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Abstract
We prove existence and uniqueness results for nonlinear third-order partial dif-
ferential equations of the form
3 .
fro— fyyy= Y bj(y.t: ©) 1D +r(y,n
j=0

where superscripf denotes thg th partial derivative with respect tp. The in-
homogeneous term, the coefficientd;, and the initial conditionf (y, 0) are
required to vanish algebraically for lar¢y in a wide enough sector in the com-
plex y-plane. By using methods related to Borel summation, a unique solution
is shown to exist that is analytic infor all large|y| in a sector. Three partial
differential equations arising in the context of Hele-Shaw fingering and dendritic
crystal growth are shown to be of this form after appropriate transformation,
and then precise results are obtained for them. The implications of the rigor-
ous analysis on some similarity solutions, formerly hypothesized in two of these
examples, are examine@) 2000 John Wiley & Sons, Inc.

1 Introduction

The theory of partial differential equations (PDEs) when one or more of the
independent variables are in the complex plane appears to be largely undeveloped.
The classic Cauchy-Kowalewski (C-K) theorem holds for a system of first-order
equations (or those equivalent to it) when the quasi-linear equations have analytic
coefficients and analytic initial data is specified on an analytic but noncharacteristic
curve. Then the C-K theorem guarantees the local existence and uniqueness of
analytic solutions. As is well known, its proof relies on the convergence of local
power series expansions, and, without the given hypotheses, the power series may
have zero radius of convergence and the C-K method does not yield solutions.

Communications on Pure and Applied Mathematics, Vol. LIII, 0001-0026 (2000)
© 2000 John Wiley & Sons, Inc.



2 O. COSTIN AND S. TANVEER

Relatedly, not much is known in general for higher-order nonlinear partial dif-
ferential equations in the complex plane, even for analytic initial conditions and
analytic dependence of the coefficients. The only work we are aware of on non-
linear partial differential equations in the complex plane involving higher spatial
derivatives is that of Sammartino and Caflisch [14, 15], who proved among other
results the existence of a solution to nonlinear Prandtl boundary layer equations for
analytic initial data. This work involved inversion of the heat operéter dyy and
using the abstract Cauchy-Kowalewski theorem for the resulting integral equation.
Unfortunately, this methodology cannot be adapted to our problem. The coeffi-
cients of the highest (third-order) spatial derivatives in our equation depend on the
unknown function as well. These terms cannot be controlled by inversion of a lin-
ear operator and estimates of the kernel, as used by Sammartino and Caflisch. In-
stead, the essence of the methodology introduced here is the use of Esgmp-
totics, conveniently expressed in terms of the behavior of the unknown function
in the Borel transform variabl@ for small p. The choice of appropriate Banach
spaces proves to be crucial, and after this choice the contraction mapping argument
itself is not difficult.

One aim of the present paper is to obtain actual solutions with good smooth-
ness and asymptotic properties for a class of PDEs when power series solutions
may have a zero radius of convergence. Our approach, based on Borel summation
techniques, provides at the same time appropriate existence and uniqueness results
for a class of nonlinear PDEs in the complex domain.

Keeping in mind applications, we develop the framework for certain higher-
order partial differential equations in a domain where one of the independent vari-
ables § in this case) is complex, while the othé) {s real. While more sweeping
generalizations are under way, the current paper is restricted in scope by the appli-
cations we have in mind and simplicity of exposition.

There is a class of nonlinear PDEs that have recently arisen in applications.
The basic feature of the application problems is that in the absence of a regulariza-
tion (like surface tension), the initial value problem in the real domain is relatively
simple, yet ill-posed in the sense of Hadamard for any Sobolev norm on the real
domain. However, the analytically continued equations into the complex spatial
domain are well-posed, even without a regularization term. Earlier, Garabedian
[7] recognized the conversion of an ill-posed elliptic initial value problem into a
well-posed one by excursion into the complex plane in the spatial variable. Moore
[12, 13], Caflisch and Orellana [1, 2], Caflisch and Semmes [4], and Caflisch et al.
[3] have studied solutions to the complex plane equations that arise from simplifi-
cations of vortex sheet evolution (in fluid mechanical contexts). The initial value
problem in these cases is ill-posed in the real domain, though well-posed in an ap-
propriate class of analytic functions in a domain in the complex plane. Study of
the complex equations proved useful since evidence [10] of finite time singulari-
ties in the real domain can be traced to earlier singularity formation in the complex
domain.
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In the physical context of Hele-Shaw dynamics, it was suggested [17] that it is
fruitful to study the complex plane equations even when the initial value problem
is well-posed in the physical domain through the addition of a small regularization
term. The advantage of this procedure is that one can study small regularization
effects by perturbing about the relatively simpler but well-posed zeroth-order prob-
lem. The ill-posedness of the unregularized problem in the real domain, shown ear-
lier by Howison [8], is transferred into ill-posedness of the analytic continuation of
initial data to the complex plane. However, when analytic initial data is specified in
a domain in the complex plane such as to allow for isolated singularities, there is no
ill-posedness of the zeroth-order approximation of the dynamics. This provides the
basis for a perturbative study that includes small but nonzero regularization effects
in the real domain. Consideration of an ensemble of complex initial conditions,
subject to appropriate constraints on its behavior on the real axis, provide a way
to understand the robust features of the dynamics when regularization effects are
small.

Indeed this procedure has yielded information about how small surface tension
can singularly perturb a smooth solution of the unregularized dynamics [16]. It
has given scaling results on nonlinear dendritic processes as well [11]. However,
much of the results derived so far are purely formal and rely fundamentally on the
existence and uniqueness of analytic solutions to certain higher-order, nonlinear
partial differential equations in a sector in the complex plane with imposed far-
field matching conditions. Indeed, in a more general context, one can expect that
whenever regularization appears in the form of a small coefficient multiplying the
highest spatial derivative, the resulting asymptotic equation in the neighborhood of
initial complex singularities will satisfy a higher-order nonlinear partial differential
equation with sectorial far-field matching condition in the complex plane of the
type shown in examples 1 through 3. Hence, there is a need to develop a general
theory in this direction.

2 Problem Statement and Main Result

We seek to prove the existence and uniqueness of solufions) to the initial
value problem for a general class of quasi-linear partial differential equations of
the form:

3
(2.1) fi— fyyy=> bi(y,t: HID +r(y,t) with f(y,0 = fi(y)
j=0

where the superscript’ refers to thej " derivative with respect tg. The inhomo-
geneous term(y, t) is a specified analytic function in the domain

Dy, ={(y,t):argy € (-Z,Z), |yl > po>0,0<t < T},
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and it is assumed that i®,, there exist constants, > 1 and A, with only A,
allowed to depend offi, such that

(2.2) ly*rr(y, bl < A(T).

Further in (2.1), the coefficients; may depend on the solutioh—this is how
nonlinearity in the problem arises. It is possible to extend the current theory to
include dependence ¢k on f () as well, though for simplicity we will restrict
ourselves only to dependence bnFurther, we restrict ourselves to the case where
eachby; is given by a convergent series

(2.3) bi(y,t; ) =) bjx(y,t) £

k=0
for knownb; , analytic fory in D,,. It will be assumed that in this domain, there
exists some choice of positive constaptse;, and Ay, independent off andk
(with 3 ande; independent ol as well), such that

(2.4) |y il < Au(T).
Further, the series (2.3) converges in the donddj),, defined as
(2.5) Dy, =

{(y,t) rargy e (-5 — ¢, 5+ ), Iyl > p> powhereO< ¢ < £, 0<t < T}
if
(2.6) 1f] < p”.

CONDITION 2.1 The solutionf (y,t) we seek for (2.1) is required to be analytic
for complexy in Dy , for somep > 0 (to be determined later). In the same domain,
the solution and the initial conditiofy (y) must satisfy the condition

(2.7) Iy £y, ) < Ar(T)
for someA that can only depend ch for (y,t) € Dy ).

It is clear that for largey such a solutionf will indeed satisfy (2.6), the condi-
tion for the convergence of the infinite series in (2.1). The general theorem proved
in this paper is the following:

THEOREM2.2 Forany T > 0and0 < ¢ < %, there exist$ such that the partial
differential equatior(2.1) has a unique solution f that is analytic in y and %)

as y— oo for (y,t) € D;4. Infact, we have for this solution £ O(y~“r) as
y — 00.

We note that uniqueness requires analyticity and decay propertyes aflarge
enough sector. The proof of Theorem 2.2 will have to await some definitions and
lemmas. It is to be noted that from a formal argumernt is small, the dominant
balance for largey is betweenf; on the left of (2.1) and (y,t) on the right, indi-
cating thatf (y,t) ~ f;(y) + fé r(y,t)dt. Since each off, (y) andr (y,t) decays
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FIGURE 3.1. ContoulCp in the p-plane.

algebraically agy — oo within D, at a ratey~*", which fora, > 1 is much less
thany~1, this suggests that other terms in the differential equation (2.1) should not
contribute. This is in fact shown rigorously foy| large with argy € (—%”, %“).

As shall be seen in the examples, this behavior for solufiag not valid outside

this sector, where in general one can expect infinitely many singularities with an

accumulation point ato.

3 Inverse Laplace Transform and Equivalent Integral Equation

The inverse Laplace transfor@i(p, t) of a functiong(y, t) analytic in® , and
vanishing algebraically dy| — oo is given by

1
(3.1) Gt = [£H@](PO = 5 / e”g(y, Hydy,
Cp

whereCp is a contour as shown in Figure 3.1 (or deformations thereof), entirely
within the domainDy ,. We restrictp to the domain

8y ={p:argp € (=¢,¢), 0 < |p| < oo}

It is easily seen that ifj(y,t) = y~© for a > 0, thenG(p,t) = p*~ /(o).
From the following lemma, it is clear that the same kind of behavior for the inverse
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Laplace transfornG(p, t) can be expected for smallin 4, with ay~* behavior
of g atoo.

LEMMA 3.1 If g(y,t) is analytic in y in®D,, , and satisfies
(3.2) ly*a(y, t)l < A(T)

for a > ag > 0, then for anys € (0, ¢) the inverse Laplace transform 6 £ 1g
exists in8,_s and satisfies

AT

(3.3) 1G(p, )] < C AL pja-1g2ni
I'la)

for some C= C(9, ap).

PROOF. We first consider the case whers2a > «ag. LetC,, be the contour
Cp in Figure 3.1 that passes through the pgint- | p|~* and given bys = p; +
|p|~ + ir exp(i ¢ signum(r)) with r € (—oo, 00). Choosing 2 > p1 > (2/+/3)p,
we haves| > p along the contour and therefore, with oy = 6 € (—¢+46, p—9),

lg(s,t)| < A(T)|s|™® and |eF| < el pl+1g-Iriiplsinio—0]

Thus
(3.4)

‘ / e’Pg(s,t)ds

cf’l

o0
< 2A(T)eIPiHt / |1+ [pl ™t +irel?| “eIPIrsindgy
0

oo
< KAM&Pllpy + [p| =~ / e PrSnt dr
0

< KgHpjote?

whereK and K are constants independent of any parameter. Thus, the lemma
follows for 2 > a > ag if we note thatl"(«) is bounded in this range of with the
bound only depending o.

Fora > 2, there exists an integ&r> 0 so thatoe — k € (1, 2]. Taking

y
(k — D!h(y,t) :/ gz, t)(y — 2% tdz

(clearlyh is analytic inD,, , andh®(y,t) = g(y, 1)), we get

hey,t) = (—y)k [ k-1

YO =07 ) ayp.t)(p— D" dp
_(CDkyke —a k-1
—W/l Alyp,)p “(p— D" "dp
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with [A(yp,t)| < A(T), whence

A(T)I'(a — K)
hy,t)] < ——————
IOA DT < o )
From what has been already proved, with- k playing the role of,
A(T
|£7Hh)(p, b)] < ca»#lm“*k*lez‘p'p
(@)
SinceG(p,t) = (—D)¥pkL~L{h}(p,t), by multiplying the above equation bp|,
the lemma follows fokx > 2 as well. O

Remarks. 1. As mentioned before, whayty,t) = At)y— we haveG(p,t) =
(A1) /T (a)) p®~2. Inthis case, the exponential factor in (3.3) can be omitted
because of the algebraic behaviorggly, t) for all y. This result is relevant
for Examples 1 through 3.

2. The constant2in the exponential bound can be lowered to anything exceed-
ing p, but (3.3) suffices for our purposes.

3. Corollary 3.2 implies that for anp € 44, the inverse Laplace transform
exists for the specified functiomgy, t) andb; (y, 1), as well as the solution
f(y,t) to (2.1), whose existence is shown in the sequel.

4. Conversely, ifG(p,t) is any integrable function satisfying the exponential
bound in (3.3), it is clear that the Laplace transform along a ray

Ooeie
(3.5) L9G = / dpe PG(p,t)
0

exists and defines an analytic functionyofn the half-planei[€fy] > 2p
for 0 € (—¢, ¢).

5. The next corollary shows that there exist bounds.ot{b; x} and L£L~{r}
independent of arg in 84 because of the assumed analyticity and decay
properties in the regiotD,,,, which containsDy ,.

CoROLLARY 3.2 The inverse Laplace transform of the coefficient functions b
and the inhomogeneous functiofyrt) satisfy the following upper bounds for any

pe/5¢:

. Cl(¢1 CKJ) k,@+oq —1,.200lp|
(3.6) [Bjx(p, D) < —F(aj k3 Ap(T)|p| e?rolpl
(3.7) IR(p,t)| < ?2(@ A (T)|p|or—te2olPl
(ar)

PrROOF From the assumed conditions we see that is analytic iny over
Dy, p for any ¢, satisfyingz > ¢1 > ¢. So Lemma 3.1 can be applied for
a(y,t) = bjx, with ¢ = ¢ + (/6 — ¢)/2 replacinge, and withd replaced by
01— ¢ = (/6 — ¢)/2; the same applies t&(p,t), leading to (3.6) and (3.7). In
the latter case, since, > 1, ag in Lemma 3.1 can be chosen to be 1. Thus, one
can choos&, to be independent af,, as indicated in (3.7). O
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The formal inverse Laplace transform of (2.1) with respect i®

3 00
38)  R+PF=) (=D [Bux(p'F)xF*](p,t) + R(p,b)
j=0 k=0

where the symbok stands for convolution (see also [5]). On formally integrating
(3.8) with respect to, we obtain the integral equation

(3.9)
F(p.t) = ZZ/O (—DIe P CD[(p!F) * B+ F*](p, )d7 + Fo(p, 1)
j=0 k=0
= NF(p,1)
where
t

(3.10) Fo(p,t) = e P'F (p) + / e PtIR(p, 7)dr.

0

HereF, = £7{f}.

Our strategy is to reduce the problem of existence and uniqueness of a solution
of (2.1) to the problem of existence and uniqueness of a solution of (3.9) under
appropriate conditions.

4 Solution to the Integral Equation

To establish the existence and uniqueness of solutions to the integral equation,
we need to introduce an appropriate function class for both the solution and the
coefficient functions.

DEFINITION 4.1 Denoting bys, the closure of§,, 38, = 85 \ 84, and X =
8, x [0,T], we define forv > 0 (later to be taken appropriately large) the norm

I -1, as

(4.1) IGIl, = Mo sup (1+ |pPHeP|G(p,1)]|
(pHeX

where

2(1 + s?) (In(1 + s?) + sarctars
4.2) Mo = Sup 1+ (In(1+s% + )

=3.76....

DEFINITION 4.2 We now define the following class of functions:

Ay = {F : F(,t) analytic in$4 and continuous ik,
fort € [0, T] such that|F |, < oo} .

It is clear thatA, forms a Banach space.
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Commen#.3. Note that giverG e 44, g(y,t) = L{G} exists for appropriately
choserd whenp is large enough so thatcog# + argy) > v, and thatyg(y, t)| is
bounded fory on any fixed ray inDy ,.

LEMMA 4.4 For v > 4pg + o, F = L7 f,} satisfies

v —ar+1
IF 1, < C(o) Ay <§>

while R= £~ 1r satisfies the relation

v —or+1
IRl < C(¢>)Ar(T)(§>

and therefore

—ar+1
(4.3) IFoll, < C(o)(TA + Aﬁ)(g) ‘

PROOF. First note the bounds oR in Corollary 3.2. We also note that > 1
and that forv > 4pg + o, we have

ar—1 ar—1
Sup| p| e_(V_ZpO)lp‘ S (O[r — 1)
p F(ar) F(ar)

—or+1
< ka(4)

whereK is independent of any parameter. The latter inequality follows by account-
ing for Stirling’s formula forT" (o) for largeca, . Similarly,

41 41
Supl pla + e_(V_ZPO)\m < (ar + 1)0( + e_ar_
p I'(ar) ()

—ar—1
K a3/? v
r 2 ‘

Using the definition of the,-norm and the two equations above, the inequality
for ||R|, follows. Sincef, (y) is required to satisfy the same bounds &g t), a
similar inequality holds fol| F, ||,. Now, from the relation (3.10),

IFo(p, DI < IR (P)] + TOSUDT IR(p, DI
<t<

Therefore, (4.3) follows. O

e W — 2p0)

F(v =200

IA

Remark.Not all Laplace-transformable analytic functionsdy, , belong to.
For the applications we have in mind, the coefficients are not boundecpnedy
and hence do not belong i,. Itis then useful to introduce the following function
class:
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DEFINITION 4.5
# = {H : H(p,t) analytic in8,, [H(p,t)| < C|p|* *e’P'}
for some positive constan€, «, andp, which may depend oHl.

LEMMA 46 If H € # and F € Ay, then fory > p+ 1, H x F belongs toA,
and satisfies the following inequality:

(4.4) IH s« FlIl < IIH[*[Flll, = Cl' (@)@ — p) " IFIl .

PROOF. From elementary properties of convolution, it is clear thiat F is
analytic in84 and is continuous 04,. Letd = argp. Itis to be noted that

Ipl , .
IH s« F(p)| < [[H]*|FI(p)] < /0 IH(s€”)||F (p — sé”)|ds.

But .
|H (sé?)| < Cs*1eslP
and

(4.5)
L. » &g S 1 galg-w=plpls ;
s e —S s< € @ S.
/0 IF(p— sé®)jds < |F],&?|p] /0 T e s

If |p| is large, noting that — p > 1, we obtain from Watson’s lemma,

Ipl
Mo(1+ |pl?)

-

[Pl .
(4.6) f s* 1% F (p — sé”)|ds < KT()||F |, lv—pl
0

Now, for any othef p|, we obtain from (4.5),
e”‘F"F(oz)
Mo
Thus the relation (4.6) must hold in general because it subsumes the above relation

when|p| is not large. From this relation, (4.4) follows from applying the definition
of || - II,.. O

Pl -
/ s*teslP|F (p — sé?)|ds < K|v — p| " ||IF |l
0

COROLLARY 4.7 For F € Ay, andv > 4pg + 1,

—kB—qy
v
1By Fll, < 1Byl [Flll, < KC1(¢1QJ)(§> Ac(MIIF L -
PROOF. The proof follows simply by using Lemma 4.6, with replaced by
B; x and using the relations in Corollary 3.2. O
LEMMA 4.8 For F, G € A, and j > 0,

. jgvipl
(.7) (P F) # G(p, )] < M'p' IFILIGI, .

o1+ [pl?)

Linthe following equation|| - ||, is extended naturally to continuous functionsAn
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PROOF. Let p = |p|€’. Then

[(P'F) * G(p,b)| =

P
/ S'F(3)G(p—9%)ds
(4.8) o | | |
< / ds d|F(s€?)||G(p —se’)|.
0
Using the definition of| - ||, the above is bounded by
ds - |p|ievPl
1+$)[1+(pl —92] = Mo(1+[pl?)

The last inequality follows from the fact that

|p|J , Ipl
IPP g 'p||F||,,||G||,,/
M2 0

IFI NG -

/'p 1 _,In(pE+ 1)+ [pltar |pl
o QA+$)H[1+(pl—9)7?] IpI(IpI2 +4)
and the definition oMg in (4.2). O

COROLLARY 4.9 With the convolutionx, A4 is a Banach algebra and further-
more,

(4.9) IF =« Gll, < IFIIGI -

ProoFE This follows by applying Lemma 4.8 foy = 0 and using the defini-
tion of || - ||, O

LEMMA 4.10 Forv > 2pp + 1,

t .
(4.10) /(pJF)* By * F*e P’t"dr| <
0

C(9)
Mo(1+ [p[?)

where the constant C is independent of T but depends on

I1Bj k| * [F Il || F|e/PIT3=1)/3

PROOF Fork > 1, from Lemma 4.8, witlG = (Bj x* F) * F*& we obtain

|p|ieIP!

(4.11) (P F) % By F¥| < Moo | Bik* FILIFIX
|p|leIP!
= Mot 1o 1Bkl * IFILIFIL.
Fork = 0, we note that
|p|leIP!

I(P'F) % Bjol < |pI'lIF|*|Bjoll < v 11Bj ol * [FIll. .

o1+ 1pl?)
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Therefore, (4.11) holds fd¢ = 0 as well. Thus, for ank > 0,

=

t .
/ (pJ F) = Bj Kk F*keips(tiT)dT
0

|p|levPl
Mo(1 + [pI?)

wherep = |p|€’. On integrating with respect to, we obtain

t
3
|||Bj,k|>x<|F|||V|||:||5/ g |pI°cosB0)(t—7) .-
0

t 3-i)/3 —_e’
ipli [ epPeoss-ng, o T g 1€
P = C05733¢ P
0 c09/°3¢ v

DEFINITION 4.11 ForH € #, F andhin A, definen, = 0 and fork > 1,
(4.12) hi= H % [(F +h)y™ — F*].

LEMMA 4.12 Forv > p+ 1,

(4.13) bl < KAF 1+ b1 HITH ] R, -

PROOF. We prove this by inductionk = 0 follows trivially sincehg = 0. The
case ofk = 1 is obvious from (4.12). Assume the formula (4.13) holds for all
k <I1. Then

Ihsa], = [H*(F+h«(F+h* —H«F«F|
= HH xhx (F+h* + F*h|Hy.
On using (4.13) fok = |, we get
< IH = 0L AF 1L 4 1)+ T AF L A+ i) ITH] s
<A+ DUF N+ I IH = B,
Thus the formula (4.13) holds fer=1 + 1. O
LEMMA 4.13 For F and h inAg, v > 2p9 + 1, and k> 1,
(4.14) |(p'[F +h]) % Bj % (F +h)™ — (pIF) % By F™| <

|p|ietP
Mo(1+ [pI?)

PROOE Itis clear that

(IF L+ B HKITF 1 11Bj l D1+ 1By s (F +h) L, (1]}

(4.15) |(p'[F +h]) * Bjx* (F + )™  — (pIF) % By F*| <
[(pIh) * By (F 4+ )™ |+ 1(p! F)  hy|
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whereH is now replaced by,  in the definition ofhy in (4.12). Applying Lem-
ma 4.8 and Corollary 4.9 to the first term, we obtainKgr 1
|(PTh) s By (F + )™ <
|p|ie”IP!
Mo(1 + [p[?)

On the other hand, applying Lemma 4.8 and Lemma 4.12, Witk B; x and
p replaced by 2y, we obtain

111 11Bj k% (F + W)l (IF 1L + [1hIL)< .

. |p|ieIP! 1
'Eyxh < ——K|FIl,IBjk*hll.[IFI., + lIhl. .
(P’ F) x hy| < Mo(L - [PI?) IF 1N Bj i+ il IITF I + [Thil]
Combining the previous two equations, and using it in (4.15), we obtain the proof
of Lemma 4.13 by noting thatB; « = hil, < [[IBj k| * [h[|l,. O

LEMMA 4.14 Forv > 2pg + 1,

t
(4.16) / {(P'[F +h]) % Bjo— (p'F) * B,-,o}e—pg“—” dr| <
0

C(¢) T @ D/3eVIpl
Mo(1 + [pI?)

I11Bj,0l [Nl -

PrROOFE We note that
|(P'[F +h]) % Bjo— (p'F) % By

A

|(ph) * By ol
|p|ieIP!
~ Mo(1+[pl?)
Further, as before in the proof of Lemma 4.10

I11Bj,0l [Nl .

t
/ |p|i |e—pg(t—7')| dr < C(¢)T(3—J’)/3.
0

Combining the two equations above, the lemma follows. O
LEMMA 4.15 Forv > 2pg+ 1and k> 1,
(4.17)

t
/ {(pJ [F +h]) % Bjxx (F + h)*k — (pj F)* Bjkx* F*k}e—pa(t—f) dr| <
0

C ()T G- D/3gVIpl
Mo(1+ [pI?)

AKIF L1118kl # [l 4 1By x * (F + [, [Ih],} -

(IF I+ )<t

PROOF. The proof is similar to that of Lemma 4.10, except Lemma 4.13 is
used instead of Lemma 4.8. O
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LEMMA 4.16 For F € A4 andv > 4po+ 1large enough so that//2)#||F ||, <
1, M F satisfies the following bounds

(4.18)

° (V)" Fl
Nl HY ¢ T<3—J>/3(5> IF 1 +IFoll, -
IV Fll, < Ap( )JZ(; (@) 2) 1w T

Further, for he 4, such that(v/2)"?(|F |, + |Ih].,) < 1

(4.19) IN(F+h)—NF], <

3 -
Ap(T) ch (¢)<%> TG-0)/3 Ihll,
j=0

[1—@/27P(IFll, + Il

PROOF. On inspection of (3.9) and using Lemma 4.10, it follows that

3 00
(4.20)  [NFl, <Y CUATEDBES 1Byl [FIIILIFII + | Foll, -
j=0 k=0

Now using Corollary 4.7 and noting the dependenc€pbn j throughq;, (4.18)
follows. As far as (4.19), from inspection of (3.9) and using Lemmas 4.14 and
4.15, we get

[N (F+h)— NFI,

3
<> CiTE DR
j=0
(4.21) o0
: <|||B,-,o| [0l + Y _UF I+ [hi)<
k=1

AKIF I 111Bj l * Il + 1By + (F + h)llyllhlly}> -

On using Corollary 4.7 and noting the dependenc€pbn j throughq;, (4.19)
follows. O

Remark.Lemma 4.16 is the key to showing the existence and uniqueness of solu-
tions in A, to (3.9), since it provides the conditions for the nonlinear operator
to map a ball into itself as well the necessary contractivity condition.

LEMMA 4.17 If there exists some i 1 so that

3

Z Ci(p)(v/2)~uTE- D3 1

<1-—
1— (v/2)~Pb|Foll, b

o\ P
(4.22) <§> b|Foll, <1 and A(T)
j=0
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then the nonlinear mapping/ maps a ball of radius bFy||,, back into itself. Fur-
ther, if

3 - j
(4.23) ‘%<T);g;[1-—<u/z)ﬂanosz =t

then.V is a contraction there.

PROOF This is a simple application of Lemma 4.16 if we simply note that
IF IS < B Foll. O

LEMMA 4.18 For any given T> 0 and ¢ in the interval (0,7/6), for all suffi-
ciently largev, there exists a unique & 4, that satisfies the integral equation
(3.9).

PROOFE We choosé = 2. Itis clear from the bounds dfFg||, in Lemma 4.4
that for givenT, sincea, > 1, b(r/2)=P||Foll, < 1 for all sufficiently largev.

Further, it is clear on inspection that both conditions (4.22) and (4.23) are satisfied
for all sufficiently larger. The lemma now follows from the fixed-point theorem.
O

4.1 Behavior of SolutionFsnearp=20

PROPOSITION4.19 For some K > 0and small p we havis| < Kq|p|* ! and
thus| fs| < K,|y|~ for some k > 0 as|y| — oo in D, 4.

PrROOF. Convergence if-||,, implies uniform convergence on compact subsets
of X, and we can interchange summation and integration in (3.9). Wttine
unique solution of (3.9), we let

Gj = Z(—l)j Bj,k * Fs*k
k=0
and define the linear operatgrby

t 3
9Q:/ e Pt > (P'Q) «Gjdr.
0 i—0

Clearly Fs also satisfies the linear equation
Fs=§Fs+Fo or Fo=(1-6)"Fo.
Fora > 0 small enough, definé, = 8 N {p : |p| < a}. SinceFs is continuous in

4, we have lim,o 4] = 0, where the norm is taken over($,).
By (2.2), (2.7), (3.10), and Lemma 3.1, we see th&i|., < Ksla|®1in 8,

for someK3 > 0 independent . Then, asa | 0, we have
nr%«’leIF(IO,t)I =|Fl<@-lgh* nr%«'leIIFoII < 2Ksla*t,
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and thus for smalp we have|F (p,t)| < 2K3|p|® ! and the proposition follows.
]

PROOF OFTHEOREM 2.2: Lemma 3.1 shows that ff is any solution of (2.1)
satisfying Condition 2.1, thes=1{f} € A, 5 for 0 < § < ¢ for v sufficiently
large. For largey, the series (2.3) converges uniformly and thHs= £~ f}
satisfies (3.9), which by Lemma 4.18 has a unique solutiosjnfor any ¢ €
(0,7/6). Conversely, ifFs € g is the solution of (3.9) for > vy, then from
Comment 4.3fs = LFs is analytic inD, , for 0 < ¢ < é < /6, for sufficiently
largep, where, in addition, from Proposition 4.18, = O(y~%"). This implies that
the series in (2.1) converges uniformly, and by properties of the Laplace transform,
fs solves (2.1) and satisfies Condition 2.1. O

Remark.Theorem 2.2 can be applied directly to each example in the following
three sections to give existence and uniqueness of a solutigg jrfor any given

time T, providedp is large enough. However, this general theorem does not pro-
vide the specific dependence @fon T. In the following sections, we not only
show that Theorem 2.2 can be applied to the examples given, but use the specific
information onb; «(y,t) andr (y, t) to obtain dependence pfon T. This requires
additional case-specific lemmas and theorems.

5 Example 1: Isotropic Inner Hele-Shaw Equation

This example comes in the context of solving the leading-order inner equation
for a complex singularity of the conformal mapping function corresponding to an
evolving Hele-Shaw flow [17, equations 5.5-5.9] as well as a two-dimensional
dendrite in the small Peclet number limit, when surface energy anisotropy is small
[11, equation A44] after a transformation). Consider the PDE

(5.1) Hy = H3Hyxx
with the initial condition
(5.2) H(x,0) = x”

where 0 < v < 1 (note that thisy is related to thes defined in [17] through
~v = (/2), and the far-field matching condition

(5.3)

27 27
H(x,t) = xX¥ + O(x*~3) as|x| — oo for arxe(— , )
(™) asix : 31-'30— )

Here~ is real and in the interval, 1).
The transformations

x1=
(5.4) y= . H=xX"A+y ),

1-v
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bring the equation to the form (2.1) with

(5.5) r(y,t) = —y(y — D%(y — 2y 2,

and the only nonzero coefficients di®; : i, j = 0,1, 2,3, which are presented
below as a matrix:

22y — 1172 — 6 967—372—2 50y — 25y° — 18 2(1—27)(27—3)‘
y3(y — 1)? Y4y — 1)? Yo (v — 1)? yo(y — 12
772 — 14y + 6 Q?’yz— 14y +6 Q?’yz— 14y +6 7v2 — 14y +6
(v—D22 T Y -12 T Yy - 12 yS(y — 1)?2
—3y1 —9gy2 —9gy~3 —3y~4
i 0 3yt 3y? y? il
The initial condition (5.2) translates as
(5.6) fi(y) =0.
Also, condition (5.3) implies that as— oo for (y,t) € Dy, (as defined earlier),
(5.7) fiy,tH =0(y™.

From the expressions fdx  above, it is possible to calculat \ explicitly. For
our purpose, it is enough to note that aside fiBgw, which is identically zero, we
can write

|Bjx(p,O] < C|p> I+
for a constantC independent ofi andk, as well asT, and therefore from Lem-
ma 4.4 we conclude that fdf € A4, for (j,k) # (3,0),

(5.8) 1Byl * IF L, < Co37XF], .
We also note from Lemma 4.4 that
(5.9) IFo(p, DI, < Av'T

where A, is independent oT . Since only a finite number d8; x are nonzero, it
is better to use properties (4.20) and (4.21) directly to obtain conditions for the
fixed-point theorem to apply

3 3
(5.10) % LC Z/ Z bkAkay_2k+j_3T(3_j)/3 <1,
j=0 k=0
3 3
(511) Z/Z bk(k + 1)A:(Tky—2k+j—3-r(3—j)/3 <1.
j=0 k=0

Here the primes in the summation symbol in (5.10) and (5.11) mean that the term
j = 3,k = 0is missing. Each of these conditions (5.10) and (5.11) are satisfied
for v~1T1/3 sufficiently small for any choice df > 1. The condition tha® /3

is less than some number translates ifigp® being sufficiently small; i.e., we are
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restricted to a region of space in theplane whereT /x33=7 is sufficiently small.
It was noted earlier (Kadanoff, private communication, 1991, and independently
by Howison [9] for a special case) that there was a similarity solution to (5.1) of
the form

31— X

The resulting ordinary differential equation fbin) was solved numerically
[17], and a first few singularities (in order of distance from the originHotvere
thus determined. It was surmised that these solutions form an infinite set that strad-
dle the boundary of the sect@rgx| < 27 /[3(1 — ~)], over which one can specify
the asymptotic conditiom(n) ~ n” that one needs to satisfy initial and far-field
conditions (5.2) and (5.3). Later these conclusions were confirmed rigorously by
Fokas and Tanveer [6], who transformed the equation into Painlg\ené used
isomonodromic approaches for integrable systems to confirm the earlier behavior
seen numerically.

These results are also amenable to exponential asymptotic methods and formal
trans-series association with actual functions, which have recently been worked out
[5]. The latter method is more general than the isomonodromic methods since they
apply equally well for integrable and nonintegrable equations. The application of
our existence and unigueness results mean that the only solution to the initial value
problem for the PDE are those with a similarity structure given by (5.12).

From what has been discussed so far and proved in this paper, an interesting
aspect of the complex plane initial value problem is that that the initial condition
(5.2) is not recovered as— 0" except in the sectojargx| < 27/[3(1 — 7¥)].

This follows from the equivalence of smalvith largex in the similarity solution
(5.12).

6 Example 2: Hele-Shaw Inner Equation near a Zero

The second example also comes from Hele-Shaw flow [17, equations (6.10)—
(6.12)] as well as dendritic crystal growth for weak undercooling and for weak
anisotropic surface energy [11]. In the asymptotic limit of surface tension tending
to zero, it was determined that in the neighborhood of an initial zero, the local
governing equation is

(6.1) He + Hy = H3HXXX—%H3.

The initial condition is

(6.2) H(x,0 = x 2.

The far-field matching condition with the “outer” asymptotic solution is
(6.3) H(x,t) = x Y2+ Ox™®)
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as|x| — oo with argx € (=3, 3m). Itis to be noted that in this case, unlike
case |, there are no similarity solutions that satisfy both the initial and asymptotic
boundary conditions. We introduce the transformation

3y

2/3
(6.4) X=t+ <7> . HX ) =x V24 x7 32y (y,1).

Note that ifx is large enoughy ~ 2x%2. The initial condition (6.2) implies that
(6.5) fi(y) =0,

and the asymptotic far-field condition (6.3) implies

(6.6) fy,t) = O(y 3

asy — oo in somed, ,. Under the change of variables, the PDE is of the form
(2.1) with

6.7) DR

and eachb; x containing one or more terms of the foxn”y =9, with 3 > 0 and
%5 + ¢ > 0. The exact expressions foyy are given in the appendix.

Remark. Since the conditions for Theorem 2.2 hold, we may simply apply it and
obtain a unique analytic solution over a secfy , for a fixed ¢ satisfying con-
ditions 0 < ¢ < w/6. The theorem, when applied to (6.1), would imply that
for any T, there exists a unique analytic solutibh(x,t) in the sector arg e
(—7/3—3¢/2,—7/3+ 3¢/2) provided|x| is large enough. Since this is true for
any ¢ in the interval(0,7/6), the theorem establishes the existence of a unique
analytic solution assumed before [17]. However, the restriction on how janges

to be depends ofi, and because of the generality, Theorem 2.2 does not give a
precise dependence dn Finding this constraint is the objective of the rest of this
section.

LEMMA 6.1 Letg(y,t) = x Py, where x is given b§6.4), 3 > 0, and35+6 >
0; then for any pe 8,

(6.8) IG(p,1)| < Cp3h+i-?

where C isindependent ofand T but can depend ghandd. Also, if§ﬁ+5 > 1,
then forv > 1,

(6.9) IGl, < Cy=230+,
PROOF Given the relation betweexandy, we note that we may write
g(y,t) = y 7 °h(ty 27

3 —2(3/3 22/3 -8
o () (1 22)

where
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It is to be noted that for argbounded away from:7, h(s) is uniformly bounded.
It is also clear that

G(p,t) — £7lg[p,t] — 21| pzﬁ/3+571 (/ eSh(tp2/3SZ/3)dS)
m
C

where the contou€ is similar to that shown in Figure 3.1 except in thlane.
The intersection point of on the reak-axis will be chosen to be 1. Itis clear that
for p € 8, ands on the contouC, argtp*3s=2/%) € (—2m, 2m). Thereforeh is
uniformly bounded and

G(p. b)) < C|p|%ﬂ+“f e dr .
0

Hence the lemma follows. O

Remark. Note that the preceding lemma gives a much sharper result than applying
the more general Lemma 3.1, because we made specific use of the form of the
functiong(y, t).

COROLLARY 6.2 ||R||, < Cv~ Y3,

PrRoOOF. This follows simply from the expression forand application of Lem-
ma 6.1. O
COROLLARY 6.3 For some C independent of T and p,

(i) 1Bool < CIpl% |Boal < CIp|*3, Byl < Clpl® and|Bysl < Clpl’.
(i) [B1ol < ClIpl, IBral < CIp[®3, |By2l < C|p|*¥3, and|By 3 < C|pl°.
(iii) |Bzol < C,[Baal < CIpl®?, |Bz2 < C|p|'¥3 and|B, 3 < C|p|°.
(iv) |Bsol < CTIp|™"3, |Bsal < C|pI?3, |Bs2l < C|p|”/3, and|Bsg < C|pl*.

PrROOFE These inequalities follow immediately from the expressions of the co-
efficientsb;  in the appendix and Lemma 6.1. O

COROLLARY 6.4 For C independent of T, p, j, and k and fer> 1,
11Bj k| * |Fll, < CLA/9=23 3 E|, for (j,k) # (3,0
I1Bsol * |Flll, < CTv23|F], .

PROOF. The estimates follow immediately on examination of the upper bounds
on B; x and using Lemma 4.6 with = 0. O

Remark. Application of Lemma 4.6 to the results of Corollary 6.3 leads to stronger
bounds; however, the bounds indicated in Corollary 6.4 suffice for our purposes.

LEMMA 6.5 For any0 < ¢ < 7/6, the integral equatiornf3.9), with B x and R as
determined in this section, has a unique solutioneFs,, provided Tv=%/3 < ¢,
wheree (depending only o) is small. Further, E = O(p*?3) as p— 0in ;.
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PROOE SinceFy(p,t) is given by (3.10) andF, (y) = O, it follows that| Fq||,
< CTv~13, Further, from the estimates of Corollary 6.4, it follows from (4.20)
that the condition for mapping a ball of radibgFo||,, back into itself is now given

by

3
1 / i
b +C Z (TZ/_Z/?’)(3 J)/3(bTV_2/3)k +CTr 3 <1
j k=0
where}"" denotes the summation without thg k) = (3,0 term. From (4.21),
the contractivity requirement becomes

3
C S k+ Db (To 23 BTy 23) ey 28 < 1,
j k=0

Itis clear that both conditions are satisfied for sdme 1 (sayb = 2) if Tv=?3is
chosen sufficiently small. This ensures existence of a solution in the Banach space
#,. SinceC in the above equations dependsdrthe upper bound of »~%/3 for
which the solution is guaranteed to exist dependsgporfrurther, since (y,t) =
O(y~#3), by applying Proposition 4.19, it follows thd(p,t) = O(p'/3) as
p— 0in /S¢>' U

THEOREM 6.6 Forany0 < ¢ < %, there exists a unique solution (i, t) satisfy-
ing (6.1)+6.3)that is analytic in x in the domain

{t): x| > p, argx € (—gm + 3¢, 3m— 2¢), 0<t < T}

provided Tp~* < ¢, with £ (depending only o) small enough. Thus, for any t,
whenargx € (—gw, gw), there exists a unique analytic solution satisfy{iegl )}
(6.3)when t/|x| is small enough.

PROOF. By applying the equivalence between the solution to the integral equa-
tion (3.9),Fs € A, for 0 < ¢ < 7/6, to the analytic solutionfs of the par-
tial differential equation (2.1) satisfying condition 2.1 (as shown in the proof of
Theorem 2.2), it follows that in this particular example a solutigrexists for
(Y,t) € Dy, providedTp=?3 < ¢ and thatfs = O(y *3) asy — oo in
Dy ,. Theorem 6.6 follows merely from noting the change of variailg, f) to
(x,t, H) once we choosg = p?* and use the relatiop ~ x%2 for largex. O

7 Example 3: Strongly Anisotropic Inner Equation

For strong anisotropic surface energy, the analytically continued conformal
mapping function that maps the upper half-plane to the exterior of a one-sided,
two-dimensional dendritic interface for small Peclet number satisfies, upon trans-
formation, the following leading-order inner equation near a singularity of partic-
ular type (see [11], equation (A16), after some elementary transformations):

(7-1) Ht = Hl/stxx
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with initial and boundary conditions

(7.2) H(x,0) = x %,
(7.3) Hx,t) =Xx% + Ox %) agx| — oo,

for argx € (—27/[3(1+ 9)], 2x/[3(1 + §)]) whereé > 0. If we introduce the
transformation

B xo+1 e f(y,t)
(7.4) y_m, H(x,t) =x (1+T>,

then we obtain an equation of the form (2.1) with

~95(96 +1)(96 +2)
~95(96 +1)(95 + 2{(1 + f/y)*3 -1y
76 bo(f. ¥, 1) = 0+ 13y f

1+ f/yt3
0+ 1)2y3

2176+ 26 485 f\3
77 bu(f,yt=(- - —-6)(1+—) y?
@7 byt ( ek = )(+y) y

3(95 + DA+ f/y¥3
7. f,y,t) =
(7.8) ba(f,y,1) JG D

1/3
(7.9)  Dba(f,y,t)=1— (1+ ;> :

+ (546% + 2775 + 32

Using the series expansions irty, it follows that

90(95 + (90 +2)(73)  (545%+ 277 + 32)(13)

(5 + 1)3y4+k (5 + 1)2y3+k !

o | 21426 485 )13\ L,

39+ D)

kK =
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It is clear that
o 990+ D+ 2)(3) P2 (5467 + 277 + 32) (1) pk+?
Ok = (6 + 1)3(k + 3)! (0 + D2k + 2)! ’
217 +26 485 1/3\ pktt
o= | o (%)

@A +62 S+1 k ) (k+1)!’
39+ () p"
K= T okl
Bso=0,
(13 p¢t
BS,k——<k>(k_l)! fork > 1.

Thus the following estimates hold:
1Byl * IF I, < Cv*=3)F]|,

whereC is a constant that can be made independent, &, andT. Therefore,
using the above relation, from (4.20), the condition for mapping a ball of radius
b|| Foll, back into itself becomes

3 00
p . 1
CY Y WP B | Foll)* + P <1
j=0 k=0

where the) " indicates that thé = 3, k = 0 term is missing from the summation.
Applying the estimates of this section to (4.21), the contraction condition is

3 o0
CY D WP Bk + Dbl Foll,)* < 1.
j=0 k=0

Since||Foll, < KTv ™1, a sufficient condition for use of the contraction mapping
theorem is that

bKTr 2 <1,

i.e., thatT »—2 is small enough. Note that in that caBe 2 is automatically small
whenv is sufficiently large. The restrictioiz—2 small means that the differential
equation (7.1), with conditions (7.2)—(7.3), has a unique analytic solution fax any
with arg(x) € (—27/[3(1 + 61, 27/[3(1 + 6)]) in a region wheréx 22 is small
enough. However, (7.1) admits a similarity solution
_ 35 X

HOoD =550 ()
andq(n) solves an ordinary differential equation and the asymptotic boundary con-
dition

am) N?f% forn — oo, argn e | — 2 , 2r .
3(14+9) 3(1+9)
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Uniqueness means that the similarity solution is the only solution. However, the
restrictiontx20-2 « 1 is suboptimal; from the similarity structure of the solution,
one expects analyticity in a sector ftx—3—3 « 1; i.e., the integral equation
(3.9) should have a unique solution f&r 2 sufficiently small. The condition

for convergence of the infinite series involving the normois stronger than the
original condition for the convergence of the infinite seried ithat appear in the
expansion of1 + f/y)Y/3. This is the reason for the suboptimal estimates in this
example involving infinite series. Nonetheless, the uniqueness results even for a
restricted range prove that the similarity solution determined earlier is the only
solution to the problem.

8 Conclusion

We have proved existence and uniqueness of solution to a class of third-order,
nonlinear partial differential equations in a sector of the complex spatial variable
y for sufficiently large|y|. Our technique is akin to Borel summation, which has
demonstrated its effectiveness in the analysis of general classes of nonlinear ODEs
[5]. The class of PDEs for which existence and uniqueness has been proved con-
tains three examples that arise in the context of Hele-Shaw fluid flow and dendritic
crystal growth. The uniqueness results show that the similarity solutions assumed
earlier for Examples 1 and 3 are the only ones that satisfy the given initial and far-
field matching conditions. Accordingly, the singularities of the PDE solutions are
those that correspond to singularities of the similarity solutions.

Appendix: Expressions forly x for Example 2

3 1 75 o, 45(12Y° 15 (189'°
bo.o = 6 x32y2 V) X7/2y2/3 4 x5/2y4/3°

3 1 45 3 45 (18Y® 135 (1213

bo1 = 2 x52y3  xW2y  2x2y 4 x7/2y73 8 x92y5/3’
165 1 135 (1213 1 3 1 45 (18)/3
bo2 = T4 xI2y2 g x12y8/3  x3y2 2 x7/2y4 4 x9/2y10/3°
45 (12 35 1 105 1 15 (183
bo 3 = 8 x13/2y11/3 - Exg/zys - ?X15/2y3 - lel/zyls/s '
b _ 1508 4555127 35 1
YT A xsryy T8 X2 6 x32y’
35 1 45 (182 135 (123
bi1=— + — —

2 x52y2 T 4 X243 8 x92y2/3’
35 1 135 (12¥® 45 (1813
2= > X7/2y3 g X11/2y5/3 2 x9/2y1/3’
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35 1 15 (183 45 (123

bl,3 = E Xg/2y4 Z Xll/2y10/3 § Xl3/2y8/3 ’
3z 9183y
_ 3/2
boo= =37 = =5
o 9 2 (18%3
21= _X5/2y 4 X727y’
o2 27(18)3
22= _X7/2y2 - 4x9/2y4/3
3 9(183
b3 = _Xg/zys - 4x1Y/2y7/3"
3y
bso=—-1+ %32
9
b3,;|_ = E _5/21
9
b3’2 2x7/2y ]
3
3.3 = 2x9/2y2 °
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