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Abstract

A unique analytic continuation result is proved for solutions of a relatively general
class of difference equations, using techniques of generalized Borel summability.

This continuation allows for Painlevé property methods to be extended to difference
equations.

It is shown that the Painlevé property (PP) induces, under relatively general as-
sumptions, a dichotomy within first order difference equations: all equations with PP
can be solved in closed form; on the contrary, absence of PP implies, under some fur-
ther assumptions, that the local conserved quantities are strictly local in the sense that
they develop singularity barriers on the boundary of some compact set.

The technique produces analytic formulas to describe fractal sets originating in
polynomial iterations.
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1 Introduction and main results

Solvability of difference equations as well as chaotic behavior have stim-
ulated extensive research. For differential equations the Painlevé test,
which consists in checking whether all solutions of a given equation are
free of movable non-isolated singularities provides a convenient and effec-
tive tool in detecting integrable cases (see §2).

A difficulty in applying Painlevé’s methods to difference equations
resides in extending the solutions, which are defined on a discrete set, to
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the complex plane of the independent variable in a natural and effective
fashion, when, in the interesting cases, there is no explicit formula for
them. A number of alternative approaches, but no genuine analog of
the Painlevé test, have been proposed, see [1] [9] [26] [24] (a comparative
discussion of the various approaches is presented in [1]).

The present paper proposes a natural way, based on generalized Borel
summabillity, to extend the solutions in the complex plane (Theorem 1.1
below), allowing for a definition of a discrete Painlevé test. Subsequent
analysis shows that the test is sharp in a class of first order difference
equations: those passing the test are explicitly solvable (Theorem 1.5)
while polynomial equations failing the test exhibit chaotic behavior and
their local conserved quantities (see §1.9) develop barriers of singularities
along fractal sets (Theorem 1.8).

The approach also allows for a detailed study of analytic properties
near these singularity barriers as well as finding rapidly convergent series
representing the corresponding fractal curves (Theorem 1.10).

1.1 Setting

We consider difference systems of equations which can be brought to the
form

(1.1) x(n+ 1) = Λ̂
(
I +

1
n
Â

)
x(n) + g(n,x(n))

where Λ̂ and Â are constant coefficient matrices, g is convergently given
for small x by

(1.2) g(n,x) =
∑

k∈Nm
gk(n)xk

with gk(n) analytic in n at infinity and

(1.3) gk(n) = O(n−2) as n→∞, if
m∑
j=1

kj ≤ 1

under nonresonance conditions: Let µ = (µ1, ..., µn) and a = (a1, ..., an)
where e−µk are the eigenvalues of Λ̂ and the ak are the eigenvalues of Â.
Then the nonresonance condition is

(1.4) (k · µ = 0 mod 2πi with k ∈ Zm1)⇔ k = 0.

We consider the solutions of (1.1) which are small as n becomes large.
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1.2 Analyzability: transseries and generalized Borel summa-
bility

These concepts were introduced by Écalle in the fundamental work [14].
Analyzability of difference equations was shown in [7, 14]. We give below
a brief description of the concepts effectively used in the present paper
and refer to [10, 7] for a general theory. An expression of the form

(1.5) x̃(t) :=
∑

k∈Nm
Cke−k·µttk·ax̃k(t)

where x̃k(t) are formal power series in powers of t−1 is an exponential
power series; it is a transseries as t → +∞ if <(µj) > 0 for all j with
1 ≤ j ≤ m. Such a transseries is Borel summable as t → +∞ if there
exist constants A, ν > 0 and a family of functions

Xk analytic in a sectorial neighborhood S of R+, satisfying

sup
p∈S,k∈Nm

∣∣∣A|k|e−ν|p|Xk

∣∣∣ <∞(1.6)

such that the functions xk defined by

(1.7) xk(t) =
∫ ∞

0
e−tpXk(p)dp

are asymptotic to the series x̃k i.e.

(1.8) xk(t) ∼ x̃k(t) (t→ +∞)

It is then easy to check that condition (1.6) implies that the sum

(1.9) x(t) =
∑

k∈Nn0

Cke−k·µttk·axk(t)

is convergent in the half plane H = {t : <(t) > t0}, for t0 large enough.
The function x in (1.9) is by definition the Borel sum of the transseries x̃ in
(1.5). Generalized Borel summability allows for singularities of Xk of cer-
tain types along R+. The transseries x̃ is (generalized) Borel summable in
the direction eiϕR+ if x̃(·e−iϕ) is (generalized) Borel summable. (General-
ized) Borel summation is known to be an extended isomorphism between
transseries and their sums, see [14], [15], [10].



INTEGRABILITY OF DIFFERENCE EQUATIONS 5

Transseries for difference equations

Braaksma [7] showed that the recurrences (1.1) posess l-parameter transseries
solutions of the form (1.5) with t = n where x̃k(n) are formal power se-
ries in powers of n−1 and l ≤ m is chosen such that, after reordering the
indices, we have <(µj) > 0 for 1 ≤ j ≤ l.

It is shown in [7] and [19] that these transseries are generalized Borel
summable in any direction and Borel summable in all except m of them
and that

(1.10) x(n) =
∑
k∈Nl

Cke−k·µnnk·axk(n)

is a solution of (1.1), if n > y0, t0 large enough.

1.3 Uniqueness of continuation from N to C

The values of x on the integers uniquely determine x.

Theorem 1.1 In the assumptions in §1.1 and 1.2, define the continua-
tion of xk(n) in the half plane {t : <(t) > t0} by x(t), cf. (1.6)–(1.9).

The following uniqueness property holds. If in the assumptions (1.6)–
(1.9) we have x(n) = 0 for all except possibly finitely many n ∈ N, then
x(t) =0 for all t ∈ C, <(t) > t0.

The proof is given in §3.1.

1.4 Continuation of solutions of difference equations to the
complex n plane

The representation (1.10) and Theorem 1.1 make the following definition
natural.

1.5 Continuability and singularities

The function x is analytic in H and has, in general, nontrivial singularities
in C\H. The results in [12], extended to difference equations in [7, 8, 19],
give constructive methods to determine those singularities that arise near
the boundary of H; these form, generically, nearly periodic arrays.

1.6 Integrability

In particular, Painlevé’s test of integrability (absence of movable non-
isolated singularites) extends then to difference equations.
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As in the case of differential equations, fixed singularities are singular
points whose location is the same for all solutions; they define a common
Riemann surface. Other singularities (i.e., whose location depends on
initial data) are called movable.

Definition 1.2 We say that a difference equation has the Painlevé prop-
erty if its solutions are analyzable and their analytic continuations on a
Riemann surface common to all solutions, have only isolated singularities.

Note. We follow the usual convention that an isolated singular point of
an analytic function f is a point z0 such that f is analytic in some disk
centered at z0 except perhaps at z0 itself. Branch points are thus not iso-
lated singularities and neither are singularity barriers; it is worth noting,
however, that for differential equations there exist equations sometimes
considered integrable (the Chazy equation, a third order nonlinear one is
the simplest known example) whose solutions exhibit singularity barriers.

1.7 First order autonomous equations

These are equations of the type

(1.11) xn+1 = G(xn) := axn + F (xn)

Some analyticity assumptions on F are required for our method to apply.
We define a class of single valued functions closed under all algebraic
operations and composition (the latter is needed since xn written in terms
of x0 involves repeated composition).

We need to allow for singular behavior in F , and meromorphic func-
tions are obviously not closed under composition. The following definition
formalizes an extension of meromorphic functions, often used informally
in the theory of integrability.

Definition 1.3 We define the ”mostly analytic functions” to be the
class M of functions analytic in the complement of a closed countable
set (which may depend on the function).

Lemma 1.4 (a) The classM is closed under addition, multiplication and
multiplication by scalars, and also under division and composition between
(nonconstant) functions. It includes meromorphic functions.

(b) If G ∈ M is not a constant, then the equation G(x) = y has
solutions for all large enough y.
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(c). The class M0 of G ∈ M, with G analytic at zero, G(0) = 0 and
0 < |G′(0)| < 1 is closed under composition.

In particular, G◦m ∈M for m ≥ 1.

Proof. All properties in (a) are obvious except for closure under composi-
tion and division, proved in § 3.3; (b) follows from the proof of Lemma 6.9.
(c) is easily shown using (a).

1.8 Classification of equations of type (1.11) with respect
to integrability

Theorem 1.5 Assume G ∈ M has a stable fixed point (say at zero)
where it is analytic. Then the difference equation (1.11) has the Painlevé
property iff for some a, b ∈ C with |a| < 1,

(1.12) G(z) =
az

1 + bz

The proof is given in §3.4.

Remark 1.6 The Painlevé property is not sensitive to which attracting
fixed point of G or its iterates is used in the analysis. This follows from
the Proposition below.

Assume p is another attracting fixed point ofG and letG1(s) = G(p+s)−p
(G1 has an attracting fixed point at the origin).

Proposition 1.7 The difference equation (1.11) has the Painlevé prop-
erty iff the difference equation xn+1 = G1(xn) has the Painlevé property.
Furthermore if G has an iterate G◦m with an attracting fixed point where
the conjugation map extends analytically to C except for isolated singu-
larities, then the same is true for any attracting fixed point of any iterate
G◦k.

This is shown in §6.1.

1.9 Failure of integrability test and barriers of singularities

Conserved quantities are naturally defined as functions C(x;n) with the
property

C(xn+1;n+ 1) = C(xn;n)

We now look at cases without the Painlevé property, when G is a
polynomial map. We arrive at the striking conclusion that these equations
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are not solvable in terms of functions extendible to the complex plane,
or on Riemann surfaces. The conserved quantities will typically develop
singularity barriers.

We use, in the formulation of the following theorem, a number of
standard notions and results relevant to iterations of rational maps; these
are briefly reviewed in the Appendix, §6.

Theorem 1.8 Assume G is a nonlinear polynomial with an attracting
fixed point at the origin. Denote by Kp the maximal connected component
of the origin in the Fatou set of G. (It follows that Kp is an open, bounded,
and simply connected set).

Then the domain of analyticity of Q (see (3.26)) is Kp, and ∂Kp is a
singularity barrier of Q.

This theorem is proved in §3.5.

1.10 Example: the logistic map

The discrete logistic map is defined by

(1.13) xn+1 = axn(1− xn)

The following result was proved by the authors in [11].

Proposition 1.9 The recurrence (1.13) has the Painlevé property in
Definition 1.2 iff a ∈ {−2, 0, 2, 4} (in which cases it is explicitly solvable).
If a /∈ {−2, 0, 2, 4} then the conserved quantity has barriers of singulari-
ties.

1.11 Application to the study of fractal sets

The techniques also provide detailed information on the Julia sets of it-
erations of the interval.

Theorem 1.10 Consider the equation (1.13) for a ∈ (0, 1/2).
(i) There is a conserved quantity K, satisfying the functional relation

(1.14) K(z)2 = aK(z2)(1 +K(z))

which is a conformal map of the open unit disk S1 onto the interior Kp
of the Julia set of (1.13).

(ii) K is Lipschitz continuous of exponent log2(2− a) in S1(the Lips-
chitz constant can be determined from the proof).
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(iii) ∂S1 is a barrier of singularities of K. Near 1 ∈ ∂S1 we have

(1.15) K(z) = Φ
(
τΨ(ln τ(z))

)
where

τ(z) = ln(z−1)log2(2−a)

Φ is analytic at zero, Φ(0) =
a

1− a
,Φ′(0) = 1(1.16)

Ψ is real analytic and periodic of period ln 2.

With t = 1− z we have

(1.17) K =
a

1− a
+
∑
l∈Z

∑
k,m∈N

Cl;k,mt
il log2(2π)+k log2(2−a)+m

where the series converges (rapidly) if t and | arg t| are small.

This theorem is proved in §4.

Note 1.11 The proof of Proposition 5.1 shows that the Lipschitz expo-
nent is optimal. The theorem is valid for any a < 1, and the proof is
similar.

Note 1.12 It follows from Theorem 1.10 (iii) and (1.14) that every bi-
nary rational is a cusp of angle arctan

(
π
2 log2(2− a)

)
, see also Fig. 1.

2 General remarks on integrability

This problem has a long history, and the task of finding of differential
equations solvable in terms of known functions was addressed as early as
the works of Leibniz, Riccati, Bernoulli, Euler, Laplace, and Lagrange.
“In the 18th century, Euler was defining a function as arising from the
application of finitely or infinitely many algebraic operations (addition,
multiplication, raising to integer or fractional powers, positive or nega-
tive) or analytic operations (differentiation, integration), in one or more
variables” [6]. It was later found that some linear equations have solutions
which, although not explicit by this standard, have “good” global prop-
erties and can be thought of as defining new functions. To address the
question whether nonlinear equations can define new functions, Fuchs had
the idea that a crucial feature now known as the Painlevé property (PP)
is the absence of movable (meaning their position is solution-dependent,
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Figure 1.1. (a) Julia set for G = 1
2
x(1 − x). The set Kp is the inte-

rior of the curve. (b) The function 109(Ψ(ln ln z0) + c) for a = 1
2
, c =

.079324389476 (the plot relies on (5.8), N = 300).
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cf. §1.6) essential singularities, primarily branch-points, see [17]. First or-
der equations were classified with respect to the PP by Fuchs, Briot and
Bouquet, and Painlevé by 1888, and it was concluded that they give rise
to no new functions. Painlevé took this analysis to second order, looking
for all equations of the form u′′ = F (u′, u, z), with F rational in u′, alge-
braic in u, and analytic in z, having the PP [29, 30]. His analysis, revised
and completed by Gambier and Fuchs, found some fifty types with this
property and succeeded to solve all but six of them in terms of previously
known functions. The remaining six types are now known as the Painlevé
equations, and their solutions, called the Painlevé transcendents, play a
fundamental role in many areas of pure and applied mathematics. Begin-
ning in the 1980’s, almost a century after their discovery, these problems
were solved, using their striking relation to linear problems1, by various
methods including the powerful techniques of isomonodromic deformation
and reduction to Riemann-Hilbert problems [13], [16], [25].

Sophie Kovalevskaya searched for cases of the spinning top having
the PP. She found a previously unknown integrable case and solved it in
terms of hyperelliptic functions. Her work [20], [21] was so outstanding
that not only did she receive the 1886 Bordin Prize of the Paris Academy
of Sciences, but the associated financial award was almost doubled.

The method pioneered by Kovalevskaya to identify integrable equa-
tions using the Painlevé property is now known as the Painlevé test. Part
of the power of the Painlevé test stems from the remarkable phenomenon
that equations passing it can generally be solved by some method. This
phenomenon is not completely understood. At an intuitive level, however,
if for example all solutions of an equation are meromorphic, then by solv-
ing the equation “backwards,” these solutions and their derivatives can
be written in terms of the initial conditions. This gives rise to sufficiently
many integrals of motion with good regularity properties globally in the
complex plane.

The Painlevé test has some drawbacks, notably lack of invariance un-
der transformations. To overcome them, [22] introduced the poly-Painlevé
test.

1 Some linear problems conducive to Painlevé equations were known already at the
beginning of last century. In 1905 Fuchs found a linear isomonodromic problem
leading to PVI.
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3 Proofs

3.1 Proof of Theorem 1.1

Outline

The idea of the proof is to use the convergence of (1.9) and its asymptotic
properties to show that all terms xk vanish.

We start with some preparatory results.

Remark 3.1 If xk 6≡ 0 then also Xk 6≡ 0 (see (1.7)) so for small p we
have Xk =

∑∞
j=Lk

cjpj with cLk
6= 0 for some Lk ≥ 0. By Watson’s

Lemma [5], for large z in the right half plane we have

(3.1) xk ∼
∞∑

j=Lk

cjj!
zj+1

; (cLk
6= 0)

Remark 3.2 Since <(µi) > 0 we have <(µ ·k)→∞ as k→∞. There-
fore for any K, the sets of the form

(3.2) {k ∈ Nm1 : <(µ · k) < K} ; {k ∈ Nm1 : <(µ · k) = K}

are finite.

Definition 3.3 We define S = {k : Xk 6≡ 0}. We define inductively the
finite sets Ti (cf. Remark 3.2) and the numbers Mi as follows:

T0 =
{

k ∈ S : <(µ · k) = min
k∈S
<(µ · k) =: M0

}
T1 =

{
k ∈ S \ T0 : <(µ · k) = min

k∈S\T0

<(µ · k) =: M1

}
· · ·

Tj =

{
k ∈ S \ T0 . . . \ Tj−1 : <(µ · k) = min

k∈S\T0...\Tj−1

<(µ · k) =: Mj

}

· · ·
(3.3)



INTEGRABILITY OF DIFFERENCE EQUATIONS 13

Let also

(3.4) rj = max
k∈Tj
<(a · k)

Note also that for some α > 0 we have

(3.5) rj ≤ αMj

Applying Remark 3.2 again we see that

(3.6)
∞⋃
j=0

Tj = S

Lemma 3.4 We have (see (1.9)),

(3.7) x(z) =
∑

k∈T0

Cke−k·µzzk·axk(z) +O(e−M1zzr1) (z → +∞)

Proof: We write

(3.8) x(z) =
∑

k∈T0

Cke−k·µzzk·axk(z) +
∑

k∈S\T0

Cke−k·µzzk·axk(z)

The second series is uniformly and absolutely convergent for large enough
z ∈ R+ since it is bounded by the sub-sum of a (derivative of) a multi-
geometric series

(3.9)
∑

k∈S\T0

|AkCkzk·a|e−k·<(µ)z

Since (3.9) is absolutely convergent it can be thus be convergently rear-
ranged as

(3.10)
∞∑
j=1

e−Mjz
∑
k∈Tj

|AkCkzk·a| =
∞∑
j=1

e−MjzzrjDj(z)

(see again Definition 3.3 and Remark 3.2). It is easy to see that Dj(z) are
nonincreasing in z ∈ R+ and for large enough z > 0 all products zrje−Mjz

are decreasing (cf. also (3.5)). Therefore the convergent series

(3.11)
∞∑
j=1

e−(Mj−M1)zzrj−r1Dj(z)

is decreasing in z > 0 and so
∞∑
j=1

e−MjzzrjDj(z) ≤ Const.e−M1zzr1
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Note. A similar strategy could be also be used to show the classical
Weierstrass preparation theorem.

Assume first, to get a contradiction, that we have x0 6≡ 0 and so X0 6≡ 0
so for small p we have Xk =

∑∞
j=m0

cjpj with cm0 6= 0. Then, since

x(n) = x0(n) +O(e−M1nnr1)

and by Remark 3.1

(3.12) lim
n→∞

n−m0−1x0 = (m0 + 1)!cm0 6= 0

which contradicts x(n) = 0 for n ∈ N.

Let now

(3.13) R0 = max {<(k · a− Lk − 1) : k ∈ T0}

and

(3.14) T ′0 = {k ∈ T0 : <(k · a− Lk − 1) = R0}

Lemma 3.5 We have
(3.15)
x(z) =

∑
k∈T ′0

CkcLk
Lk!zk·a−Lk−1e−k·µz + o

(
zR0e−M0z

)
for (z → +∞)

Proof: This is an immediate consequence of Remark 3.1, Lemma 3.4,
and (3.13) and (3.14).

Completion of the proof of Theorem 1.1

The proof now follows, by reductio ad impossibile, from (3.15), the as-
sumption that x(n) = 0 for all large enough n ∈ N, the fact that by
construction all cLk

are nonzero and the following Lemma.

Lemma 3.6 Let dk ∈ C. Then∑
k∈T ′0

dkn
k·a−Mke−k·µn = o

(
nR0e−K1n

)
(as n→∞, n ∈ N)

iff all dk are zero.
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Proof: We now take n0 = card(T ′0), n large enough and note that
(n+ j)b = nb(1+o(n−1)) if j ≤ n0. Then a simple estimate shows that to
prove the Lemma it suffices to show that the following equation cannot
hold for all 0 ≤ l ≤ n0 − 1

(3.16)
∑

k∈T ′0

dke
−(n+l)k·µ = ql

where

(3.17) ql = o(e−nM0) (as n→∞, n ∈ N)

If n0 = 1 this is immediate. Otherwise, we may think of (3.16) for 0 ≤ l ≤
n0−1 as a system of equations for the dk with k ∈ T ′0. The determinant ∆
of the system is a number of absolute value e−nlM0 times the Vandermonde
determinant of the quantities {e−k·µ}k∈T ′0 . In particular, for some C > 0
independent of n we have that e−nlM0 |∆| is independent of n,

(3.18) e−nlM0 |∆| = C

∣∣∣∣∣∣
∏

k1 6=k2∈T ′0

(e−(k1−k2)·µ − 1)

∣∣∣∣∣∣
and nonzero by (1.4). Similarly, the minor ∆k of any dk is bounded by
Dke

−n(l−1)M0 with Dk independent of n. We get dk = o(1) for large n
for all k ∈ T ′0, and so dk = 0.

3.2 Remarks on first order equations

It turns out [27] that for first order autonomous equations near an at-
tracting fixed point, the series x̃k of (1.5) are mere constants and the
transseries (1.5) are classically convergent for large enough n to actual so-
lutions of the equation. This is a consequence of the Poincaré equivalence
theorem, see [27].

Note 3.7 If |a| = 1 factorially divergent series do occur. In §3.6 we
show how to use Borel summation instead of usual convergence when a =
1.

Assume for now that in (1.11) G ∈ M is analytic at zero, F (0) =
F ′(0) = 0 and 0 < |a| < 1. As we mentioned, there is a one-parameter
family of solutions presented as simple transseries of the form

(3.19) xn = xn(C) =
∞∑
k=1

enk ln aCkDk
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with Dk independent of C, which converge for large n. By definition their
continuation to complex n is

(3.20) x(z) = x(z;C) =
∞∑
k=1

ezk ln aCkDk,

which is analytic for large enough z. To test for the Painlevé property, we
proceed to find the properties of x(z) for those values of z where (3.20)
is no longer convergent, and then find the singular points of x(z).
Note. In general, although (3.20) represents a continuous one-parameter
family of solutions, there may be more solutions. We also examine this
issue.

Relation to properties of the conjugation map

We can alternatively, and it turns out equivalently, define a continuation
as follows. By the Poincaré theorem [2] p. 99 there exists a unique map
ϕ with the properties

(3.21) ϕ(0) = 0, ϕ′(0) = 1 and ϕ analytic at 0

and such that

(3.22) ϕ(az) = G(ϕ(z)) = aϕ(z) + F (ϕ(z))

The map ϕ is a conjugation map between (1.11) and its linearization

(3.23) Xn+1 = aXn

since, in view of (3.22),

(3.24) xn = ϕ(Can)

for given C and n large enough, xn is a solution of the recurrence (1.11).
We obtain a continuation of x from N to C through

(3.25) x(z) = ϕ(Caz)

Lemma 3.8 (i) For equations of type (1.11), the continuations (3.20)
and (3.25) agree.
(ii) x(z;C) defined by (3.20) has only isolated movable singularities iff ϕ
has only isolated singularities in C.
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Proof: Indeed, ϕ is analytic at the origin, and a power series ex-
pansion for large n of ϕ(Can) leads to a solution of the form (3.19),
which obviously solves (1.11). If n0 is large enough, it is clear that (3.19)
can be inverted for C in terms of xn0 and we can also find C ′ so that
xn0 = ϕ(C ′an0). On the other hand xn0 uniquely determines all xn with
n > n0. For equations of type (1.11), writing x(z) = ϕ(Caz) is thus
tantamount to making the substitution n = z in (3.19). Note that, az

is entire and ϕ is analytic at zero, and the presence of a singularity of ϕ
which is not isolated is equivalent to the presence of a similar but movable
singularity of x(z) = ϕ(Caz) since its position depends on C.

Conserved quantities

The connection between C and the equivalence map is seen as follows.
Near an attracting fixed point, say 0, we have a continuous one-parameter
family of solutions of (1.11) in the form (3.24).

On the other hand the conjugation map ϕ is invertible for small argu-
ment by (3.21). We may then write

(3.26) C = C(n, xn) = ϕ−1(xn)a−n =: Q(xn)a−n

where we see that C(n, xn) is a conserved quantity of (1.11), and Q = ϕ−1

is analytic near zero. Clearly any equation near a stable fixed point is, in
the sense of (3.26), locally solvable. Definition 1.2 requires however global
properties.

Note first that, from the properties of ϕ (or from the constancy of C),
Q satisfies the functional equation

(3.27) Q(z) = a−1Q(G(z))

3.3 End of proof of Lemma 1.4 (a)

Proof: For i = 1, 2, let Gi ∈M , analytic in C \Ei and let C \E be
the set of analyticity of G1 ◦G2. Then E ⊂ Ẽ := E2 ∪G−1

2 (E1) is closed
since the set of analyticity of any analytic function is open. It remains to
show E is countable. Since G2 is not identically constant, for x 6∈ E2 there
is a least k = k(x) such that G(k)

2 (x) 6= 0 and then G2 has multiplicity
exactly k in a small disk Dx around x. Then G−1

2 (E1)∩Dx is countable.
Since for every x there is an open set Dx such that Ẽ ∩Dx is countable it
follows that Ẽ, thus E, is also countable. In the same way, for any a /∈ Ei
we have that G−1

i (a) is countable. For division, note that 1/G is defined
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wherever G is defined and nonzero. Since G is not a constant the same
argument as above shows that G−1(0) is countable.

3.4 Proof of Theorem 1.5

Notations

In the following we will write Dr(z0) for the disk {z ∈ C : |z − z0| < r},
Dr will denote Dr(0), C∞ = C ∪ {∞}.

A number of notations, definitions and results in iterations of rational
maps used in the proof are reviewed in §6.

Proposition 3.9 Let R be a rational function of degree d ≥ 2. Then R
has infinitely many distinct periodic points.

Proof: By definition, points of different period are distinct and by
Lemma 6.6 there are periodic points for every n ≥ 4.

The “if” part of Theorem 1.5

In this direction the proof is trivial. Indeed, if G is linear fractional,
then the general nonidentically zero solution of the equation (1.11) can
be obtained by substituting x = 1/y in (1.11) which then becomes linear.
We get

xn =
(
Ca−n +

b

a− 1

)−1

with the continuation x(z) =
(
Ce−z ln a + (a− 1)−1b

)−1
, a meromorphic

function.

The “only if” part of Theorem 1.5

For the proof we will show that if f has only isolated singularities, and
f(az) = G(f(z)), then f itself is linear-fractional. Then G is also linear-
fractional since G(w) = f(af−1(w)).

Lemma 3.10 If f has only isolated singularities and f is not linear-
fractional then for any large enough w, the equation f(z) = w has at
least two distinct roots.

Proof: If f is rational, then the property is immediate. Then as-
sume that that f is not rational, thus f has at least one essential sin-
gularity, possibly at infinity [18]. If f has an essential singularity in C,
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then it is isolated by hypothesis and then the property follows from The-
orem 6.7. Then assume that f has no essential singularity in C, thus
infinity is the only essential singularity of f . If it is isolated then Theo-
rem 6.7 applies again. Otherwise f has infinitely many poles accumulating
at infinity. Since f maps a neighborhood of every pole into a full neigh-
borhood of infinity, any sufficiently large value of f has multiplicity larger
than one.

End of proof of Theorem 1.5. Let now G◦m be defined on C \Em and let
E = ∪∞m=1Em; then E is countable and G◦m is defined on C \ E for any
m.

Assume f is not linear-fractional and has only isolated singularities.
We let z1 and z2 be in C\E and such that f(z1) = f(z2), cf. Lemma 3.10.
Then f(az1) = G(f(z1)) = G(f(z2)) = f(az2) and in general f(anz1) =
f(anz2). But since anz1 → 0 this contradicts (3.21).

3.5 Proof of Theorem 1.8

Proof: The fact that Kp is bounded for a nonlinear polynomial map
follows from the fact that after the substitution x = 1/y, the map yn+1 =
1/G(1/yn) is attracting at y = 0. Thus, cf. [4] Theorem 5.2.3 p. 83,
Kp is simply connected. Let a1 ∈ (|a|, 1) and let Dε be a disk such that
|G(z)| < a1|z| for z ∈ Dε and Q is analytic in Dε.

By definition, for every z0 ∈ Kp there existsm(z0) such thatG[m(z0)](z0) ∈
Dε. Since G[m(z0)](z) is continuous in z, there is a disk Dε(z0)(z0) such

that G[m(z0)]
(
Dε(z0)(z0)

)
⊂ Dε. It follows in particular that Kp is open.

Since Kp is open and connected, it is arcwise connected. Let z0 be
arbitrary in Kp and let C be an arc connecting z0 to z = 0. Since C is
compact and

C ⊂
⋃
z∈C

Dε(z)(z)

there is a finite subcovering

C ⊂ OC =
N⋃
i=1

Dε(zi)(zi)

with zi ∈ C. Let M be the largest of the m(zi), i = 1, ..., N . Then, by
construction,

(3.28) G[M ] (OC) ∈ Dε
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We see from (3.27) that aQ(z) = Q(G(z)) = a−1Q(G(G(z))) and in
general, for n ∈ N,

(3.29) Q(z) = a−nQ(G[n](z))

We define Q(z) in OC by Q(z) = a−MQ(G[M ](z)). By (3.28), and because
(3.29) holds in Dε, this unambiguously defines an analytic continuation of
Q from Dε to Dε ∪OC . Since Kp is open and simply connected and since
Q is analytic near zero and can be continued analytically along any arc in
Kp, standard complex analytic results show that Q is (single valued and)
analytic in Kp.

For the last part, note that the boundary of Kp lies in the Julia
set J , which is the closure of repelling periodic points (see Appendix,
Lemma 6.3). Assume that x0 is a repelling periodic point of G of period
n, and that x0 is a point of analyticity of Q. Relation (3.29) implies
that Q(x0) = 0 and that Q′(x0) = a−n(G[n])′(x0)Q′(x0) but since |a| < 1
and |(G[n])′(x0)| > 1 this implies Q′(x0) = 0. Inductively, in the same
way we see that Q(m)(x0) = 0 for all m, which under the assumption of
analyticity entails Q ≡ 0 which contradicts (3.21).

3.6 Borel summability of formal invariant for logistic map
when a = 1

We now consider an example which cannot be reduced to the previous
types, namely when a = 1, and when therefore the Poincaré equivalence
theorem fails. In the recurrence

(3.30) xn+1 = xn(1− xn)

zero is a fixed point, and it can be shown in a rather straightforward
way that there are no attracting fixed points of this map, or of any of
its iterates. However, failure of the Painlevé property can be checked
straightforwardly, and Borel summability makes it possible to analyze
the properties of this equation rigorously.

A formal analysis of the Painlevé property is relatively straightforward
using methods similar to those in [12]. We concentrate here on properties
of the conserved quantities. The recurrence an+1 = an(1+an)−1 is exactly
solvable and differs from the logistic map by O(a3

n) for small an. The exact
solution is n − a−1

n = Const, which suggests looking in the logistic map
case for a constant of the iteration in the form of an expansion starting
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with C = n− a−1
n . This yields

(3.31) C(n; v) ∼ n− v−1 − ln v − 1
2
v − 1

3
v2 − 13

36
v3 − 113

240
v4 + · · ·

which is indeed a formal invariant, but the associated series is factorially
divergent as will appear clear shortly. Nevertheless we can show that
the expansion is Borel summable to an actual conserved quantity in a
sectorial neighborhood of v = 0.

Theorem 3.11 There is a conserved quantity C defined near the origin
in C \ R−, of the form

C(n; v) = n− v−1 − ln(v)−R(v)

where R(v) has a Borel summable series at the origin in any direction in
the open right half plane. R(v) has a singularity barrier touching the ori-
gin tangentially along R−. This singularity barrier is exactly the boundary
of the Leau domain of (3.30).

We let

(3.32) C(n; v) := n− v−1 − ln v −R(v)

and impose the condition that C is constant along trajectories. This
yields

(3.33) R(v) = R(v − v2) +
v

1− v
+ ln(1− v)

where the RHS of (3.33) is R(v − v2) +O(v2). The substitution

(3.34) R(v) = h(v−1 − 2)

followed by v = 1/(x+ 1) yields

(3.35) h(x− 1) = h
(
x+ x−1

)
+

1
x

+ ln
(

x

x+ 1

)
which by formal expansion in powers of x−1 becomes

(3.36) h(x− 1) =
∞∑
k=0

h(k)(x)
k!

x−k +
1
x

+ ln
(

x

x+ 1

)
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Proof of Theorem 3.11

Proposition 3.12

i) R(v) = h(v−1 − 2) has a Borel summable series at the origin along R+.
More precisely, h(x) can be written in the form

(3.37) h(x) =
∫ ∞

0
e−pxH(p)dp

and where H(p) is analytic at zero and in the open right half plane
H = <(p) > 0 and has at most exponential growth along any ray towards
infinity in H.

ii) h is analytic in a region of the form {x : arg(x) 6= π : |x| ≥ ν(arg(x))}.
The function ν is continuous in (−π, π). (The expression of ν : (−π, π) 7→
R

+ will follow from the proofs below.)

iii) By (3.37) and Watson’s Lemma [5], h has an asymptotic power series
for large x, h(x) ∼

∑∞
k=0H

(k)(0)x−k, which is a formal solution of (3.36).

iv) The function R(v) is analytic in a region near the origin, the origin
excluded, of the form V = {v : arg(v) 6= π, 0 < |v| < ν−1(arg(ϕ)}. By
(iii) the relation (3.31) is an asymptotic expansion for small v ∈ V, and
from (3.37) the power series contained there is Borel summable.

v) The function R given by (3.34) satisfies (3.33).

vi) The function R is analytic in Lf , the Leau domain of f , and has a
singularity barrier on the Julia set of f .

Proof: The formal inverse Laplace transform of (3.36) is the equa-
tion

(3.38) (ep − 1)H =
1− e−p − p

p
+
∞∑
k=1

(−p)k

k!
H ∗ 1∗k

where * denotes the Laplace-type convolution

F ∗G =
∫ p

0
F (s)G(p− s)ds

and F ∗k is the convolution of F with itself k times. We rewrite (3.38) in
the form

(3.39) H =
1− e−p − p
p(ep − 1)

+
1

(ep − 1)

∞∑
k=1

(−p)k

k!
H ∗ 1∗k = H0 + AH
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where A is a linear operator. We show now that this equation is con-
tractive in an appropriate space of functions. Let ν > 0 and let A be
the space of functions F analytic in a neighborhood N of [0,∞) in the
complex plane, with F (0) = 0, in the norm ‖F‖ν := supN |e−ν|p|F (p)|.
We choose a ∈ (0, 2π), ε small and

(3.40) N =
{
p : |p| ≤ ε

}
∪
{
p : arg(p) ∈

(
−π

2
+ ε,

π

2
− ε
)}

Since the norm ‖ · ‖ν restricted to compact sets is equivalent to the usual
sup norm, it is easy to check that A is a Banach space.

Proposition 3.13 For large enough ν, the equation (3.39) is contractive
in A in the norm ‖ · ‖ν .

First, it is easy to see that H0 ∈ A. If f ∈ A then

(3.41)
∞∑
k=1

(−p)k

k!
f ∗ 1∗k =

∞∑
k=1

(−p)k

k!

∫ p

0
f(s)

(p− s)k−1

(k − 1)!
ds

=
∞∑
k=1

(−1)kp2k

k!(k − 1)!

∫ 1

0
f(pt)(1−t)k−1dt =

∞∑
k=1

(−1)kp2k

k!(k − 1)!

∫ 1

0
f(p(1−t))tk−1dt

It is immediate that if p is in a compact set K and f is analytic in K
then the sum in (3.41) is uniformly convergent in K and analytic in p.
Furthermore the sum is O(p3) for small p since f ∈ A. Now we see that

(3.42)

∣∣∣∣∣e−ν|p|
∞∑
k=1

(−1)kp2k

k!(k − 1)!

∫ 1

0
f(p(1− t))tk−1dt

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

(−1)kp2k

k!(k − 1)!

∫ 1

0
e−ν|p|(1−t)f(p(1− t))tk−1e−ν|p|tdt

∣∣∣∣∣
≤ ‖f‖ν

∞∑
k=1

|p|2k

k!(k − 1)!

∫ 1

0
tk−1e−ν|p|tdt ≤ ‖f‖ν

∞∑
k=1

|p|2k

k!(k − 1)!

∫ ∞
0

tk−1e−ν|p|tdt

= ‖f‖ν
∞∑
k=1

|p|k

k!νk
≤ ‖f‖ν

|p|
ν
e|p|/ν

and thus

(3.43) ‖A‖ ≤ Const ν−1

for sufficiently large ν, where we took into account the exponential de-
crease of (ep − 1)−1 for large p in N . Thus the equation has a unique
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fixed point H ∈ A. In particular the Laplace transform h(x) = LH =∫∞
0 e−xpH(p)dp is well defined and analytic in the half-plane <(x) > ν.

It is now immediate to check that h(x) satisfies the equation (3.36).

4 Julia sets for the map (1.13) for a ∈ (0, 1)

It is convenient to analyze the superattracting fixed point at infinity; the
substitution x = 1/y transforms (1.13) into

(4.1) yn+1 = − y2
n

a(1− yn)

For small y0, the leading order form of equation (4.1) is yn+1 = −a−1y2
n

whose solution is −y2n
0 a−2n−1−1. It is then convenient to seek solutions of

(4.1) in the form yn = −G(y2n
0 a−2n) whence the initial condition implies

G(0) = 0, G′(0) = a. Denoting y2n
0 a−2n = z, the functional relation

satisfied by G is

(4.2) G(z2) =
G(z)2

a(G(z) + 1)
; G(0) = 0, G′(0) = a

Lemma 4.1 ([11]) There exists a unique analytic function G in the neigh-
borhood of the origin satisfying (4.2). This G has only isolated singular-
ities in C if and only if a ∈ {−2, 2, 4}. In the latter case, (1.13) can be
solved explicitly.

If a 6∈ {−2, 2, 4} then the unit disk is a barrier of singularities of G.

Lemma 4.2 G is analytic in the open unit disk S1 and Lipschitz contin-
uous in S1.

Proof: Lemma 4.1 proved in [11] guarantees the existence of some
disk Sr centered at zero, of radius r ≤ 1, where G is analytic and it is
shown that inside that disk we have (cf. also 4.2)

(4.3) G(z) = U(G(z2)); 2U(s) := s+ (a2s2 + 4s)
1
2

(with the choice of branch consistent with G(0) = 0, G′(0) = a). If r < 1
then (4.3) provides analytic continuation in a disk of radius r

1
2 > r if

a2G(z)2 + 4aG(z) 6= 0 in Sr.

Note 4.3 G(z0) = 0 in S1 iff z0 = 0.
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Indeed, assume 0 6= z0 ∈ Sr and G(z0) = 0. Then we find from (4.2) that
G(z2n

0 ) = 0 which is impossible since G is analytic at zero and G′(0) = a.
2

We are left to examine the possibility G(z0) = −4a−1 with z0 ∈ Sr.

Note 4.4 R(x) = x2

a(x+1) is well defined and increasing on the interval(
−∞,−4a−1

)
.

The assumption G(z0) = −4a−1 thus implies that the values G(z2n
0 ) are

in R− and decrease in n, again impossible G is analytic at 0 and G(0) = 0.
We now show G is bounded in S1. Indeed, by (4.3) we have

(4.4) |G(z)| ≤ U(|G(z2)|)

on the other hand, a calculation shows that

(4.5) U(s) ≤ a

1− a
for s ∈

[
0,

a

1− a

]
Since G(0) = 0 and G is analytic in S1, (4.4) and (4.5) imply that

(4.6) sup
z∈S1

|G(z)| ≤ a

1− a

We next prove that G is injective. As a first step we have the following:

Note 4.5 G′ 6= 0 in S1.

Indeed, otherwise differentiating (4.2) shows there would exist a sequence
zn → 0 such that G′(zn) = 0.2

Now, G is injective in a neighborhood of the origin since G′(0) = a.
Let then z1 ∈ S1 be a point of smallest modulus such that there exists
z2 6= z1 ∈ S1 with G(z1) = G(z2). For z1 to exist, we need, again by (4.2)
that z2

1 = z2
2 and thus z1 = −z2. Since G′ 6= 0, by the open mapping

theorem, the image under G of arbitrarily small disks around z1 and −z1

overlap nontrivially. For some C and any ε there exist therefore infinitely
many zi with |z1− zi| < ε such that G(zi) = G(z′i) and |z′i− (−z1)| < Cε.
The same argument using (4.2) shows that z′i = −zi. But since G(z) =
G(−z) for infinitely many z ∈ S1 accumulating at z1, then G would be
even, which is not the case since G′(0) = a. We now need two lower
bounds.

Proposition 4.6 For a ∈
(
0, 1

2

)
(1− |z|)1−log2(2−a)G′(z)

is bounded in S1.
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Proof: The function H = 1/G which, by Note 4.3, is analytic in
S1 \ 0 satisfies

(4.7) H(z2) = aH(z)(1 +H(z))

Let
mn = max{|H(z)| : |z| ∈

[
2−

1
2n , 2−

1
2n+1

]
}

Eq. (4.7) gives

mn+1 ≤
1
2

+
√

1
4

+
mn

a

and it easy to see that this implies

(4.8) lim sup
n→∞

mn ≤ 1 + a−1

We have

(4.9) G′(z) = 2az
G′(z2)(1 +G(z))2

G(z)(2 +G(z))

so that

|G′(z)| ≤ |G′(z2)| max
(1−a)|y|≤a

∣∣∣∣∣2a(1 + y)2

y(2 + y)

∣∣∣∣∣ =
2

2− a
|G′(z2)|

if a ≤ 1/2 from which Proposition 4.6 follows immediately.

Note 4.7 A straightforward way to extend the result for larger values
of a < 1 is to replace (4.9) by a corresponding equality obtained from a
higher order iterate of (4.7).

Lemma 4.8 G is gives a conformal transformation of S1 onto a bounded
region Kp, whose boundary ∂Kp is a Lipschitz continuous nowhere differ-
entiable curve.

5 Behavior at the singularity barrier

Proposition 5.1 There is δ > 0, a real analytic function Ψ, periodic of
period ln 2 and an analytic function Φ,Φ′(0) = 1 such that for | arg(1 −
z)| < δ (1.15) holds.
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Proof: Let ω = 2π/ ln 2, β = log2(2 − a). With z0 ∈ (0, 1) and
zn = z

1/2n

0 , the sequence Gn = G(zn) is increasing and bounded by L, see
(4.3). It follows immediately from (4.3) and (4.4) that

(5.1) L−Gn := δn ↓ 0 as n→∞ (L :=
a

1− a
)

From (4.8) we have, with C1 = (1−a)3

a(2−a) + C2, C2 = 1− a

(5.2) δn+1 =
1

2− a

[
1− C2δn+1

1− C1δn+1

]
δn

Eqs. (5.1) and (5.2) imply that for any ε > 0 we have

(5.3) δn = o
(
(2− a− ε)−n

)
as n→∞

Let

(5.4) δn = lnβ(1/zn)eθn = 2−nβ lnβ(1/z0)eθn

cf. (5.1). Now∣∣∣eθn−θn+1 − 1
∣∣∣ =

(C1 − C2)δn+1

1− C2δn+1
= O(δn) as n→∞

and by (5.3), θn is convergent, θn → Θ. Since θn+1 − θn → 0 it follows
that

(5.5) Θ(z2
0) = Θ(z0)

Analyticity

We let 1− z1 be sufficiently small so that

(5.6) δn ≤ cαn

with α < 1 and c small enough so that the term in square brackets is
sufficiently close to one for all n ≥ 0 and |z0 − z1| ≤ ε1 (cf. (5.3)), this
amounts to a shift in n). If ε1 is small enough, then it is easy to check
that equation (5.2) is a contractive mapping in the in the ball of radius c
Sε1 = {ζ : |ζ ≤ ε1} in Banach space l∞,α(N) of vectors v(n; ζ) analytic in
ζ = z0 − z1 with respect to the norm

‖v‖ = sup
n≥1;|ζ|≤ε1

|v(n, ζ)α−n|

and local analyticity in a neighborhood of the interval [z0,
√
z0]. By pe-

riodicity, real analyticity follows immediately and relation (5.5) is pre-
served.
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End of the proof of Theorem 1.10 (iii)

We use the information obtained in §5. Let eθn = (1+wn)eΘ; given δ > 0
we choose n0 large enough and ε2 so that |wn(z0)| < δ if |z− z0| < ε2 and
n ≥ n0. We let , h = e2Θ, εn = 2nβ, s = lnβ(1/z0), c = C1−C2, C = c−C2

and obtain

(5.7) wn =
Ce2Θsεn

1− εnC2e2Θs

+ wn+1
1 + 2Ce2Θsεn − CC2e

4Θs2ε2
n + wn+1Cse

2Θεn(1− εnC2se
2Θ)

1− 2εnse2Θ + 2ε2
ns

2e4Θ − wn+1C2se2Θ(1− εnC2se2Θ)

As in §5, a contractive mapping argument shows that w = (wn, wn+1, ...)
is analytic in se2Θ, if s is small enough. The conclusion now follows from
the definition

G(z2−n0

0 ) = L+ sδn0

and (5.4), (5.5), §5 and the substitution e2Θ(·) = Ψ(ln(ln(·)). Formula
(1.17) follows immediately from (1.15).

Note 5.2 With zn = z
1/2n

0 , τn = τ(zn) (cf. (1.15) and gn = G(zn) − L
we have

(5.8) Ψ(ln ln z0) = lim
N→∞

gN+1

τN+1
− gN
τN

τN+1 − τN

Appendix: Iterations of rational maps

We introduce a number of definitions and results for iterations of rational
maps, which are treated in much more detail and generality in [32] and [4].
We shall illustrate the main concepts on the simple case G = ax(1 − x).
In Figure 1, the interior (in the complex plane) of the fractal curves is a
set invariant under G and with the further property that starting with z0

inside the m-th iterate of G at z0, G◦m(z0), converges to zero as m→∞.
These are stable fixed domains of G.

Consider the polynomial map G. A Fatou domain of G is a stable
fixed domain V of G characterized by the property that G◦n converges
in the chordal metric on the Riemann sphere C∞ to a fixed point of G,
locally uniformly in V .

Definition 6.1 ([4], p. 50) Let G be a non-constant rational function.
The Fatou set of G is the maximal open subset of C∞ on which {G◦n}
is equicontinuous and the Julia set of G is its complement in C∞.
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A Fatou domain is a Leau domain (or a parabolic basin) if x0 ∈ ∂V
and the multiplier of x0 (the derivative at x0) is λ = 12. In Figure 1 this
happens for a = 1.

The Julia set can be characterized by the following property.

Lemma 6.2 ([4], p. 148) Let G be a rational map of degree d, (cf. Defi-
nition 6.4) where d ≥ 2. Then J is the derived set3 of the periodic points
of G.

Under the assumptions above, we have

Lemma 6.3 ([4], p. 148) J is the closure of the repelling points of G.

Definition 6.4 ([4], p. 30.) If R = P/Q where P and Q are polynomi-
als, then the degree of the rational function R is max{deg(P ),deg(Q)}.

Definition 6.5 ([4]) If R is a rational function and R◦m=R◦R◦ · · · ◦R
n times, then a periodic point of period n of R is a point z such that
R◦mz = z and R◦mz 6= z if m < n. A periodic point of R is a point of
some period n ≥ 1.

We also use the following result of I. N. Baker:

Lemma 6.6 ([3], [4]) Let R be a rational function of degree d ≥ 2, and
suppose that R has no periodic points of period n. Then (d, n) is one of
the pairs

(2, 2), (2, 3), (3, 2), (4, 2)

(moreover, each such pair does arise from some R in this way).

Further results used in the proofs

Theorem 6.7 (Big theorem of Picard, local formulation [31], [18]) If f has
an isolated singularity at a point z0 and if there exists some neighborhood
of z0 where f omits two values, then z0 is a removable singularity or a
pole of f .

Theorem 6.8 (Picard-Borel, [28]) If ϕ is any nonconstant function mero-
morphic in C, then ϕ avoids at most two values (infinity included).
2 [32], p. 54
3 By definition the derived set of a set E consists exactly in the points z which are

limits of sequences {zn} where the zn ∈ E are distinct.



30 O. COSTIN AND M. D. KRUSKAL

All we need in the present paper is that at most two finite values are ex-
cluded. This is immediately reduced to the more familiar Picard theorem
by noting that if λ is an excluded value of f then 1/(f − λ) is entire.

6.1 Proof of Proposition 1.7

By Theorem 1.5, (1.11) does not have the Painlevé property at some stable
fixed point iff G is not linear-fractional, in which case (1.11) fails to have
the Painlevé property at any other stable fixed point. More generally,
Proposition 1.7 follows from the following result.

Lemma 6.9 If G◦m is of the form (1.12) then G is of the form (1.12).

Proof: Since (1.12) is one to one, the conclusion follows from the
remark that if G is not linear-fractional, then G(z) has multiplicity greater
than one for all sufficiently large z (and then the same holds for G◦m(z)).
Indeed, assume that G is not linear-fractional. If G is rational, then the
conclusion is obvious. If the set of singularities of G is finite, then they
are all isolated and at least one is an essential singularity (otherwise G is
rational [18]) and Theorem 6.7 applies.

So we may assume the set of singularities is infinite. Since by assump-
tion this set is closed and countable, it contains infinitely many isolated
points. (Indeed, a set which is closed and dense in itself, i.e. a perfect set,
is either empty or else uncountable.) Then if G has an isolated essential
singularity, Theorem 6.7 applies, and if not then there are infinitely many
poles of G. In the latter situation any sufficiently large value of G has
multiplicity larger than one since G maps a neighborhood of every pole
into a full neighborhood of infinity.

Completion of proof of Proposition 3.12. Part (ii) merely follows from the
formula (3.37) and elementary contour deformation in the integral. Parts
(iii) and (iv) are straightforward.

After the transformation v = −u+ 1/2 the iteration associated to our
map f is equivalent to that of the quadratic map q(u) = u2 + 1/2.

Part (vi) follows from the following Lemma.

Lemma 6.10 ([32], p. 174) The Leau domain of q, is the filled in (inte-
rior of the) Julia set Kp of q.

Proof of Proposition 3.12(vi). Let H(v) = R(v) + v−1 + ln v, defined and
analytic in V. By definition we have H(vn+1) = H(vn) + 1 i.e.

(6.1) H(v) = H(f(v))− 1 = H(v − v2)− 1
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and clearly R and H have the same type of singularities in C \R− \ {0}.
If z0 ∈ Lf we have by definition |zn| = |f◦m(z0)| → 0. Then,

we choose ε small enough and N so that |zn| < ε for n > N . Since
we must have for some n > N that |zn+1| < |zn|, then |1 − zn| < 1
and thus arg(zn) ∈ (−π/2, π/2). A direct calculation shows that then
| arg(zn+1)| < | arg(zn)| and thus, if m > n, then arg(zm) ∈ (−π/2, π/2).
Thus by Proposition 3.12, (ii and iv), eventually zn ∈ V. We know that V
is a domain of analyticity of R. By (6.1), if H is analytic at zn+1 = zn−z2

n

then H is analytic at zn and by induction H is analytic at z0. Since Lf
is simply connected, we have that H, and thus R, is analytic in Lf , as in
the proof of Theorem 1.8.

On the other hand, if we assume that v ∈ ∂L is a periodic point of
f , say of period N , and that R, thus H, is analytic there, relation (6.1)
implies that H is analytic at any point on the orbit of v and furthermore
H(v) = H(v) − N , a contradiction. Since the closure of the periodic
points is ∂L, ∂L is a singularity barrier of H. Furthermore ∂L is in the
exterior of V and since ∂V touches the origin tangentially along R−, so
does ∂L since 0 ∈ ∂L. 2
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méromorphes, Chelsea Pub. Co., New York, (1974).
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