ+ = gΨ−

which we dealt with in §47.1.1, and look for a solution of (47.7) in the
form Φ = XΨ. We get
(47.9)
X+Ψ+ = gX−Ψ− + f ⇒ X−gΨ+ = X−gΨ− + f ⇒ Ψ+ −Ψ− =

f

gX−

which is of the form we already solved.

47.2. Applications.

47.2.1. Ingomogeneous singular integral equations. These are equations
of the form

(47.10) a(t)ϕ(t) + b(t)PV

∫
C

ϕ(s)

s− z
ds = c(t)

with a, b, c Hölder continuous and the further condition iπa(t)± b(t) ̸=
0. We attempt to write, guided by Plemelj’s formulas
(47.11) ϕ(t) = Φ+(t)− Φ−(t)

and

(47.12) Φ(z) =
1

2πi

∫
ϕ(s)

s− z
ds

and then

(47.13) PV

∫
C

ϕ(s)

s− t
ds = iπ

[
Φ+(t) + Φ−(t)

]
where, of course ϕ is still unknown. The equation becomes

(47.14) a(t)
[
Φ+(t)− Φ−(t)

]
+ b(t)iπ

[
Φ+(t) + Φ−(t)

]
= c(t)
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or
(47.15) Φ+(t)(a(t) + b(t)iπ) + Φ−(t)(b(t)iπ − a(t)) = c(t)

or, finally,

(47.16) Φ+(t) =
a(t)− b(t)iπ

a(t) + b(t)iπ
Φ−(t) +

c(t)

a(t) + b(t)iπ

which is of the form (47.7) which we addressed already. Care must be
taken that the chosen solution Φ is such that Φ++Φ− has the behavior
(46.3) at infinity. Then the substitution is a posteriori justified. We did
not discuss whether there are other solutions of the integral equation.
A complete discussion of this and related equations can be found in
[10].

We choose one of the applications in [1], the solution of the Dirichlet
problem for the Laplacian in the upper half plane, with condition f
on the boundary, R. The problem can be reformulated as a Riemann-
Hilbert problem of the form (47.16), see [1], but in this case, the solu-
tion is obtained easily from Plemelj’s formulas.

For this purpose we look for an analytic function in Hu generated by
u. As we know, this is
(47.17) Φ+ = u+ iv

where v is the harmonic conjugate of u, unique up to a constant. Now
note that the function

(47.18) Φ(z) =
1

πi

∫
R

f(s)

s− z
ds

is analytic in the upper half plane and, if f is Hölder continuous, then
by Plemelj’s formulas we have

(47.19) lim
z↓t∈R

Φ(z) = f(t) +
1

πi
PV

∫
R

f(s)

s− t
ds

In particular u = ReΦ is harmonic and has the limit f(x, y) as (x, y) →
(t, 0). Now, simply writing z = x+ iy and taking the real part we get
the solution in the Poisson kernel form,

(47.20) u(x, y) =
y

π

∫ ∞

−∞

f(τ)dτ

(τ − x)2 + y2

The condition that f is Hölder can be relaxed to mere continuity as
follows. To better adapt to the limit y → 0 we change variable to
t = x+ βy and obtain

(47.21) u(x, y) =
1

π

∫ ∞

−∞

f(x+ βy)

β2 + 1
dβ
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which, by dominated convergence, has f(x) as the limit when y → 0.

48. Asymptotic series

We have seen in the Schwarz-Christoffel section that the behavior of
analytic functions near a point of nonanalyticity can be given by a series
in noninteger powers of the distance to the singularity. The behavior
can be more complicated, containing exponentially small corrections,
logarithmic terms and so on. The series themselves may have zero
radius of convergence. It is not the purpose of this part of the course
to classify these behaviors, but it can be done for a fairly large class of
functions. Here we look how simple behaviors can be determined for
relatively simple functions.

Example 48.1. Consider the following integral related to the so–called
error function

F (z) = ez
−2

∫ z

0

s−2e−s
−2

ds

It is clear that the integral converges at the origin, if the origin is
approached through real values (see also the change of variable below).
Definition of F (z). We define the integral to z ∈ C as being taken on
a curve γ with γ′(0) > 0, and define F (0) = 0.

Check that this is a consistent definition and the resulting function is
analytic except at z = 0 (this is essentially the contents of Exercise 48.3
below.

What about the behavior at z = 0? It depends on the direction in
which 0 is approached! Let’s look more carefully. Replace z by 1/x,
make a corresponding change of variable in the integral and you are
led to

(48.1) E(x) = ex
2

∫ ∞

x

e−s
2

ds =:

√
π

2
ex

2erfc(x)

Let us take x (and thus z) real and integrate by parts m times

(48.2)

E(x) =
1

2x
− ex

2

2

∫ ∞

x

e−s
2

s2
ds =

1

2x
− 1

4x3
+

3ex
2

4

∫ ∞

x

e−s
2

s4
ds = ...

=
m−1∑
k=0

(−1)k

2
√
π

Γ(k + 1
2
)

x2k+1
+

(−1)mex
2
Γ(m+ 1

2
)

√
π

∫ ∞

x

e−s
2

s2m
ds
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On the other hand, we have, by L’Hospital

(48.3)
(∫ ∞

x

e−s
2

s2m
ds

)(
e−x

2

x2m+1

)−1

→ 1

2
as x→ ∞

and the last term in (48.2) is O(x−2m−1) as well. On the other hand it
is also clear that the series in (48.2) is alternating and thus

(48.4)
m−1∑
k=0

(−1)k

2
√
π

Γ(k + 1
2
)

x2k+1
⩽ E(x) ⩽

m∑
k=0

(−1)k

2
√
π

Γ(k + 1
2
)

x2k+1

if m is even.

Remark 48.2. Using (48.3) and Exercise 48.13 below we conclude that
F (z) has a Taylor series at zero,

(48.5) F̃ (z) =
∞∑
k=0

(−1)k

2
√
π
Γ(k +

1

2
)z2m+1

that F (z) is C∞ on R and analytic away from zero.

Exercise 48.3. ** Show that z = 0 is an isolated singularity of F (z).
Using Remark 48.2, show that F is unbounded as 0 is approached along
some directions in the complex plane.

Notes (1) It is not the Laurent series of f at 0 that we calculated!
Laurent series converge. Think carefully about this distinction and
why the positive index coefficients do not coincide.

(2) The rate of convergence of the Laurent series is slower as 0 is
approached, quickly becoming numerically useless. By contrast, the
precision gotten from (48.4) near zero is such that for z = 0.1 the error
in calculating f is of order 10−45 ! However, of course (48.4) is divergent
and it cannot be used to calculate exactly for any nontrivial value of z.

(3) We have illustrated here a simple method of evaluating the be-
havior of integrals, the method of integration by parts.

48.1. More general asymptotic series. Classical asymptotic anal-
ysis typically deals with the qualitative and quantitative description of
the behavior of a function close to a point, usually a singular point of
the function. This description is provided in the form of an asymp-
totic expansion. The expansion certainly depends on the point studied
and, as we have noted, often on the direction along which the point
is approached (in the case of several variables, it also depends on the
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relation between the variables as the point is approached). If the di-
rection matters, it is often convenient to change variables to place the
special point at infinity.
Asymptotic expansions are formal series12 of simpler functions fk,

f̃ =
∞∑
k=0

fk(t)(48.6)

in which each successive term is much smaller than its predecessors (one
variable is assumed for clarity). For instance if the limiting point is t0
approached from above along the real line this requirement is written

(48.7) fk+1(t) = o(fk(t)) or fk+1(t) ≪ fk(t) as t ↓ t0
denoting

lim
t→t+0

fk+1(t)/fk(t) = 0(48.8)

We will often use the variable x when the limiting point is +∞ and z
when the limiting point is zero. Simple examples are the Taylor series,
e.g.

sin z + e−
1
z ∼ z − z3

6
+ ... (z → 0+)

and the expansion in the Stirling formula

ln Γ(x) ∼ x lnx−x− 1

2
lnx+

1

2
ln(2π)+

∞∑
n=1

B2n

2n(2n− 1)x2n−1
, x→ +∞

where Bk are the Bernoulli numbers.
(The asymptotic expansions in the examples above are the formal

sums following the “∼” sign, the meaning of which will be explained
shortly.)

Examples of expansions that are not asymptotic expansions are

∞∑
k=0

xk

k!
(x→ +∞)

12That is, there are no convergence requirements. More precisely, they are de-
fined as sequences {fk}k∈N∪{0}, the operations being defined in the same way as if
they represented convergent series; see also §48.2.
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which converges to exp(x), but it is not an asymptotic series for large
x since it fails (48.7); another example is the series

(48.9)
∞∑
k=0

x−k

k!
+ e−x (x→ +∞)

(because of the exponential terms, this is not an ordered simple series
satisfying (48.7)). Note however expansion (48.9), does satisfies all
requirements in the left half plane, if we write e−x in the first position.

We also note that in this particular case the first series is convergent,
and if we replace (48.9) by

(48.10) e1/x + e−x

then (48.10) is a valid asymptotic expansion, of a very simple kind,
with two nonzero terms. Since convergence is relative to a topology,
this elementary remark will play a crucial role when we will speak of
Borel summation.
Functions asymptotic to a series, in the sense of Poincaré. The
relation f ∼∼∼ f̃ between an actual function and a formal expansion is
defined as a sequence of limits:

Definition 48.4. A function f is asymptotic to the formal series f̃ as
t→ t+0 if

(48.11) f(t)−
N∑
k=0

f̃k(t) =: f(t)− f̃ [N ](t) = o(f̃N(t)) (∀N ∈ N)

We note that condition (48.11) can then be also written as

f(t)−
N∑
k=0

f̃k(t) = O(f̃N+1(t)) (∀N ∈ N)(48.12)

where g(t) = O(h(t)) means lim supt→t+0
|g(t)/h(t)| < ∞. Indeed, this

follows from (48.11) and the fact that f(t)−
∑N+1

k=0 f̃k(t) = o(f̃N+1(t)).

48.2. Asymptotic power series. In many instances the functions fk
are exponentials, powers and logarithms. This is not simply a matter
of choice or an accident, but reflects some important fact about the
relation between asymptotic expansions and functions which will be
clarified later.

A special role is played by power series which are series of the form
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(48.13) S̃ =
∞∑
k=0

ckz
k, z → 0+

With the transformation z = t − t0 (or z = x−1) the series can be
centered at t0 (or +∞, respectively).
Remark. If a ck is zero then Definition 48.4 fails trivially in which
case (48.13) is not an asymptotic series. This motivates the following
definition.

Definition 48.5 (Asymptotic power series). A function possesses an
asymptotic power series if

(48.14) f(z)−
N∑
k=0

ckz
k = O(zN+1) (∀N ∈ N)

We use the boldface notation ∼∼∼ for the stronger asymptoticity con-
dition in (48.11) when confusion is possible.
Example Check that the Taylor series of an analytic function at zero
is its asymptotic series there.

In the sense of (48.14), the asymptotic power series at zero of e−1/x2

is the zero series. It is however surely not the case that e−1/x2 behaves
like zero as x→ 0 on R. Rather, in this case, the asymptotic behavior
of e−1/x2 is e−1/x2 itself (only exponentials and powers involved).

Asymptotic power series form an algebra; addition of asymptotic
power series is defined in the usual way:

A
∞∑
k=0

ckz
k +B

∞∑
k=0

c′kz
k =

∞∑
k=0

(Ack +Bc′k)z
k

while multiplication is defined as in the convergent case(
∞∑
k=0

ckz
k

)(
∞∑
k=0

c′kz
k

)
=

∞∑
k=0

(
k∑
j=0

cjc
′
k−j

)
zk

Remark 48.6. If the series f̃ is convergent and f is its sum (note the
ambiguity of the “sum” notation) f =

∑∞
k=0 ckz

k then f ∼ f̃ .
The proof of this remark follows directly from the definition of con-

vergence.

Lemma 48.7. (Uniqueness of the asymptotic series to a function) If
f(z) ∼ f̃ =

∑∞
k=0 f̃kz

k as z → 0 then the f̃k are unique.
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Proof. Assume that we also have f(z) ∼ F̃ =
∑∞

k=0 F̃kz
k. We then

have (cf. (48.11))

F̃ [N ](z)− f̃ [N ](z) = o(zN)

which is impossible unless gN(z) = F̃ [N ](z)− f̃ [N ](z) = 0, since gN is a
polynomial of degree N in z.

Corollary 48.8. The asymptotic series at the origin of an analytic
function is its Taylor series at zero. More generally, if F has a Taylor
series at 0 then that series is its asymptotic series as well.

The proof of the following lemma is immediate:

Lemma 48.9. (Algebraic properties of asymptoticity to a power series)
If f ∼ f̃ =

∑∞
k=0 ckz

k and g ∼ g̃ =
∑∞

k=0 dkz
k then

(i) Af +Bg ∼ Af̃ +Bg̃

(ii) fg ∼ f̃ g̃

Sometimes it is convenient to check a formally weaker condition of
asymptoticity:

Lemma 48.10. Let f̃ =
∑∞

n=0 anz
n. If f is such that there exists a

sequence pn → ∞ such that(
∀n∃pn

)
s.t. f(z)− f̃ [pn](z) = o(zn) as z → 0

then f ∼ f̃ .

Proof. We let m be arbitrary and choose n > m such that pn > m. We
have

f(z)− f̃ [m] = (f(z)− f̃ [pn]) + (f̃ [pn] − f̃ [m]) = o(zm) (z → 0)

by assumption and since f̃ [pn] − f̃ [m] is a polynomial for which the
smallest power is zm+1 (we are dealing with truncates of the same
series).

48.3. Integration and differentiation of asymptotic power se-
ries. While asymptotic power series can be safely integrated term by
term as the next proposition shows, differentiation is more delicate. In
suitable spaces of functions and expansions, we will see the asymmetry
largely disappears if we are dealing with analytic functions in suitable
regions.
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Anyway, for the moment note that the function e−1/z sin(e1/z
2
) is

asymptotic to the zero power series as z → 0+ although the derivative
is unbounded and thus not asymptotic to the zero series.

Proposition 48.11. Assume f is integrable near z = 0 and that

f(z) ∼ f̃(z) =
∞∑
k=0

f̃kz
k

Then ∫ z

0

f(s)ds ∼
∫
f̃ :=

∞∑
k=0

f̃k
k + 1

zk+1

Proof. This follows from the fact that
∫ z
0
o(sn)ds = o(zn+1) as can be

seen by immediate estimates.

Asymptotic power series of analytic function, if they are valid in wide
enough regions can be differentiated.
Asymptotics in a strip. Assume f(x) is analytic in the strip Sa =
{x : |x| > R, |Im (x)| < a}. Let α < a and and Sα = {x : |x| >
R, |Im (x)| < α} and assume that

(48.15) f(x) ∼ f̃(x) =
∞∑
k=0

ckx
−k (|x| → ∞, x ∈ Sα)

It is assumed that that the limits implied in (48.15) hold uniformly in
the given strip.

Proposition 48.12. If (48.15) holds, then, for α′ < α we have

f ′(x) ∼ f̃ ′(x) :=
∞∑
k=0

− kck
xk+1

(|x| → ∞, x ∈ Sα′)

Proof. We have f(x) = f̃ [N ](x) + gN(x) where clearly g is analytic in
Sa and |gN(x)| ⩽ Const.|x|−N−1 in Sα. But then, for x ∈ Sα′ and
δ = 1

2
(α− α′) we get

|g′N(x)| =
1

2π

∣∣∣∣∮
|x−s|=δ

gN(s)ds

(s− x)2

∣∣∣∣ ⩽ 1

δ

Const.

(|x| − |δ|)N+1

= O(x−N−1) (|x| → ∞, x ∈ Sα′)

By Lemma 48.10, the proof follows.
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Exercise 48.13. ** Show that if f(x) is continuous on [0, 1] and dif-
ferentiable on (0, 1) and f ′(x) → L as x ↓ 0, then f is differentiable
to the right at zero and this derivative equals L. Use this fact, Propo-
sition 48.12 and induction to show that the Taylor series at the origin
of F (z) is indeed given by (48.5).

48.4. Watson’s Lemma. In many instances integral representations
of functions are amenable to Laplace transforms

(48.16) (LF ) (x) :=
∫ ∞

0

e−xpF (p)dp

The behavior of LF for large x relates to the behavior for small p of
F .

It is shown in the later parts of this book that solutions of generic
analytic differential equations, under mild assumptions can be conve-
niently expressed in terms of Laplace transforms.

For the error function note that

∫ ∞

N

e−s
2

ds = N

∫ ∞

1

e−N
2u2du =

√
xe−x

2

∫ ∞

0

e−xp√
p+ 1

dp; x = N2

For the Gamma function,

(48.17) Γ(n+ 1) =

∫ ∞

0

e−ttndt = nn+1

∫ ∞

0

en(−s+ln s)ds

writing
∫∞
0

=
∫ 1

0
+
∫∞
1

we can make the substitution s = t + 1, t −
ln(1 + t) = p in each of the two integrals and obtain

(48.18) Γ(n+ 1) = nn+1e−n
∫ ∞

0

e−npG(p)dp;

G(p) =
1

1 +W (0,−e−u−1)
− 1

1 +W (−1,−e−u−1)

where W is the Lambert function, the inverse function of xex; W (0, ·)
is the principal branch of W and W (−1, ·) is the −1 branch.

Watson’s Lemma
This important tool states that the asymptotic series at infinity of
(LF )(x) is obtained by formal term-by-term integration of the asymp-
totic series of F (p) for small p, provided F has such a series.

Lemma 48.14. Let F ∈ L1(R+) and assume F (p) ∼
∑∞

k=0 ckp
kβ1+β2−1

as p→ 0+ for some constants βi with Re (βi) > 0, i = 1, 2. Then



166

LF ∼
∞∑
k=0

ckΓ(kβ1 + β2)x
−kβ1−β2

along any ray ρ in the open right half plane H.
Proof. Induction, using the simpler version, Lemma 48.15, proved be-
low. □
Lemma 48.15. Let F ∈ L1(R+), x = ρeiϕ, ρ > 0, ϕ ∈ (−π/2, π/2)
and assume

F (p) ∼ pβ as p→ 0+

with Re (β) > −1. Then∫ ∞

0

F (p)e−pxdp ∼ Γ(β + 1)x−β−1 (ρ→ ∞)

Proof. If U(p) = p−βF (p) we have limp→0 U(p) = 1. Let χA be the
characteristic function of the set A and ϕ = arg(x). We choose C and
a positive so that |F (p)| < C|pβ| on [0, a]. We write

∫∞
0

=
∫ a
0
+
∫∞
a
.

The second integral will not contribute to the power series asymptotics
since ∣∣∣∣∫ ∞

a

F (p)e−pxdp

∣∣∣∣ ⩽ e−|x|a cosϕ∥F∥1 = o(x−n) for any n ∈ N(48.19)

For the first integral, after the change of variable s = p|x| we get, by
dominated convergence,

(48.20) xβ+1

∫ a

0

F (p)e−pxdp

= eiϕ(β+1)

∫ ∞

0

sβU(s/|x|)χ[0,a](s/|x|)e−se
iϕ

ds→ Γ(β+1) as |x| → ∞

48.5. The Gamma function. We can find the analytic properties
of G without resorting to the Lambert function representation. The
function t − ln(1 + t) has a minimum at zero and it is monotonic on
(−1, 0) and (0,∞); the equation t − ln(1 + t) = p, p > 0 has two
solutions t− and t+ on (−1, 0) and (0,∞). We thus have

(48.21)
∫ ∞

−1

e−n(t−ln(1+t)dt =

∫ ∞

0

G(p)e−npdp; G(p) =
dt+
dp

− dt−
dp

Remark 48.16. The function G is analytic in √
p and thus G′(p) has

a convergent Puiseux series
∞∑

k=−1

ckp
k/2 =

√
2p−1/2 +

√
2

6
p1/2 +

√
2

216
p3/2 − 139

√
2

97200
p5/2 + ...
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Thus, by Watson’s Lemma, for large n we have

(48.22) n! ∼
√
2πnnne−n

(
1 +

1

12n
+

1

288n2
− 139

51840n3
+ ...

)
Proof. Note that t − ln(1 + t) = t2U(t)/2 where U(0) = 1 and U(t)
is analytic for small t; with the natural branch of the square root,√
U(t) = H(t) is also analytic. We rewrite t − ln(1 + t) = p as

tH(t) = ±
√
2σ where σ2 = p. Since (tH(t))′|t=0 = 1 the implicit func-

tion theorem ensures the existence of two functions t±(σ) (correspond-
ing to the two choices of sign) which are analytic in σ. The concrete
expansion may be gotten by implicit differentiation in tH(t) = ±

√
2σ,

for instance.

49. The Painlevé property

In the theory of ODEs, one distinguishes between fixed and movable
singularities. The location of a fixed singularity is common to most
solutions of a given ODE and originates in a singularity of the equa-
tion itself. A simple example is y′ = 1/x, y(1) = y1 whose solutions are
lnx+ y1 with 0 a branch point of all solutions. In nonlinear equations,
the position of singularities may depend on the initial condition. Con-
sider for example the ODE y′ = y2+1, y(0) = a whose general solution
is y = tan(x+arctan a) with singularities at x = (k+1/2)π− arctan a
whose location is a function of a. A singularity of a solution of an ODE
that is not a pole is called a critical point.

Broadly speaking, an equation is integrable if there exist enough
constants of motion (functions that are constant along trajectories),
whose knowledge completely determines the trajectories equation. In
classical mechanics, conservative models are such systems: the energy,
momentum, angular momentum etc are conserved and fully determine
the trajectories; for example in a harmonic oscillator mx′′ = −kx the
total energy 1

2
mv2 + 1

2
kx2 is conserved, and the trajectories are the

ellipses (x′)2 + k
m
x2 = C.

In the history of nonlinear integrable equations, the work of Fuchs,
Kowalewsky and Painlevé stand out. In 1884 L. Fuchs showed that
amongst the first-order equations of the form y′ = F (y, x) with F
rational in y and analytic in x the only equations without movable
critical points are Riccati equations, and these are integrable: they
reduce to linear second order ODEs.

Motivated by the work of Fuchs, S. Kovalevskaya looked for and
found the choices of parameters for which the governing equations of
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the motion of a rigid body about a fixed point under the influence of
gravity admit no movable critical points. She went further and solved
explicitly these special equations, thereby finding new integrable cases
of the motion of a gyroscope. For this outstanding work, she was
awarded the Bordin Prize in 1888.

Around 1900, Paul Painlevé studied second order differential equa-
tions with no movable singularities. He found that up to certain trans-
formations, every such equation of the form y′′ = R(y′, y, x) with R
rational can be put into one of fifty canonical forms. Painlevé (1900,
1902) found that forty-four of the fifty equations are reducible in the
sense that they can be solved in terms of previously known functions,
leaving just six equations requiring the introduction of new special
functions to solve them.

An equation whose only movable singularities are poles is now known
as having the Painlevé property. All first and second order ODEs with
the Painlevé property are integrable: they can be linearized, either by
changes of variables or through reformulation as a Riemann-Hilbert
problem.

I will explain the intuition behind this integrability. Consider a gen-
eral system of ODEs, y′ = F (y, x); y(x0) = y0, y ∈ Cn, where F is
analytic and denote the solution Y (x; y0, x0). Denote the solution of
the equation with x 7→ −x, y′ = −F (x, y) by Ỹ . It is easy to see
that Ỹ (x0;Y (x), x) = y0, a constant. The function Ỹ (x0;Y (x), x) is
thus a constant along trajectories, thus locally a constant of motion.
It is an n − dimensional function, and its knowledge of course com-
pletely determines the solution of the equation. But the word local is
crucial here. If the equation is nonlinear, there are generally movable
critical points, and the analytic continuation of this local constant of
motion generates a Riemann surface that would also depend on the
initial condition in a way that makes it unusable.

Formally checking for the Painlevé property is quite easy: one looks
for the type of singularities compatible with an equation and checks
whether the equation admits a convergent one-sided Laurent expansion
at the singular point.

We take as an example the Painlevé P1 equation y′′ = y2 + x and
variations of it, say y′′ = y2+x2. Assuming that x0 is a movable singular
point, we first look at the leading power, (x−x0)p, at the singular point.
We easily determine that the only power compatible with the equation
is p = −2. Inserting y =

∑∞
k=−2 ckx

k in y′′ − y2 − x, with c−2 ̸= 0
and imposing the condition that the coefficients of the left side vanish
we find c−2 = 6, c−1 = c0 = 0, c2 = x0/10, c3 = −1/6, c4 is arbitrary
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and we can prove inductively that the equations for ck, k > 4 have a
unique solution, and the Laurent series converges. The same procedure
in y′′− y2−x2 however shows that the coefficient of (x−x0)

2 is always
one, and the solution cannot be meromorphic. A simple analysis shows
that generically, singular solutions are not meromorphic.
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50. Appendix

Note 50.17. Composing with a Cayley transform, we can rephrase
Montel’s normality Theorem 31.7 we see that we can replace sup{|f(z)| :
z ∈ K, f ∈ F} = m(K) <∞ with ∀f ∈ F , f : K 7→ H+.

50.1. Appendix to Chapter 8.

50.2. Some facts about the topology of C. From a topological
point of view, C is isomorphic to R2. Namely, we identify the point
z = x + iy with the pair (x, y) = (Re z, Im z) and the length |z| with
|(x, y)| =

√
x2 + y2, inducing a distance d(z1, z2) := |z1 − z2|. Since

max(|x|, |y|) ⩽
√
x2 + y2 ⩽ |x| + |y| a sequence {zn}n∈N is Cauchy

iff both {xn}n∈N and {yn}n∈N are Cauchy and zn → 0 as n → ∞ iff
xn → 0 and yn → 0 as n→ ∞; similarly, a sequence convergence in C
iff it is Cauchy.

Consequently, if a series
∑∞

n=0 cnz
n
0 converges, then cnzn0 → 0 as n→

∞. Check that this implies that the real-valued series
∑∞

n=0 |cn||z1|n
converges for any |z1| < |z0|, that is

∑∞
n=0 cnz

n
1 converges uniformly

and absolutely for |z| < |z0|. This is Abel’s theorem in the complex
domain. The only difference from the real analysis counterpart is that
|z| < |z0| is a disk instead of an open interval.

A region of C is called open if it contains together with any point
z0 all sufficiently close points, that is, it also contains a nonempty disk
centered at z0; intuitively, an open set is a region without its boundary.
For example an open disk
(50.23) D(z0, r) = {z ∈ C| |z − z0| < r}

a punctured disk
Dp(z0, r) = {z ∈ C| 0 < |z − z0| < r}

the upper half plane Hu := {z : Im (z) > 0} and C are open, as is,
trivially, the empty set ∅, but a closed disk

D(z0, r) = {z ∈ C| |z − z0| ⩽ r}

is not open. The exterior of a closed disk, {z ∈ C| |z − z0| > r}, is
open. A finite intersection of open sets is open. Clearly a set in C is
open iff it is a (finite or infinite) union of open disks.

More generally, a topology on a space X consists of a family O of
sets defined as open, which should have the following properties: (1)
X, ∅ ∈ O, (2) O1, O2 ∈ O ⇒ O1 ∩ O2 ∈ O and (3) any union, finite or
infinite of open sets Oα ∈ O is open: ∪αOα ∈ O. Complements of open
sets are called closed sets. The whole X is both open and closed; so is
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its complement, ∅. The family O in the case of C can be taken to be the
collection of all unions of open disks (50.23), for all z0 ∈ C, r ∈ [0,∞].

The boundary of the set S in C, denoted ∂S, consists of all points z
in C for which there are sequences contained in S which converge to z,
as well as sequences in the exterior of S convergent to z. For example,
the boundary of a disk is the circle surrounding it:

∂D(z0, r) = C(z0, r) := {z ∈ C| |z − z0| = r}

Also ∂D(z0, r) = C(z0, r), but ∂Dp(z0, r) = C(z0, r) ∪ {0}.
A point z in C is an accumulation point of the set S if there is a

sequence of points in S converging to z.
Note that a set O is open iff it contains no points in ∂O. At the

opposite end, if a set contains all of its boundary points then it is
closed.

If a set is defined by (finitely many) inequalities involving continuous
functions, then the set is open only if all the inequalities are strict
(<, >, or ̸=), and it is closed if all are ⩽,⩾ or =; the boundary is
obtained by replacing all inequalities by equalities.

If X is a topological space and X1 ⊂ X the induced topology in X1

is {X1 ∩O|O ∈ O}.

50.2.1. Connected sets. An open set O is connected if it is not the union
of two disjoint nonempty open sets. More generally, a subset X1 ∈ X
is connected if it is not the disjoint union of two nonempty sets that are
open in the induced topology on X1. Equivalently, there is no subset
of X1 which is both open and closed in the induced topology (other
than X1 and the empty set). For example any disk in C is connected,
and so is a punctured disk. See also Proposition 50.19 below.

A domain in C is by definition an open connected set.

Exercise 50.18. Is the annulus {z ∈ C| r ≤ |z| < R} open? closed?
connected? What is its boundary?

A curve in R2 is often given using a parametrization, as the image of
a pair of continuous real functions: {(x(t), y(t)) : t ∈ [a, b]}. The same
curve can obviously be the image many different maps. If at least
one of these is differentiable, then the curve is called differentiable;
{x(t) + iy(t) : t ∈ [a, b]} is the corresponding curve in C.

A set S with the property that any two points is S can be connected
by a curve in S is called path connected; it can be shown that a path
connected set is necessarily connected. But the converse is not true,
for example S = {(x, sin 1

x
) |x > 0} ∪ {(0, 0)} is connected, but not

path connected. But:
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Proposition 50.19. Domains D ⊂ C are path connected. The path
can be chosen to be a polygonal line.

Proof. Indeed, let z, w ∈ D be two arbitrary points. Collect the
points which are path connected to z:

Dz =
{
u ∈ D

∣∣ ∃γ : [a, b] → D continuous, with γ(a) = z, γ(b) = u
}

Then Dz is open since for any u ∈ Dz, there is a disk Dε(z) included
in D (since D is open), and then z can be path connected to any point
in this disk (the path connecting z to u followed by the segment form
u to any point in the disk), hence Dz contains a disk centered at u.
By the same argument also Dw is open, and since D is connected then
there must be a point u ∈ Dz ∩ Dw. But then the path going from z
to u followed by the path from u to w connects z to w.

The path connecting two points can be chosen to be a polygonal line:
Indeed, let γ : [a, b] → D continuous, so that γ(a) = z and γ(b) = w.
Since D is open, every point along the path is contained in a disk
included in D: for all t ∈ [a, b] there is εt > 0 so that D(γ(t), εt) ⊂ D.
Since the image of γ is compact, and is included in the union of all these
disk, then it is included in a finite number of them: there are t1, . . . , tn
so that γ([a, b]) ⊂ ∪nk=1D(γ(tk), εtk) ⊂ D and now γ can be replaced
by segments in each disk. To be more precise in this construction, let
t0 = a, tn+1 = b and let ε0, εn+1 > 0 so that D(γ(tk), εtk) ⊂ D for
k = 0 and k = n + 1. Then γ([a, b]) ⊂ ∪n+1

k=0D(γ(tk), εtk) ⊂ D. We can
remove any disk of the covering that is completed include in another
disk, and we number the tk in increasing order. Then the segments
[γ(tk−1), γ(tk)] are included in D(γ(tk−1), εtk−1

)∪D(γ(tk), εtk) ⊂ D and
form a polygonal line joining z and w. □

A rectifiable curve is a continuous curve t 7→ γ(t) (defined for t ∈
[a, b]) with finite length, meaning that the sup of the length of polygonal
lines joining points of γ is finite. In C this means:

sup
{ n∑

i=0

|γ(ti)−γ(ti+1)| : 0 = t0 < ti < ti+1 < tn = b∀i ∈ 1..n−1, ∀n ∈ N
}
<∞

A piecewise differentiable curve with integrable γ′ is easily checked
to be rectifiable, and the length, defined by the sup above, also equals

l(γ) =

∫ b

a

|γ′(t)|dt

DEFINE winding number
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50.3. Proof of the Ascoli-Arzelà theorem. Necessity (i) Suppose
F is not equicontinuous on some compact K. Then on K
(50.24)
∃(ε > 0, {zn}, {z′n}, {fn}) s.t.(|zn − z′n| → 0 & d(fn(zn), fn(z

′
n) > ε)

Since K is compact and F is normal from any sequence we can ex-
tract a convergent subsequence, which w.l.o.g. we can assume to be
{zn}, {z′n}, {fn} themselves. Let zn → z, fn → f (z′n → z too). The
limit f is continuous, thus uniformly continuous. We have

lim
n→∞

sup
x∈K

d′(f(x), fn(x)) = 0

thus for n large enough,

(50.25) d′(fn(z
′
n), f(z

′
n)) <

ε

4
, d′(f(z′n), f(z)) <

ε

4
,

d′(f(z), f(zn)) <
ε

4
and d′(f(zn), fn(zn)) <

ε

4

implying by the triangle inequality,

d′(fn(z
′
n), fn(zn)) < ε

a contradiction.
(ii) Fix z and take K = {f(z) : f ∈ F}. Take a sequence {wn} ⊂ K

By the definition of K, if wn ∈ K ∃fn ∈ F such that d(fn(z), wn) <
1/n. By the normality of F , there exists a subsequence of functions,
w.l.o.g. {fn} themselves, fn → f . But then wn → f(z) □.
Sufficiency. The sufficiency of the two conditions is shown by Can-
tor’s famous diagonal argument. Let {fn} ⊂ F . We take a countable
everywhere dense set Q = {zk} of points in Ω, e.g., those with ra-
tional coordinates and we let K be any compact in Ω. Take z1 ∈ Q.
By (ii), there is a convergent subsequence {fnj1

(z1)}j∈N. Take now
z2 ∈ Q. From {fnj1

(z2)}we can extract a subsequence {fnj2
(z2)}j∈N

which converges as well. So {fnj2
(z)}j∈N converges both at z1 and z2.

Inductively we find a subsequence {fnjm
(z)}j∈N such that it converges

at the points z1, ..., zm. But then, the subsequence {gj} := {fnjj
} con-

verges at all points in Q. We aim to show that gj converges uniformly
in any compact set K ∈ Ω. By equicontinuity,
(50.26)
∀ε > 0 ∃δ s.t. ∀(a, b, f) ∈ K2 ×F(|a− b| < δ ⇒ d(f(a), f(b)) <

ε

3
)

Consider a finite covering of K by balls of radius δ/2. Since Q is
everywhere dense, there is a zk in each of these balls. They are finitely
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many, so that for l,m > n0,

(50.27) d(gl(zk), gm(zk)) <
ε

3
On the other hand, any a ∈ K is, by construction, at distance at most
δ from some zk and thus by (50.26) (for any f ∈ F , in particular) for
gni, gnj we have

(50.28) d(gl(a), gl(zk)) <
ε

3

(50.29) d(gm(a), gm(zk)) <
ε

3
We thus see by the triangle inequality that
(50.30) d(gl(a), gm(a)) < ε

Thus gn(a) converges. Convergence is uniform since the pair ε, δ is
independent of a. □

51. Dominated convergence theorem

We state this theorem only for the real line
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